Neonatal Outcomes after Maternal Biomarker-Guided Preterm Birth Intervention: The AVERT PRETERM Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participant Recruitment
2.3. Trial Procedure and Participant Management
2.4. Outcomes
2.5. Power and Sample Size Estimation
2.6. Statistical Analysis
2.7. Trial Oversight
3. Results
4. Discussion
Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.; Oza, S.; Hogan, D.; Chu, Y.; Perin, J.; Zhu, J.; Lawn, J.E.; Cousens, S.; Mathers, C.; Black, R.E. Global, regional, and national causes of under-5 mortality in 2000-15: An updated systematic analysis with implications for the Sustainable Development Goals. Lancet 2016, 388, 3027–3035. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.A.; Hamilton, B.E.; Osterman, M.J.K. Births in the United States, 2022. In NCHS Data Brief; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Washington, DC, USA, 2023; pp. 1–8. [Google Scholar]
- Moster, D.; Lie, R.T.; Markestad, T. Long-term medical and social consequences of preterm birth. N. Engl. J. Med. 2008, 359, 262–273. [Google Scholar] [CrossRef] [PubMed]
- Crump, C.; Sundquist, K.; Sundquist, J.; Winkleby, M.A. Gestational age at birth and mortality in young adulthood. JAMA 2011, 306, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.K.; Gray, J.E.; Gortmaker, S.L.; Goldmann, D.A.; Pursley, D.M.; McCormick, M.C. Declining severity adjusted mortality: Evidence of improving neonatal intensive care. Pediatrics 1998, 102, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Crowley, P.A. Antenatal corticosteroid therapy: A meta-analysis of the randomized trials, 1972 to 1994. Am. J. Obstet. Gynecol. 1995, 173, 322–335. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.S.; Romero, R.; Vidyadhari, D.; Fusey, S.; Baxter, J.K.; Khandelwal, M.; Vijayaraghavan, J.; Trivedi, Y.; Soma-Pillay, P.; Sambarey, P.; et al. Vaginal progesterone reduces the rate of preterm birth in women with a sonographic short cervix: A multicenter, randomized, double-blind, placebo-controlled trial. Ultrasound Obstet. Gynecol. 2011, 38, 18–31. [Google Scholar] [CrossRef]
- Fonseca, E.B.; Celik, E.; Parra, M.; Singh, M.; Nicolaides, K.H.; Fetal Medicine Foundation Second Trimester Screening Group. Progesterone and the risk of preterm birth among women with a short cervix. N. Engl. J. Med. 2007, 357, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.K.; Goudar, S.S.; Kodkany, B.S.; Metgud, M.; Somannavar, M.; Okitawutshu, J.; Lokangaka, A.; Tshefu, A.; Bose, C.L.; Mwapule, A.; et al. Low-dose aspirin for the prevention of preterm delivery in nulliparous women with a singleton pregnancy (ASPIRIN): A randomised, double-blind, placebo-controlled trial. Lancet 2020, 395, 285–293. [Google Scholar] [CrossRef]
- Garite, T.J.; Manuck, T.A. Should case management be considered a component of obstetrical interventions for pregnancies at risk of preterm birth? Am. J. Obstet. Gynecol. 2023, 228, 430–437. [Google Scholar] [CrossRef]
- Mercer, B.M.; Goldenberg, R.L.; Moawad, A.H.; Meis, P.J.; Iams, J.D.; Das, A.F.; Caritis, S.N.; Miodovnik, M.; Menard, M.K.; Thurnau, G.R.; et al. The preterm prediction study: Effect of gestational age and cause of preterm birth on subsequent obstetric outcome. National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Am. J. Obstet. Gynecol. 1999, 181, 1216–1221. [Google Scholar] [CrossRef]
- Iams, J.D.; Goldenberg, R.L.; Meis, P.J.; Mercer, B.M.; Moawad, A.; Das, A.; Thom, E.; McNellis, D.; Copper, R.L.; Johnson, F.; et al. The length of the cervix and the risk of spontaneous premature delivery. National Institute of Child Health and Human Development Maternal Fetal Medicine Unit Network. N. Engl. J. Med. 1996, 334, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Cahill, A.G.; Odibo, A.O.; Caughey, A.B.; Stamilio, D.M.; Hassan, S.S.; Macones, G.A.; Romero, R. Universal cervical length screening and treatment with vaginal progesterone to prevent preterm birth: A decision and economic analysis. Am. J. Obstet. Gynecol. 2010, 202, 548.e1–541.e8. [Google Scholar] [CrossRef] [PubMed]
- Petrini, J.R.; Callaghan, W.M.; Klebanoff, M.; Green, N.S.; Lackritz, E.M.; Howse, J.L.; Schwarz, R.H.; Damus, K. Estimated effect of 17 alpha-hydroxyprogesterone caproate on preterm birth in the United States. Obstet. Gynecol. 2005, 105, 267–272. [Google Scholar] [CrossRef]
- Esplin, M.S.; Elovitz, M.A.; Iams, J.D.; Parker, C.B.; Wapner, R.J.; Grobman, W.A.; Simhan, H.N.; Wing, D.A.; Haas, D.M.; Silver, R.M.; et al. Predictive Accuracy of Serial Transvaginal Cervical Lengths and Quantitative Vaginal Fetal Fibronectin Levels for Spontaneous Preterm Birth Among Nulliparous Women. JAMA 2017, 317, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Berghella, V.; Saccone, G. Cervical assessment by ultrasound for preventing preterm delivery. Cochrane Database Syst. Rev. 2019, 9, CD007235. [Google Scholar] [CrossRef] [PubMed]
- Lamont, R.F.; Richardson, L.S.; Boniface, J.J.; Cobo, T.; Exner, M.M.; Christensen, I.B.; Forslund, S.K.; Gaba, A.; Helmer, H.; Jørgensen, J.S.; et al. Commentary on a combined approach to the problem of developing biomarkers for the prediction of spontaneous preterm labor that leads to preterm birth. Placenta 2020, 98, 13–23. [Google Scholar] [CrossRef]
- Saade, G.R.; Boggess, K.A.; Sullivan, S.A.; Markenson, G.R.; Iams, J.D.; Coonrod, D.V.; Pereira, L.M.; Esplin, M.S.; Cousins, L.M.; Lam, G.K.; et al. Development and validation of a spontaneous preterm delivery predictor in asymptomatic women. Am. J. Obstet. Gynecol. 2016, 214, 633.e1–633.e24. [Google Scholar] [CrossRef]
- Markenson, G.R.; Saade, G.R.; Laurent, L.C.; Heyborne, K.D.; Coonrod, D.V.; Schoen, C.N.; Baxter, J.K.; Haas, D.M.; Longo, S.; Grobman, W.A.; et al. Performance of a proteomic preterm delivery predictor in a large independent prospective cohort. Am. J. Obstet. Gynecol. MFM 2020, 2, 100140. [Google Scholar] [CrossRef]
- Burchard, J.; Polpitiya, A.D.; Fox, A.C.; Randolph, T.L.; Fleischer, T.C.; Dufford, M.T.; Garite, T.J.; Critchfield, G.C.; Boniface, J.J.; Saade, G.R.; et al. Clinical Validation of a Proteomic Biomarker Threshold for Increased Risk of Spontaneous Preterm Birth and Associated Clinical Outcomes: A Replication Study. J. Clin. Med. 2021, 10, 5088. [Google Scholar] [CrossRef]
- Hirst, J.E.; Boniface, J.J.; Le, D.P.; Polpitiya, A.D.; Fox, A.C.; Vu, T.T.K.; Dang, T.T.; Fleischer, T.C.; Bui, N.T.H.; Hickok, D.E.; et al. Validating the ratio of insulin like growth factor binding protein 4 to sex hormone binding globulin as a prognostic predictor of preterm birth in Viet Nam: A case-cohort study. J. Matern. Fetal Neonatal Med. 2024, 37, 2333923. [Google Scholar] [CrossRef]
- Burchard, J.; Saade, G.R.; Boggess, K.A.; Markenson, G.R.; Iams, J.D.; Coonrod, D.V.; Pereira, L.M.; Hoffman, M.K.; Polpitiya, A.D.; Treacy, R.; et al. Better Estimation of Spontaneous Preterm Birth Prediction Performance through Improved Gestational Age Dating. J. Clin. Med. 2022, 11, 2885. [Google Scholar] [CrossRef] [PubMed]
- American College of Obstetricians and Gynecologists. Methods for Estimating the Due Date. Committee Opinion No 700. Obstet. Gynecol. 2017, 129, e150–e154. [Google Scholar] [CrossRef] [PubMed]
- Bradford, C.; Severinsen, R.; Pugmire, T.; Rasmussen, M.; Stoddard, K.; Uemura, Y.; Wheelwright, S.; Mentinova, M.; Chelsky, D.; Hunsucker, S.W.; et al. Analytical validation of protein biomarkers for risk of spontaneous preterm birth. Clin. Mass Spectrom. 2017, 3, 25–38. [Google Scholar] [CrossRef]
- Zhang, J.; Troendle, J.; Reddy, U.M.; Laughon, S.K.; Branch, D.W.; Burkman, R.; Landy, H.J.; Hibbard, J.U.; Haberman, S.; Ramirez, M.M.; et al. Contemporary cesarean delivery practice in the United States. Am. J. Obstet. Gynecol. 2010, 203, 326.e1–326.e10. [Google Scholar] [CrossRef]
- Patil, A.S.; Grotegut, C.A.; Gaikwad, N.W.; Dowden, S.D.; Haas, D.M. Prediction of neonatal morbidity and very preterm delivery using maternal steroid biomarkers in early gestation. PLoS ONE 2021, 16, e0243585. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.S.; Grotegut, C.A.; Smith, P.B.; Clark, R.H.; Greenberg, R.G. The Hassan Neonatal Morbidity Composite Scale and Neonatal Length of Stay-A Validation Study. Am. J. Perinatol. 2024, 41, 98–105. [Google Scholar] [CrossRef]
- Grabner, M.; Burchard, J.; Nguyen, C.; Chung, H.; Gangan, N.; Boniface, J.J.; Zupancic, J.A.F.; Stanek, E. Cost-Effectiveness of a Proteomic Test for Preterm Birth Prediction. Clin. Outcomes Res. 2021, 13, 809–820. [Google Scholar] [CrossRef]
- Burchard, J.; Markenson, G.R.; Saade, G.R.; Laurent, L.C.; Heyborne, K.D.; Coonrod, D.V.; Schoen, C.N.; Baxter, J.K.; Haas, D.M.; Longo, S.A.; et al. Clinical and economic evaluation of a proteomic biomarker preterm birth risk predictor: Cost-effectiveness modeling of prenatal interventions applied to predicted higher-risk pregnancies within a large and diverse cohort. J. Med. Econ. 2022, 25, 1255–1266. [Google Scholar] [CrossRef]
- Holm, S. A Simple Sequentially Rejective Multiple Test Procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Branch, D.W.; VanBuren, J.M.; Porter, T.F.; Holmgren, C.; Holubkov, R.; Page, K.; Burchard, J.; Lam, G.K.; Esplin, M.S. Prediction and Prevention of Preterm Birth: A Prospective, Randomized Intervention Trial. Am. J. Perinatol. 2023, 40, 1071–1080. [Google Scholar] [CrossRef]
- NCSS PASS Statistical Software. Available online: https://www.ncss.com/software/pass/ (accessed on 1 March 2023).
- Cox, D.R.; Oakes, D. Analysis of Survival Data; Chapman and Hall: New York, NY, USA, 1984. [Google Scholar]
- Young, L.W.; Ounpraseuth, S.T.; Merhar, S.L.; Hu, Z.; Simon, A.E.; Bremer, A.A.; Lee, J.Y.; Das, A.; Crawford, M.M.; Greenberg, R.G.; et al. Eat, Sleep, Console Approach or Usual Care for Neonatal Opioid Withdrawal. N. Engl. J. Med. 2023, 388, 2326–2337. [Google Scholar] [CrossRef] [PubMed]
- Combs, C.A.; Zupancic, J.A.F.; Walker, M.; Shi, J. Prediction and Prevention of Preterm Birth: Secondary Analysis of a Randomized Intervention Trial. J. Clin. Med. 2023, 12, 5459. [Google Scholar] [CrossRef] [PubMed]
- McCullagh, P. Regression Models for Ordinal Data. J. R. Stat. Soc. Ser. B (Methodol.) 1980, 42, 109–142. [Google Scholar] [CrossRef]
- R Foundation. The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 1 August 2022).
- Romero, R.; Meyyazhagan, A.; Hassan, S.S.; Creasy, G.W.; Conde-Agudelo, A. Vaginal Progesterone to Prevent Spontaneous Preterm Birth in Women with a Sonographic Short Cervix: The Story of the PREGNANT Trial. Clin. Obstet. Gynecol. 2024, 67, 433–457. [Google Scholar] [CrossRef] [PubMed]
- Staffa, S.J.; Kohane, D.S.; Zurakowski, D. Quantile Regression and Its Applications: A Primer for Anesthesiologists. Anesth. Analg. 2019, 128, 820–830. [Google Scholar] [CrossRef]
- Willke, R.J.; Zheng, Z.; Subedi, P.; Althin, R.; Mullins, C.D. From concepts, theory, and evidence of heterogeneity of treatment effects to methodological approaches: A primer. BMC Med. Res. Methodol. 2012, 12, 185. [Google Scholar] [CrossRef]
- Merchant, A.T.; Liu, J.; Reynolds, M.A.; Beck, J.D.; Zhang, J. Quantile regression to estimate the survivor average causal effect of periodontal treatment effects on birthweight and gestational age. J. Periodontol. 2021, 92, 975–982. [Google Scholar] [CrossRef]
- Wheeler, S.M.; Myers, S.O.; Swamy, G.K.; Myers, E.R. Estimated Prevalence of Risk Factors for Preeclampsia Among Individuals Giving Birth in the US in 2019. JAMA Netw. Open 2022, 5, e2142343. [Google Scholar] [CrossRef]
- Villar, J.; Cavoretto, P.I.; Barros, F.C.; Romero, R.; Papageorghiou, A.T.; Kennedy, S.H. Etiologically Based Functional Taxonomy of the Preterm Birth Syndrome. Clin. Perinatol. 2024, 51, 475–495. [Google Scholar] [CrossRef]
Historical Arm (N = 10,000) | Prospective Arm (N = 1218) | p * | |
---|---|---|---|
Maternal Age | <0.001 | ||
N | 10,000 | 1218 | |
Mean (SD) | 29.6 (5.4) | 30.5 (5.7) | |
Gravida | <0.001 | ||
N | 9954 | 1135 | |
Mean (SD) | 2.7 (1.7) | 2.41 (1.5) | |
Parity | <0.001 | ||
N | 9953 | 1159 | |
Mean (SD) | 1.1 (1.2) | 0.9 (1.1) | |
Percent nulliparous [N, (%)] | 6544 (65.7) | 630 (54.4) | <0.001 |
Number of miscarriages | 0.25 | ||
N | 9953 | 1130 | |
Mean (SD) | 1.6 (1.1) | 1.6 (1.0) | |
Race † [N, (%)] | <0.001 | ||
American Indian | 21 (0.2) | 1 (0.1) | |
Asian | 783 (7.8) | 76 (6.3) | |
Black | 2653 (26.5) | 322 (26.5) | |
White | 5634 (56.3) | 740 (61.0) | |
Other | 909 (9.1) | 74 (6.1) | |
Prepregnancy BMI | 0.04 | ||
N | 9476 | 728 | |
Mean (SD) | 27.5 (8.5) | 28.2 (7.6) | |
BMI < 19 kg/M2 [N, (%)] | 403 (4.3) | 32 (4.4) | 0.85 |
Height (inches) | <0.001 | ||
N | 9838 | 1033 | |
Mean (SD) | 64.1 (2.7) | 64.48 (2.69) | |
Diabetes [N, (%)] | 127 (1.3) | 19 (1.6) | 0.42 |
Opioid Use [N, (%)] | 242 (2.4) | 13 (1.1) | 0 |
Hypertension [N, (%)] | 606 (6.1) | 105 (8.6) | <0.001 |
Smoking [N, (%)] | 709 (7.8) | 100 (9.5) | 0.06 |
Insurance type [N, (%)] | 0.67 | ||
Government | 2969 (29.7) | 315 (28.6) | |
Other | 19 (0.2) | 1 (0.1) | |
Private | 7012 (70.1) | 787 (71.4) | |
Delivery type [N, (%)] | <0.001 | ||
Dilation and evacuation | 0 (0.0) | 1 (0.1) | |
Primary cesarean delivery | 1577 (15.8) | 283 (20.2) | |
Repeat cesarean delivery | 1541 (15.4) | 177 (12.6) | |
Vaginal delivery | 6630 (66.3) | 923 (65.8) | |
Vaginal delivery after cesarean | 252 (2.5) | 18 (1.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoffman, M.K.; Kitto, C.; Zhang, Z.; Shi, J.; Walker, M.G.; Shahbaba, B.; Ruhstaller, K. Neonatal Outcomes after Maternal Biomarker-Guided Preterm Birth Intervention: The AVERT PRETERM Trial. Diagnostics 2024, 14, 1462. https://doi.org/10.3390/diagnostics14141462
Hoffman MK, Kitto C, Zhang Z, Shi J, Walker MG, Shahbaba B, Ruhstaller K. Neonatal Outcomes after Maternal Biomarker-Guided Preterm Birth Intervention: The AVERT PRETERM Trial. Diagnostics. 2024; 14(14):1462. https://doi.org/10.3390/diagnostics14141462
Chicago/Turabian StyleHoffman, Matthew K., Carrie Kitto, Zugui Zhang, Jing Shi, Michael G. Walker, Babak Shahbaba, and Kelly Ruhstaller. 2024. "Neonatal Outcomes after Maternal Biomarker-Guided Preterm Birth Intervention: The AVERT PRETERM Trial" Diagnostics 14, no. 14: 1462. https://doi.org/10.3390/diagnostics14141462
APA StyleHoffman, M. K., Kitto, C., Zhang, Z., Shi, J., Walker, M. G., Shahbaba, B., & Ruhstaller, K. (2024). Neonatal Outcomes after Maternal Biomarker-Guided Preterm Birth Intervention: The AVERT PRETERM Trial. Diagnostics, 14(14), 1462. https://doi.org/10.3390/diagnostics14141462