Diagnostic Performance of Red Blood Cell Indices in the Differential Diagnosis of Iron Deficiency Anemia and the Thalassemia Trait in Chile: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. CBC
2.2. Iron Metabolism
2.3. Ferritin
2.4. Hemoglobin Electrophoresis
2.5. Morphological Characteristics
2.6. Diagnostic Criteria
2.6.1. IDA
2.6.2. β-Thalassemia Trait
2.7. Exclusion Criteria
2.8. Calculation of Discriminatory RBC Indices
2.9. Statistical Analysis
ΒTT (+) | BTT (−)/(IDA) | Total | |
---|---|---|---|
RBC indices suggest BTT | (A) True Positive | (B) False Positive | Positives |
RBC index does not suggest BTT | (C) False Negative | (D) True Negative | Negatives |
Sick patients | Healthy patients | N | |
BTT: β-thalassemia trait; IDA: iron deficiency anemia; RBC: red blood cell count. |
3. Results
4. Discussion
Scope and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Benoist, B.; McLean, E.; Egli, I.; Cogswell, M. Worldwide Prevalence of Anaemia 1993–2005: WHO Global Database on Anaemia; WHO Press: Geneve, Switzerland, 2008. [Google Scholar]
- World Health Organization. The Global Prevalence of Anaemia in 2011; WHO Document Production Services: Geneve, Switzerland, 2015. [Google Scholar]
- Wintrobe, M. Anemia: Classification and treatment on the basis of differences in the average volume and hemoglobin content of the red corpuscles. Arch. Intern. Med. 1934, 54, 256–280. [Google Scholar] [CrossRef]
- Galanello, R.; Origa, R. Betha thalassemia. Orphanet J. Rare Dis. 2010, 5, 1–15. [Google Scholar] [CrossRef] [PubMed]
- De Sanctis, V.; Cattasmis, C.; Canatan, D.; Soliman, A.; Elsedfy, H.; Karimi, M.; Daar, S.; Wali, Y.; Yassin, M.; Soliman, N.; et al. β-Thalassemia Distribution in the Old World: An Ancient Disease Seen from a Historical Standpoint. Mediterr. J. Hematol. Infect. Dis. 2017, 9, e2017018. [Google Scholar] [CrossRef] [PubMed]
- Cao, A.; Galanello, R. Beta-thalassemia. Genet. Med. 2012, 12, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Thein, S. The Molecular Basis of β-Thalassemia. Cold Spring Harb. Perspect. Med. 2013, 3, 1–24. [Google Scholar] [CrossRef]
- Brancaleoni, V.; di Pierro, E.; Motta, I.; Cappelini, M. Laboratory diagnosis of thalassemia. Int. Jnl. Lab. Hem. 2016, 38, 32–40. [Google Scholar] [CrossRef]
- Aixalá, M. Anemia microcítica-hipocrómica: Anemia ferropénica versus β talasemia menor. Acta Bioquím. Clín. Latinoam. 2017, 51, 291–305. [Google Scholar]
- Miri-Moghaddam, E.; Sargolzaie, N. Cut off Determination of Discrimination Índices in Differential Diagnosis between Iron Deficiency Anemia and β-Thalassemia Minor. Int. J. Hematol. Oncol. Stem Cell Res. 2014, 8, 27–32. [Google Scholar]
- Roth, I.; Lachover, B.; Koren, G.; Levin, C.; Zalman, L.; Koren, A. Detection of β-thalassemia carriers by red cell parameters obtained from automatic counters using mathematical formulas. Mediterr. J. Hematol. Infect. Dis. 2018, 10, e2018008. [Google Scholar] [CrossRef]
- Harrington, A.; Ward, J.; Kroft, S. Iron deficiency anemia, β-thalassemia minor, and anemia of chronic disease. A morphologic reappraisal. Am. J. Clin. Pathol. 2008, 129, 466–471. [Google Scholar] [CrossRef]
- Lazarte, S.; de Nofal, M.; Agüero, M.; Issé, B. Perfil hematológico de la β-talasemia menor en Tucumán. Acta Bioquim. Clin. Latinoam. 2007, 41, 219–223. [Google Scholar]
- England, J.; Fraser, P. Differentiation of iron deficiency from thalassaemia trait by routine blood-count. Lancet 1973, 301, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P.; Bevington, J. Iron deficiency and/or Thalassaemia trait. Lancet 1973, 301, 832. [Google Scholar] [CrossRef] [PubMed]
- Mentzer, W. Differentiation of iron deficiency from thalassaemia trait. Lancet 1973, 301, 882. [Google Scholar] [CrossRef]
- Shine, I.; Lal, S. A strategy to detect β-thalassaemia minor. Lancet 1977, 309, 692–694. [Google Scholar] [CrossRef]
- England, J.; Fraser, P. Discrimination between iron-deficiency and heterozygous thalassaemia syndromes in differential diagnosis of microcytosis. Lancet 1979, 313, 145–148. [Google Scholar] [CrossRef]
- Bessman, J.; Feinstein, D. Quantitative anisocytosis as a discriminant between iron deficiency and thalassemia minor. Blood 1979, 53, 288–293. [Google Scholar] [CrossRef]
- Ricerca, B.; Storti, S.; d’Onofrio, G.; Mancini, S.; Vittori, M.; Campisi, S.; Mango, G.; Bizzi, B. Differentiation of iron deficiency from thalassaemia trait: A new approach. Haematologica 1986, 72, 409–413. [Google Scholar]
- Green, R.; King, R. A new red cell discriminant incorporating volume dispersion for differentiating iron deficiency anemia from thalassemia minor. Blood Cells 1989, 15, 481–495. [Google Scholar]
- Das Gupta, A.; Hegde, C.; Mistri, R. Red cell distribution width as a measure of severity of iron deficiency in iron deficiency anemia. Indian J. Med. Res. 1994, 100, 177–183. [Google Scholar]
- Jayabose, S.; Giamelli, J.; LevondogluTugal, O.; Sandoval, C.; Ozkaynak, F.; Visintainer, P. # 262 Differentiating iron deficiency anemia from thalassemia minor by using an RDW-based index. J. Pediatr. Hematol. Oncol. 1999, 21, 314. [Google Scholar] [CrossRef]
- Telmissani, O.; Khalil, S.; Roberts, G. Mean density of hemoglobin per liter of blood: A new hematologic parameter with an inherent discriminant function. Lab. Hematol. 1999, 5, 149–152. [Google Scholar]
- Huber, A.; Ottiger, C.; Risch, L.; Regenass, S.; Hergersberg, M.; Herklotz, R. Thalassämie-Syndrome: Klinik und Diagnose. Swiss Med. Forum 2004, 4, 947–952. [Google Scholar]
- Kohan, N.; Ramzi, M. Evaluation of sensitivity and specificity of Kerman index I and II in screening beta thalassemia minor. Sci. J. Iran Blood Transfus. Organ 2008, 4, 297–302. [Google Scholar]
- Sirdah, M.; Tarazi, I.; Al Najjar, E.; Al Haddad, R. Evaluation of the diagnostic reliability of different RBC índices and formulas in the differentiation of the β-thalassaemia minor from iron deficiency in Palestinian population. Int. J. Lab. Hematol. 2008, 30, 324–330. [Google Scholar] [CrossRef]
- Ehsani, M.; Shahgholi, E.; Rahiminejad, M.; Seighali, F.; Rashidi, A. A new index for discrimination between iron deficiency anemia and beta-thalassemia minor: Results in 284 patients. Pakist. J. Biol. Sci. 2009, 12, 473–475. [Google Scholar] [CrossRef]
- Keikhaei, B. A new valid formula in differentiating iron deficiency anemia from ß-thalassemia trait. Pakist. J. Med. Sci. 2010, 26, 368–373. [Google Scholar]
- Nishad, A.; Pathmeswaran, A.; Wickremasinghe, A.; Premawardhena, A. The Thal-index with the BTT prediction.exe to discriminate ß-thalassaemia traits from other microcytic anaemias. Thalass. Rep. 2012, 2, e1. [Google Scholar] [CrossRef]
- Wongprachum, K.; Sanchaisuriya, K.; Sanchaisuriya, P.; Siridamrongvattana, S.; Manpeun, S.; Schlep, F. Proxy indicators for identifying iron deficiency among anemic vegetarians in an area prevalent for thalassemia and hemoglobinopathies. Acta Haematol. 2014, 127, 250–255. [Google Scholar] [CrossRef]
- Sirachainan, N.; Iamsirirak, P.; Charoenkwan, P.; Kadegasem, P.; Wongwerawattanakoon, P.; Sasanakul, W.; Chansatitporn, N.; Chuansumrit, A. New mathematical formula for differentiating thalassemia trait and iron deficiency anemia in thalassemia prevalent area: A study in healthy school-age children. Southeast Asian J. Trop. Med. Public Health 2014, 45, 174–182. [Google Scholar]
- Sehgal, K.; Mansukhani, P.; Dadu, T.; Irani, M.; Khodaiji, S. Sehgal index: A new index and its comparison with other complete blood count-based indices for screening of beta thalassemia trait in a tertiary care hospital. Indian J. Pathol. Microbiol. 2015, 58, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Bordbar, E.; Taghipour, M.; Zucconi, B. Reliability of different RBC índices and formulas in discriminating between β-thalassemia minor and other microcytic hypochromic cases. Mediterr. J. Hematol. Infect. Dis. 2015, 7, e2015022. [Google Scholar] [CrossRef] [PubMed]
- Hisham, A.; Hameed, M.; Yasseen, H. Hi & Ha, are new índices in differentiation between Iron deficiency anemia and beta—Thalassaemia trait/A Study in Sulaimani City-Kurdistan/Iraq. J. Dent. Med. Sci. 2015, 14, 67–72. [Google Scholar]
- Chandra, H.; Shrivastava, V.; Chandra, S.; Rawat, A.; Nautiyal, R. Evaluation of Platelet and Red Blood Cell Parameters with Proposal of Modified Score as Discriminating Guide for Iron Deficiency Anemia and Thalassemia Minor. J. Clin. Diagn. Res. 2016, 10, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Matos, J.; Dusse, L.; Borges, K.; de Castro, R.; Coura-Vital, W.; Carvalho, M. A new index to discriminate between iron defciency anemia and thalassemia trait. Rev. Bras. Hematol. Hemoter. 2016, 38, 214–219. [Google Scholar] [CrossRef]
- Kandhro, H.; Shoombuatong, W.; Prachayasittikul, V.; Nuchnoi, P. New bioinformatics-based discrimination formulas for differentiation of thalassemia traits from iron deficiency anemia. Lab. Med. 2017, 48, 230–237. [Google Scholar] [CrossRef]
- Jahangiri, M.; Rahim, F.; Malehi, A. Diagnostic performance of hematological discrimination índices to discriminate between β thalassemia trait and iron deficiency anemia and using cluster analysis: Introducing two new indices tested in Iranian population. Sci. Rep. 2019, 9, 18610. [Google Scholar] [CrossRef]
- Villagra, L. Determinación de la Frecuencia de Beta Talasemia en Población Atendida en el Laboratorio Clínico de Clínica las Condes. Master’s Thesis, Universidad de Valparaíso, Valparaíso, Chile, 2014. [Google Scholar]
- Evans, G.; Poulsen, R.; Canahuate, J.; Pastor, J. Talasemia asociada a embarazo. Rev. Chil. Obst. Ginecol. 2003, 68, 124–128. [Google Scholar] [CrossRef]
- Díaz, A.; Urrutia, M.; Roos, A.; Lagos, G. Talasemia y embarazo: Caso clínico y revisión de la literatura. Rev. Obstet. Ginecol. 2009, 4, 42–45. [Google Scholar]
- Vehapoglu, A.; Ozgurhan, G.; Demir, A.; Uzuner, S.; Nursoy, M.; Turkmen, S.; Kacan, A. Hematological Índices for Differential Diagnosis of Beta Thalassemia Trait and Iron Deficiency. Anemia 2014, 2014, 576738. [Google Scholar] [CrossRef]
- Jameel, T.; Baig, M.; Ahmed, I.; Hussain, M.B.; Alkhamaly, M.B.D. Differentiation of beta thalassemia trait from iron deficiency anemia by hematological indices. Pak. J. Med. Sci. 2017, 33, 665–669. [Google Scholar] [CrossRef] [PubMed]
- Ullah, Z.; Khattak, A.A.; Ali, S.A.; Hussain, J.; Noor, B.; Bano, R.; Jan Mahsud, M.A. Evaluation of five discriminating indexes to distinguish Beta-Thalassemia Trait from Iron Deficiency Anaemia. J. Pak. Med. Assoc. 2016, 66, 1627–1631. [Google Scholar] [PubMed]
- Zaghloul, A.; Al-bukhari, T.; Bajuaifer, N.; Shalaby, M.; ALPakistani, H.; Halawani, S.; Teama, S.; Wassif, G. Introduction of new formulas and evaluation of the previous red blood cell índices and formulas in the differentiation between beta thalassemia trait and iron deficiency anemia in the Makkah region. Hematology 2016, 21, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Burgos, M.; Manterola, C. Cómo interpretar un artículo sobre pruebas diagnósticas. Rev. Chil. Cirug. 2010, 62, 301–308. [Google Scholar] [CrossRef]
- Donis, J. Evaluación de la validez y confiabilidad de una prueba diagnóstica. Avan. Biomed. 2012, 1, 73–81. [Google Scholar]
- Bravo-Grau, S.; Cruz, J. Estudios de exactitud diagnóstica: Herramientas para su Interpretación. Rev. Chil. Radiol. 2015, 21, 158–164. [Google Scholar] [CrossRef]
- Busel, D.; Silva, C. Radiología basada en la evidencia: Estrategia conceptual focalizada para la práctica de la imagenología. Rev. Chil. Radiol. 2004, 10, 109–117. [Google Scholar] [CrossRef]
- Deeks, J.J.; Altman, D.G. Diagnostic tests 4: Likelihood ratios. BMJ 2004, 329, 168–169. [Google Scholar] [CrossRef]
- Youden, W. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.; Molina, M. Likelihood ratio (razón de verosimilitud): Definición y aplicación en Radiología. Rev. Argent. Radiol. 2017, 81, 204–208. [Google Scholar] [CrossRef]
- Niazi, M.; Tahir, M.; Raziq, F.; Hameed, A. Usefulness of Red cell Indices in Differentiating Microcytic Hypochromic Anemias. Gomal J. Med. Sci. 2010, 8, 125–129. [Google Scholar]
- Al-Dabbagh, B.; Shawqi, S.; Yasin, J.; Al Essa, A.; Nagelkerke, N.; Denic, S. Half of the Emirati population has abnormal red cell parameters: Challenges for standards and screening guidelines. Hemoglobin 2014, 38, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Plengsuree, S.; Punyamung, M.; Yanola, J.; Nanta, S.; Jaiping, K.; Maneewong, K.; Wongwiwatthananukit, S.; Pornprasert, S. Red cell indices and formulas used in differentiation of β-thalassemia trait from iron deficiency in Thai adults. Hemoglobin 2015, 39, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Glaros, A.G.; Kline, R.B. Understanding the accuracy of tests with cutting scores: The sensitivity, specificity, and predictive value model. J. Clin. Psychol. 1988, 44, 1013–1023. [Google Scholar] [CrossRef] [PubMed]
- Bolin, E.; Lam, W. A review of sensitivity, specificity, and likelihood ratios: Evaluating the utility of the electrocardiogram as a screening tool in hypertrophic cardiomyopathy. Congenit Heart Dis. 2013, 8, 406–410. [Google Scholar] [CrossRef]
- Parikh, R.; Mathai, A.; Parikh, S.; Chandra Sekhar, G.; Thomas, R. Understanding and using sensitivity, specificity and predictive values. Indian J. Ophthalmol. 2008, 56, 45–50. [Google Scholar] [CrossRef]
- Naeger, D.M.; Kohi, M.P.; Webb, E.M.; Phelps, A.; Ordovas, K.G.; Newman, T.B. Correctly using sensitivity, specificity, and predictive values in clinical practice: How to avoid three common pitfalls. AJR Am. J. Roentgenol. 2013, 200, W566–W570. [Google Scholar] [CrossRef]
- Batebi, A.; Pourreza, A.; Esmailian, R. Discrimination of beta-thalassemia minor and iron deficiency anemia by screening test for red blood cell indices. Turk. J. Med. Sci. 2012, 42, 275–280. [Google Scholar] [CrossRef]
- Hoffmann, J.; Urrechaga, E. Verification of 20 mathematical formulas for discriminating between Iron Deficiency Anemia and Thalassemia Trait in microcytic anemia. Lab. Med. 2020, 51, 628–634. [Google Scholar] [CrossRef]
- Sadagheyani, H.; Sharafkhani, R.; Sakhaei, S.; Jafaralilou, H.; Shahmirzalou, P. Evaluation of results of twenty common equations for differentiation of Beta Thalassemia Trait from Iron Deficiency Anemia: A cross-sectional study. Iran J. Public Health 2022, 51, 929–938. [Google Scholar] [CrossRef]
- Laengsri, V.; Shoombuatong, W.; Adirojananon, W.; Nantasenamat, C.; Prachayasittikul, V.; Nuchnoi, P. ThalPred: A web-based prediction tool for discriminating thalassemia trait and iron deficiency anemia. BMC Med. Inform. Decis. Mak. 2019, 19, 212. [Google Scholar] [CrossRef]
- Ayman, S.; Ahmed, A.; El-Samee, A.; Abou-Taleb, A. Assessment of new índices to discriminate between iron deficiency anemia and thalassemia trait in Sohag University. Sohag Med. J. 2019, 23, 49–62. [Google Scholar] [CrossRef]
- Hoffmann, J.; Urrechaga, E.; Aguirre, U. Discriminant índices for distinguishing thalassemia and iron deficiency in patients with microcytic anemia: A meta-analysis. Clin. Chem. Lab. Med. 2015, 53, 1883–1894. [Google Scholar] [CrossRef] [PubMed]
- Urrechaga, E.; Hoffmann, J. Critical appraisal of discriminant formulas for distinguishing thalassemia from iron deficiency in patients with microcytic anemia. Clin. Chem. Lab. Med. 2017, 55, 1582–1591. [Google Scholar] [CrossRef]
- Rund, D.; Filon, D.; Strauss, N.; Rachmilewitz, E.; Oppenheim, A. Mean Corpuscular Volume of heterozygotes for β-Thalassemia correlates with the severity of mutations. Blood 1992, 79, 238–243. [Google Scholar] [CrossRef]
- Sociedad Argentina de Hematología. Guías de Diagnóstico y Tratamiento; Sociedad Argentina de Hematología: Buenos Aires, Argentina, 2019. [Google Scholar]
- Hansen, R.; Hanson, G.; Anderson, T. Failure to Suspect and Diagnose Thalassemic Syndromes. Interpretation of RBC Indices by the Non-hematologist. Arch. Intern. Med. 1985, 145, 93–94. [Google Scholar] [CrossRef]
- Shalev, O.; Yehezkel, E.; Rachmilewitz, E. Inadequate Utilization of Routine Electronic RBC Counts to Identify Beta Thalassemia Carriers. Am. J. Public Health 1988, 78, 1476–1477. [Google Scholar] [CrossRef]
- Kakkar, N.; Kaur, R.; Sohi, I.; Wadhawan, R. Clinicians response to red cell parameters on automated blood counts indicative of thalassemia trait. J. Postgrad. Med. 2007, 53, 78–79. [Google Scholar] [CrossRef]
- Ruiz-Reyes, G. Los sindromes talasémicos no son infrecuentes en la población mexicana y se subdiagnostican y confunden con deficiencias de hierro. Med. Univ. 1999, 1, 67–73. [Google Scholar]
- Cheson, B.; Rom, W.; Webber, R. Basophilic stippling of red blood cells: A nonspecific finding of multiple etiology. Am. J. Ind. Med. 1984, 5, 327–334. [Google Scholar] [CrossRef]
- Bragós, I.M.; Noguera, N.I.; Morisoli, L.; Milani, A.C. Most frequent mutations of β-thalassemia in Rosario, Argentina. Haematologica 2000, 85, 101–102. [Google Scholar] [PubMed]
- Aslan, D. Formulas for the detection β-thalassemia carriers are affected by changes in red cell parameters. Mediterr. J. Hematol. Infect. Dis. 2018, 10, e2018026. [Google Scholar] [CrossRef] [PubMed]
RBC Index | Formula | Cut-Off BTT | Cut-Off IDA |
---|---|---|---|
England and Fraser I [14] | MCV − RBC − (5 × HB) | <0.0 | >0.0 |
Srivastava [15] | MCH/RBC | <3.8 | >3.8 |
Mentzer [16] | MCV/RBC | <13 | >13 |
Shine and Lal [17] | MCV × MCV × (MCH/100) | <1530 | >1530 |
England and Fraser II [18] | MCV − RBC − (5 × HB) − 3.4 | <0.0 | >0.0 |
Bessman [19] | RDW | <14 | >14 |
Ricerca [20] | RDW/RBC | <3.3 | >3.3 |
Green and King [21] | (MCV × MCV × RDW)/(100 × HB) | <65 | >65 |
Das Gupta [22] | (1.89 × RBC) − (0.33 × RDW) − 3.28 | >0.0 | <0.0 |
Jayabose-RDW [23] | (MCV × RDW)/RBC | <220 | >220 |
Telmissani MCHD [24] | MCH/MCV | <0.34 | >0.34 |
Telmissani MDHL [24] | (MCH × RBC)/MCV | >1.75 | <1.75 |
Huber–Herklotz [25] | (MCH × RDW/10 × RBC) + RDW | <23 | >23 |
Kerman I [26] | (MCV × MCH)/RBC | <300 | >300 |
Kerman II [26] | (MCV × MCH × 10)/(RBC × MCHC) | <85 | >85 |
Sirdah [27] | MCV − RBC − (3 × HB) | <27 | >27 |
Ehsani [28] | MCV − (10 × RBC) | <15 | >15 |
Keikhaei [29] | (HB × RDW × 100)/(RBC × RBC × MCHC) | <21 | >21 |
Nishad–Thal index [30] | (0.615 × MCV) + (0.518 × MCH) + (0.446 × RDW) | <59 | >59 |
Wongprachum [31] | (MCV × RDW/RBC) − (10 × HB) | <104 | >104 |
Sirachainan [32] | (1.5 × HB) − (0.05 × MCV) | <972 | >972 |
Sehgal [33] | (MCV × MCV)/RBC | >14 | <14 |
Bordbar [34] | (80 − MCV) × (27 − MCH) | >44.76 | <44.76 |
Hisham [35] | (MCH × RDW)/RBC | <67.0 | >67.0 |
Chandra [36] | (RBC × MCHC × MPV)/(RDW × PQ) | >0.22 | <0.22 |
Matos and Carvalho [37] | (1.91 × RBC) + (0.44 × MCHC) | >23.85 | <23.85 |
Kandhro 1 [38] | (RBC/HTO) + (0.5 × RDW) | <8.2 | >8.2 |
Kandhro 2 [38] | (RDW × 5)/RBC | <16.8 | >16.8 |
CRUISE–Jahangiri [39] | MCHC + (0.603 × RBC) + (0.523 × RDW) | ≥42.63 | <42.63 |
RBC Index | ΒTT (+) | BTT (−)/(IDA) | Total |
---|---|---|---|
England and Fraser I [14] | 26 (TP) | 1 (FP) | 27 (Positives) |
25 (FN) | 130 (TN) | 155 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Srivastava [15] | 40 (TP) | 11 (FP) | 51 (Positives) |
11 (FN) | 120 (TN) | 131 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Mentzer [16] | 46 (TP) | 16 (FP) | 62 (Positives) |
5 (FN) | 115 (TN) | 120 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Shine and Lal [17] | 51 (TP) | 70 (FP) | 121 (Positives) |
0 (FN) | 61 (TN) | 61 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
England and Fraser II [18] | 37 (TP) | 2 (FP) | 39 (Positives) |
14 (FN) | 129 (TN) | 143 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Bessman [19] | 38 (TP) | 64 (FP) | 102 (Positives) |
13 (FN) | 67 (TN) | 80 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Ricerca [20] | 51 (TP) | 69 (FP) | 120 (Positives) |
0 (FN) | 62 (TN) | 62 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Green and King [21] | 49 (TP) | 5 (FP) | 54 (Positives) |
2 (FN) | 126 (TN) | 128 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Das Gupta [22] | 51 (TP) | 85 (FP) | 136 (Positives) |
0 (FN) | 46 (TN) | 46 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Jayabose RDW [23] | 51 (TP) | 21 (FP) | 72 (Positives) |
0 (FN) | 110 (TN) | 110 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Telmissani MCHD [24] | 50 (TP) | 131 (FP) | 181 (Positives) |
1 (FN) | 0 (TN) | 1 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Telmissani MDHL [24] | 34 (TP) | 2 (FP) | 36 (Positives) |
17 (FN) | 129 (TN) | 146 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Huber–Herklotz [25] | 38 (TP) | 6 (FP) | 44 (Positives) |
13 (FN) | 125 (TN) | 138 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Kerman I [26] | 48 (TP) | 28 (FP) | 76 (Positives) |
3 (FN) | 103 (TN) | 106 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Kerman II [26] | 43 (TP) | 14 (FP) | 57 (Positives) |
8 (FN) | 117 (TN) | 125 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Sirdah [27] | 42 (TP) | 2 (FP) | 44 (Positives) |
9 (FN) | 129 (TN) | 138 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Ehsani [28] | 46 (TP) | 14 (FP) | 60 (Positives) |
5 (FN) | 117 (TN) | 122 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Keikhaei [29] | 50 (TP) | 11 (FP) | 61 (Positives) |
1 (FN) | 120 (TN) | 121 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Nishad–Thal index [30] | 40 (TP) | 11 (FP) | 51 (Positives) |
11 (FN) | 120 (TN) | 131 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Wongprachum [31] | 51 (TP) | 12 (FP) | 63 (Positives) |
0 (FN) | 119 (TN) | 119 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Sirachainan [32] | 31 (TP) | 6 (FP) | 37 (Positives) |
20 (FN) | 125 (TN) | 145 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Sehgal [33] | 50 (TP) | 22 (FP) | 72 (Positives) |
1 (FN) | 109 (TN) | 110 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Bordbar [34] | 50 (TP) | 39 (FP) | 89 (Positives) |
1 (FN) | 92 (TN) | 93 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Hisham [35] | 51 (TP) | 23 (FP) | 74 (Positives) |
0 (FN) | 108 (TN) | 108 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Chandra [36] | 51 (TP) | 84 (FP) | 135 (Positives) |
0 (FN) | 47 (TN) | 47 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Matos and Carvalho [37] | 46 (TP) | 4 (FP) | 50 (Positives) |
5 (FN) | 127 (TN) | 132 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Kandhro 1 [38] | 50 (TP) | 98 (FP) | 148 (Positives) |
1 (FN) | 33 (TN) | 34 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
Kandhro 2 [38] | 51 (TP) | 74 (FP) | 125 (Positives) |
0 (FN) | 57 (TN) | 57 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 | |
CRUISE–Jahangiri [39] | 27 (TP) | 21 (FP) | 48 (Positives) |
24 (FN) | 110 (TN) | 134 (Negatives) | |
51 (Sick patients) | 131 (Healthy patients) | 182 |
PLR | NLR | Utility |
---|---|---|
10 | <0.1 | Highly relevant |
5–10 | 0.1–0.2 | Good |
2–5 | 0.5–0.2 | Regular |
<2 | >0.5 | Bad |
RBC Index | Se (CI 95%) | Sp (CI 95%) | PPV (CI 95%) | NPV (CI 95%) | PLR (CI 95%) | NLR (CI 95%) | Accuracy (CI 95%) | Youden’s Index |
---|---|---|---|---|---|---|---|---|
England and Fraser I [14] | 51.0% (36.6–65.3) | 99.2% (95.8–100.0) | 96.3% (78.4–99.5) | 83.9% (79.7–87.3) | 66.78 (9.30–479.4) | 0.49 (0.37–0.65) | 85.7% (79.8–90.5) | 0.502 |
Srivastava [15] | 78.4% (64.7–88.7) | 91.6% (85.5–95.7) | 78.4% (67.0–86.7) | 91.6% (86.6–94.9) | 9.34 (5.21–16.74) | 0.24 (0.14–0.40) | 87.9% (82.3–92.3) | 0.700 |
Mentzer [16] | 90.2% (78.6–96.7) | 87.8% (80.9–92.9) | 74.2% (64.3–82.1) | 95.8% (90.9–98.2) | 7.38 (4.63–11.79) | 0.11 (0.05–0.26) | 88.5% (82.9–92.7) | 0.780 |
Shine and Lal [17] | 100.0% (93.0–100.0) | 46.6% (37.8–55.5) | 42.1% (38.3–46.1) | 100.0% (94.1–100.0) | 1.87 (1.59–2.20) | 0.00 (NA) | 61.5% (54.1–68.6) | 0.466 |
England and Fraser II [18] | 72.5% (58.3–84.1) | 98.5% (94.6–99.8) | 94.9% (82.2–98.7) | 90.2% (85.5–93.5) | 47.52 (11.89–189.9) | 0.28 (0.18–0.44) | 91.2% (86.1–94.9) | 0.710 |
Bessman [19] | 74.5% (60.4–85.7) | 51.1% (42.3–60.0) | 37.3% (31.9–43.0) | 83.8% (75.8–89.5) | 1.53 (1.20–1.93) | 0.50 (NA) | 57.7% (50.2–65.0) | 0.257 |
Ricerca [20] | 100.0% (93.0–100.0) | 47.3% (38.6–56.2) | 42.5% (38.6–46.5) | 100.0% (94.2–100.0) | 1.90 (1.61–2.23) | 0.00 (NA) | 62.1% (54.6–69.2) | 0.473 |
Green and King [21] | 96.1% (86.5–99.5) | 96.2% (91.3–98.8) | 90.7% (80.6–95.9) | 98.4% (94.2–99.6) | 25.17 (10.64–59.57) | 0.04 (0.01–0.16) | 96.2% (92.2–98.4) | 0.923 |
Das Gupta [22] | 100.0% (93.0–100.0) | 35.1% (27.0–43.9) | 37.5% (34.6–40.5) | 100.0% (92.3–100.0) | 1.54 (1.36–1.75) | 0.00 (NA) | 53.3% (45.8–60.7) | 0.351 |
Jayabose RDW [23] | 100.0% (93.0–100.0) | 84.0% (76.6–89.8) | 70.8% (62.1–78.2) | 100.0% (96.7–100.0) | 6.24 (4.22–9.23) | 0.00 (NA) | 88.5% (82.9–92.7) | 0.840 |
Telmissani MCHD [24] | 98.0% (89.6–100.0) | 0.0% (0.0–2.8) | 27.6% (26.9–28.4) | 0.0% (NA) | 0.98 (0.94–1.02) | NA | 27.5% (21.1–34.6) | −0.020 |
Telmissani MDHL [24] | 66.7% (52.1–79.2) | 98.5% (94.6–99.8) | 94.4% (80.9–98.6) | 88.4% (83.7–91.8) | 43.67 (10.89–175.1) | 0.34 (0.23–0.50) | 89.6% (84.2–93.6) | 0.651 |
Huber–Herklotz [25] | 74.5% (60.4–85.7) | 95.4% (90.3–98.3) | 86.4% (74.0–93.4) | 90.6% (85.7–93.9) | 16.27 (7.32–36.13) | 0.27 (0.17–0.43) | 89.6% (84.2–93.6) | 0.699 |
Kerman I [26] | 94.1% (83.8–98.8) | 78.6% (70.6–85.3) | 63.2% (55.1–70.6) | 97.2% (91.9–99.0) | 4.40 (3.15–6.16) | 0.07 (0.02–0.23) | 83.0% (76.7–88.1) | 0.727 |
Kerman II [26] | 84.3% (71.4–93.0) | 89.3% (82.7–94.0) | 75.4% (64.9–83.6) | 93.6% (88.5–96.5) | 7.89 (4.74–13.13) | 0.18 (0.09–0.33) | 87.9% (82.3–92.3) | 0.736 |
Sirdah [27] | 82.4% (69.1–91.6) | 98.5% (94.6–99.8) | 95.5% (84.1–98.8) | 93.5% (88.8–96.3) | 53.94 (13.55–214.7) | 0.18 (0.10–0.32) | 94.0% (89.4–96.9) | 0.808 |
Ehsani [28] | 90.2% (78.6–94.7) | 89.3% (82.7–94.0) | 76.7% (66.5–84.5) | 95.9% (91.0–98.2) | 8.44 (5.10–13.96) | 0.11 (0.05–0.25) | 89.6% (84.2–93.6) | 0.795 |
Keikhaei [29] | 98.0% (89.6–100.0) | 91.6% (85.5–95.7) | 82.0% (72.1–88.9) | 99.2% (94.5–99.9) | 11.68 (6.62–20.58) | 0.02 (0.00–0.15) | 93.4% (88.8–96.6) | 0.896 |
Nishad–Thal index [30] | 78.4% (64.7–88.7) | 91.6% (85.5–95.7) | 78.4% (67.0–86.7) | 91.6% (86.6–94.9) | 9.34 (5.21–16.74) | 0.24 (0.14–0.40) | 87.9% (82.3–92.3) | 0.700 |
Wongprachum [31] | 100.0% (93.0–100.0) | 90.8% (84.6–95.2) | 81.0% (71.3–87.9) | 100.0% (97.0–100.0) | 10.92 (6.37–18.72) | 0.00 (NA) | 93.4% (88.8–96.6) | 0.908 |
Sirachainan [32] | 60.8% (46.1–74.2) | 95.4% (90.3–98.3) | 83.8% (69.6–92.1) | 86.2% (81.6–89.8) | 13.27 (5.89–29.90) | 0.41 (0.29–0.58) | 85.7% (79.8–90.5) | 0.562 |
Sehgal [33] | 98.0% (89.6–100.0) | 83.2% (75.7–89.2) | 69.4% (60.8–76.9) | 99.1% (94.0–99.9) | 5.84 (3.98–8.56) | 0.02 (0.00–0.16) | 87.4% (81.6–91.8) | 0.812 |
Bordbar [34] | 98.0% (89.6–100.0) | 70.2% (61.6–77.9) | 56.2% (49.6–62.6) | 98.9% (92.9–99.8) | 3.29 (2.52–4.30) | 0.03 (0.00–0.20) | 78.0% (71.3–83.8) | 0.683 |
Hisham [35] | 100.0% (93.0–100.0) | 82.4% (74.8–88.5) | 68.9% (60.5–76.3) | 100.0% (96.6–100.0) | 5.70 (3.93–8.25) | 0.00 (NA) | 87.4% (81.6–91.8) | 0.824 |
Chandra [36] | 100.0% (93.0–100.0) | 35.9% (27.7–44.7) | 37.8% (34.8–40.8) | 100.0% (92.5–100.0) | 1.56 (1.37–1.77) | 0.00 (NA) | 53.8% (46.3–61.3) | 0.359 |
Matos and Carvalho [37] | 90.2% (78.6–96.7) | 96.9% (92.4–99.2) | 92.0% (81.4–96.8) | 96.2% (91.7–98.3) | 29.54 (11.21–77.86) | 0.10 (0.04–0.23) | 95.1% (90.8–97.7) | 0.871 |
Kandhro 1 [38] | 98.0% (89.6–100.0) | 25.2% (18.0–33.5) | 33.8% (31.4–36.2) | 97.1% (82.3–99.6) | 1.31 (1.18–1.46) | 0.08 (0.01–0.55) | 45.6% (38.2–53.1) | 0.232 |
Kandhro 2 [38] | 100.0% (93.0–100.0) | 43.5% (34.9–52.5) | 40.8% (37.2–44.5) | 100.0% (93.7–100.0) | 1.77 (1.52–2.06) | 0.00 (NA) | 59.3% (51.8–66.6) | 0.435 |
CRUISE–Jahangiri [39] | 52.9% (38.5–67.1) | 84.0% (76.6–89.8) | 56.3% (44.6–67.3) | 82.1% (77.2–86.1) | 3.30 (2.06–5.28) | 0.56 (0.41–0.76) | 75.3% (68.4–81.4) | 0.369 |
BTT (n = 51) | IDA (n = 131) | p | |||
---|---|---|---|---|---|
Mean (±SD) | Range | Mean (±SD) | Range | ||
RBC (×106/mm3) | 5.92 ± 0.61 | 5.00–7.41 | 4.56 ± 0.49 | 3.19–5.99 | <0.0001 * |
HB (g/dL) | 12.14 ± 1.21 | 10.0–15.3 | 10.69 ± 0.92 | 9.0–12.9 | <0.0001 * |
HTO (%) | 38.47 ± 3.87 | 31.9–49.3 | 34.55 ± 2.54 | 29.0–41.6 | <0.0001 * |
MCV (fL) | 64.98 ± 3.17 | 57.4–70.9 | 76.35 ± 7.09 | 58.6–92.8 | <0.0001 * |
MCH (pg) | 20.55 ± 1.08 | 17.8–22.6 | 23.67 ± 2.81 | 18.1–30.7 | <0.0001 * |
MCHC (%) | 31.57 ± 0.69 | 30.3–33.2 | 30.94 ± 1.14 | 26.5–33.1 | 0.0003 * |
PQ (×103/mm3) | 292.2 ± 78.6 | 130–493 | 345.7 ± 85.1 | 158–624 | 0.0001 * |
MPV (fL) | 9.19 ± 0.84 | 7.7–12.3 | 8.86 ± 0.91 | 6.3–11.2 | 0.0261 * |
RDW (%) | 14.52 ± 0.82 | 13.0–18.0 | 15.32 ± 2.18 | 11.8–23.5 | 0.0117 * |
Basophilic stippling | 90.2% (46/51) | 0.0% (0/131) | <0.0001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balcázar-Villarroel, M.; Mancilla-Uribe, A.; Navia-León, S.; Carmine, F.; Birditt, K.; Sandoval, C. Diagnostic Performance of Red Blood Cell Indices in the Differential Diagnosis of Iron Deficiency Anemia and the Thalassemia Trait in Chile: A Retrospective Study. Diagnostics 2024, 14, 2353. https://doi.org/10.3390/diagnostics14212353
Balcázar-Villarroel M, Mancilla-Uribe A, Navia-León S, Carmine F, Birditt K, Sandoval C. Diagnostic Performance of Red Blood Cell Indices in the Differential Diagnosis of Iron Deficiency Anemia and the Thalassemia Trait in Chile: A Retrospective Study. Diagnostics. 2024; 14(21):2353. https://doi.org/10.3390/diagnostics14212353
Chicago/Turabian StyleBalcázar-Villarroel, Mario, Angélica Mancilla-Uribe, Sandra Navia-León, Florencia Carmine, Katherine Birditt, and Cristian Sandoval. 2024. "Diagnostic Performance of Red Blood Cell Indices in the Differential Diagnosis of Iron Deficiency Anemia and the Thalassemia Trait in Chile: A Retrospective Study" Diagnostics 14, no. 21: 2353. https://doi.org/10.3390/diagnostics14212353
APA StyleBalcázar-Villarroel, M., Mancilla-Uribe, A., Navia-León, S., Carmine, F., Birditt, K., & Sandoval, C. (2024). Diagnostic Performance of Red Blood Cell Indices in the Differential Diagnosis of Iron Deficiency Anemia and the Thalassemia Trait in Chile: A Retrospective Study. Diagnostics, 14(21), 2353. https://doi.org/10.3390/diagnostics14212353