The Diagnostic Accuracy of Electrical Impedance Spectroscopy-Assisted Colposcopy, HPV mRNA Test, and P16/Ki67 Immunostaining as CIN2+ Predictors in Greek Population
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA A Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Xu, Y.; Gong, M.; Wang, Y.; Yang, Y.; Liu, S.; Zeng, Q. Global trends and forecasts of breast cancer incidence and deaths. Sci. Data 2023, 10, 334. [Google Scholar] [CrossRef] [PubMed]
- Melnikow, J.; Henderson, J.T.; Burda, B.U.; Senger, C.A.; Durbin, S.; Weyrich, M.S. Screening for Cervical Cancer with High-Risk Human Papillomavirus Testing: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2018, 320, 687–705. [Google Scholar] [CrossRef] [PubMed]
- Castle, P.; Feldman, S.; Perkins, R.B. The Next Generation of Cervical Cancer Screening: Should Guidelines Focus on Best Practices for the Future or Current Screening Capacity? J. Low. Genit. Tract. Dis. 2018, 22, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Cuzick, J.; Du, R.; Adcock, R.; Kinney, W.; Joste, N.; McDonald, R.M.; English, K.; Torres, S.M.; Saslow, D.; Wheeler, C.M.; et al. Uptake of co-testing with HPV and cytology for cervical screening: A population-based evaluation in the United States. Gynecol. Oncol. 2021, 162, 555–559. [Google Scholar] [CrossRef]
- Manini, I.; Montomoli, E. Epidemiology and prevention of Human Papillomavirus. Ann. Ig. 2018, 30, 28–32. [Google Scholar] [CrossRef]
- Chesson, H.W.; Dunne, E.F.; Hariri, S.; Markowitz, L.E. The Estimated Lifetime Probability of Acquiring Human Papillomavirus in the United States. Sex. Transm. Dis. 2014, 41, 660–664. [Google Scholar] [CrossRef]
- Haręża, D.A.; Wilczyński, J.R.; Paradowska, E. Human Papillomaviruses as Infectious Agents in Gynecological Cancers. Oncog. Prop. Viral Proteins. Int. J. Mol. Sci. 2022, 23, 1818. [Google Scholar] [CrossRef]
- Williams, J.; Kostiuk, M.; Biron, V.L. Molecular Detection Methods in HPV-Related Cancers. Front. Oncol. 2022, 12, 864820. [Google Scholar] [CrossRef]
- Poljak, M.; Oštrbenk Valenčak, A.; Gimpelj Domjanič, G.; Xu, L.; Arbyn, M. Commercially available molecular tests for human papillomaviruses: A global overview. Clin. Microbiol. Infect. 2020, 26, 1144–1150. [Google Scholar] [CrossRef]
- Li, Z.-F.; Jia, X.-H.; Feng, X.; Zhang, S.; Zhang, X.; Pan, Q.-J.; Zou, X.-W.; Hao, Y.-Q.; Sun, X.-B.; Qiao, Y.-L. Original research: Comparison of primary cytology, primary HPV testing and co-testing as cervical cancer screening for Chinese women: A population-based screening cohort. BMJ Open 2022, 12, e063622. [Google Scholar] [CrossRef] [PubMed]
- Ronco, G.; Dillner, J.; Elfström, K.M.; Tunesi, S.; Snijders, P.J.F.; Arbyn, M.; Kitchener, H.; Segnan, N.; Gilham, C.; Giorgi-Rossi, P.; et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: Follow-up of four European randomised controlled trials. Lancet 2014, 383, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Ronco, G.; Giorgi-Rossi, P.; Carozzi, F.; Confortini, M.; Palma, P.D.; Del Mistro, A.; Ghiringhello, B.; Girlando, S.; Gillio-Tos, A.; De Marco, L.; et al. Efficacy of human papillomavirus testing for the detection of invasive cervical cancers and cervical intraepithelial neoplasia: A randomised controlled trial. Lancet Oncol. 2010, 11, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Diedrich, J.T.; Felix, J.C.; Lonky, N.M. Contribution of Exocervical Biopsy, Endocervical Curettage, and Colposcopic Grading in Diagnosing High-Grade Cervical Intraepithelial Neoplasia. J. Low. Genit. Tract Dis. 2016, 20, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Qin, D.; Bai, A.; Xue, P.; Seery, S.; Wang, J.; Mendez, M.J.G.; Li, Q.; Jiang, Y.; Qiao, Y. Colposcopic accuracy in diagnosing squamous intraepithelial lesions: A systematic review and meta-analysis of the International Federation of Cervical Pathology and Colposcopy 2011 terminology. BMC Cancer 2023, 23, 187. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Liu, M.; Guo, J.; Zhao, J.; Niu, S.; Li, F. Evaluation of the accuracy of colposcopy in detecting high-grade squamous intraepithelial lesion and cervical cancer. Arch. Gynecol. Obstet. 2020, 302, 1529–1538. [Google Scholar] [CrossRef] [PubMed]
- Bai, A.; Wang, J.; Li, Q.; Seery, S.; Xue, P.; Jiang, Y. Assessing colposcopic accuracy for high-grade squamous intraepithelial lesion detection: A retrospective, cohort study. BMC Womens Health 2022, 22, 9. [Google Scholar] [CrossRef]
- Brown, B.H.; Tidy, J.A. The diagnostic accuracy of colposcopy—A review of research methodology and impact on the outcomes of quality assurance. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 240, 182–186. [Google Scholar] [CrossRef]
- Wentzensen, N.; Walker, J.L.; Gold, M.A.; Smith, K.M.; Zuna, R.E.; Mathews, C.; Dunn, S.T.; Zhang, R.; Moxley, K.; Bishop, E.; et al. Multiple biopsies and detection of cervical cancer precursors at colposcopy. J. Clin. Oncol. 2015, 33, 83–89. [Google Scholar] [CrossRef]
- Müller, K.; Soergel, P.; Hillemanns, P.; Jentschke, M. Accuracy of Colposcopically Guided Diagnostic Methods for the Detection of Cervical Intraepithelial Neoplasia. Geburtshilfe Frauenheilkd. 2016, 76, 182–187. [Google Scholar] [CrossRef]
- Crowell, L.L.; Yakisich, J.S.; Aufderheide, B.; Adams, T.N.G. Electrical Impedance Spectroscopy for Monitoring Chemoresistance of Cancer Cells. Micromachines 2020, 11, 832. [Google Scholar] [CrossRef] [PubMed]
- Morgan, H.; Sun, T.; Holmes, D.; Gawad, S.; Green, N.G. Single cell dielectric spectroscopy. J. Phys. D Appl. Phys. 2006, 40, 61. [Google Scholar] [CrossRef]
- Eker, B.; Meissner, R.; Bertsch, A.; Mehta, K.; Renaud, P. Label-free recognition of drug resistance via impedimetric screening of breast cancer cells. PLoS ONE 2013, 8, e57423. [Google Scholar] [CrossRef] [PubMed]
- Giana, F.E.; Bonetto, F.J.; Bellotti, M.I. Assay based on electrical impedance spectroscopy to discriminate between normal and cancerous mammalian cells. Phys. Rev. E 2018, 97, 032410. [Google Scholar] [CrossRef] [PubMed]
- Anh-Nguyen, T.; Tiberius, B.; Pliquett, U.; Urban, G.A. An impedance biosensor for monitoring cancer cell attachment, spreading and drug-induced apoptosis. Sens. Actuators A Phys. 2016, 241, 231–237. [Google Scholar] [CrossRef]
- Huerta-Nuñez, L.F.E.; Gutierrez-Iglesias, G.; Martinez-Cuazitl, A.; Mata-Miranda, M.M.; Alvarez-Jiménez, V.D.; Sánchez-Monroy, V.; Golberg, A.; González-Díaz, C.A. A biosensor capable of identifying low quantities of breast cancer cells by electrical impedance spectroscopy. Sci. Rep. 2019, 9, 6419. [Google Scholar] [CrossRef] [PubMed]
- Liebich, C.; Bartsch, J.N.; Schubert, I.; Bruehl, M.-L.; von Sander, C. Electrical Impedance Spectroscopy Improves Skin Cancer Detection and Reduces the Number of Biopsies. Dermato 2022, 2, 21–29. [Google Scholar] [CrossRef]
- Yang, D.; Gu, C.; Gu, Y.; Zhang, X.; Ge, D.; Zhang, Y.; Wang, N.; Zheng, X.; Wang, H.; Yang, L.; et al. Electrical Impedance Analysis for Lung Cancer: A Prospective, Multicenter, Blind Validation Study. Front. Oncol. 2022, 12, 900110. [Google Scholar] [CrossRef]
- Balasubramani, L.; Brown, B.H.; Healey, J.; Tidy, J.A. The detection of cervical intraepithelial neoplasia by electrical impedance spectroscopy: The effects of acetic acid and tissue homogeneity. Gynecol. Oncol. 2009, 115, 267–271. [Google Scholar] [CrossRef]
- Brown, B.H.; Tidy, J.A.; Boston, K.; Blackett, A.D.; Smallwood, R.H.; Sharp, F. Relation between tissue structure and imposed electrical current flow in cervical neoplasia. Lancet 2000, 355, 892–895. [Google Scholar] [CrossRef]
- Brown, B.H.; Milnes, P.; Abdul, S.; Tidy, J.A. Detection of cervical intraepithelial neoplasia using impedance spectroscopy: A prospective study. BJOG Int. J. Obstet. Gynaecol. 2005, 112, 802–806. [Google Scholar] [CrossRef]
- Kim, H.W.; Yun, J.; Lee, J.Z.; Shin, D.G.; Lee, J.-H. Evaluation of Electrical Impedance Spectroscopy-on-a-Needle as a Novel Tool to Determine Optimal Surgical Margin in Partial Nephrectomy. Adv. Healthc. Mater. 2017, 6, 1700356. [Google Scholar] [CrossRef] [PubMed]
- Abdul, S.; Brown, B.H.; Milnes, P.; Tidy, J.A. The use of electrical impedance spectroscopy in the detection of cervical intraepithelial neoplasia. Int. J. Gynecol. Cancer. 2006, 16, 1823–1832. [Google Scholar] [CrossRef]
- Tidy, J.A.; Brown, B.H.; Healey, T.J.; Daayana, S.; Martin, M.; Prendiville, W.; Kitchener, H.C. Accuracy of detection of high-grade cervical intraepithelial neoplasia using electrical impedance spectroscopy with colposcopy. J. Obstet. Gynaecol. 2013, 120, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Tsampazis, N.; Vavoulidis, E.; Siarkou, C.M.; Siarkou, G.M.; Pratilas, G.C.; Symeonidou, M.; Intzes, S.; Petousis, S.; Papanikolaou, A.; Dinas, K. Diagnostic comparison of electrical impedance spectroscopy with colposcopy and HPV mRNA-testing in the prediction of CIN2+ women in Greece. J. Obstet. Gynaecol. Res. 2023, 49, 1222–1229. [Google Scholar] [CrossRef] [PubMed]
- Hamers, F.F.; Poullié, A.I.; Arbyn, M. Updated evidence-based recommendations for cervical cancer screening in France. Eur. J. Cancer Prev. 2022, 31, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Nayar, R.; Wilbur, D.C. (Eds.) The Bethesda System for Reporting Cervical Cytology—Definitions, Criteria, and Explanatory Notes, 3rd ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; Volume 46, pp. 669–673. [Google Scholar]
- Muszynski, C.; Dupont, E.; Vaysse, B.; Lanta, S.; Tidy, J.; Sergent, F.; Gondry, J. The impact of using electrical impedance spectroscopy (ZedScan) on the performance of colposcopy in diagnosing high grade squamous lesions of the cervix. J. Gynecol. Obstet. Hum. Reprod. 2017, 46, 669–673. [Google Scholar] [CrossRef]
- Homola, W.; Fuchs, T.; Baranski, P.; Zimmer, A.; Zimmer, M.; Pomorski, M. Use of electrical impedance spectroscopy as an adjunct to colposcopy in a pathway of cervical intraepithelial neoplasia diagnostics. Ginekol. Pol. 2019, 90, 628–632. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, M.C.; Brown, B.H.; Lyon, R.E.; Healey, T.J.; Palmer, J.E.; Tidy, J.A. Influence of high risk HPV genotype on colposcopic performance: A large prospective study demonstrates improved detection of disease with ZedScan I, particularly in non-HPV 16 patients. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017, 211, 194–198. [Google Scholar] [CrossRef]
- Tidy, J.A.; Brown, B.H. Clinical Utility of ZedScan When Used as an Adjunct to Colposcopy. Indian. J. Gynecol. Oncol. 2021, 19, 55. [Google Scholar] [CrossRef]
- Jeronimo, J.; Bansil, P.; Valdez, M.; Kang, L.-N.B.; Zhao, F.-H.; Qiao, Y.-L.; Chen, W.; Zhang, X.; Paul, P.M.; Bai, P.; et al. The Influence of Human Papillomavirus Genotypes on Visual Screening and Diagnosis of Cervical Precancer and Cancer. J. Low. Genit. Tract. Dis. 2015, 19, 220–223. [Google Scholar] [CrossRef] [PubMed]
- Thapa, R.; Vasudeva, S. Colloseum to estimate the accuracy of detection of cervical intraepithelial neoplasia using electrical impedance spectroscopy with colposcopy—A one year study. Indian. J. Obstet. Gynecol. Res. 2021, 8, 166–171. [Google Scholar] [CrossRef]
- Valls, J.; Baena, A.; Venegas, G.; Celis, M.; González, M.; Sosa, C.; Santin, J.L.; Ortega, M.; Soilán, A.; Turcios, E.; et al. Performance of standardised colposcopy to detect cervical precancer and cancer for triage of women testing positive for human papillomavirus: Results from the ESTAMPA multicentric screening study. Lancet Glob. Health 2023, 11, e350–e360. [Google Scholar] [CrossRef] [PubMed]
- Ogilvie, G.S.; Van Niekerk, D.; Krajden, M.; Smith, L.W.; Cook, D.; Gondara, L.; Ceballos, K.; Quinlan, D.; Lee, M.; Martin, R.E.; et al. Effect of Screening with Primary Cervical HPV Testing vs Cytology Testing on High-grade Cervical Intraepithelial Neoplasia at 48 Months: The HPV FOCAL Randomized Clinical Trial. JAMA 2018, 73, 632–634. [Google Scholar] [CrossRef]
- Kim, J.; Jun, S.Y.; Maeng, L.S. The clinical performance of human papillomavirus genotyping using PANArray HPV chip: Comparison to ThinPrep cytology alone and co-testing. Pathol. Res. Pract. 2020, 216, 153121. [Google Scholar] [CrossRef] [PubMed]
- Terasawa, T.; Hosono, S.; Sasaki, S.; Hoshi, K.; Hamashima, Y.; Katayama, T.; Hamashima, C. Comparative accuracy of cervical cancer screening strategies in healthy asymptomatic women: A systematic review and network meta-analysis. Sci. Rep. R. 2022, 12, 94. [Google Scholar] [CrossRef]
- Petignat, P.; Kenfack, B.; Wisniak, A.; Saiji, E.; Tille, J.C.; Fouogue, J.T.; Catarino, R.; Tincho, E.; Vassilakos, P. ABCD criteria to improve visual inspection with acetic acid (VIA) triage in HPV-positive women: A prospective study of diagnostic accuracy. BMJ Open 2022, 12, e052504. [Google Scholar] [CrossRef]
- Brown, B.H.; Tidy, J.A. Increased detection of high grade CIN, when using electrical impedance spectroscopy as an adjunct to routine colposcopy, is maintained when used across international boundaries: Prospective data from nine European countries. Eur. J. Obstet. Gynecol. Reprod. Biol. 2022, 275, 41–45. [Google Scholar] [CrossRef]
- Palmer, J.; Lyon, R.; Tidy, J. ZedScan Delivers Improvements in Clinical Performance and More Effective Patient Management at Sheffield Teaching Hospitals NHS Foundation Trust: Increased Detection of High Grade CIN (HG CIN) in a High Throughput Colposcopy Clinic; Zilico: Manchester, UK, 2017. [Google Scholar]
- Peron, M.; Llewellyn, A.; Moe-Byrne, T.; Walker, S.; Walton, M.; Harden, M.; Palmer, S.; Simmonds, M. Adjunctive colposcopy technologies for assessing suspected cervical abnormalities: Systematic reviews and economic evaluation. Health Technol. Assess. 2018, 22, 1–260. [Google Scholar] [CrossRef]
Mean (Minimum–Maximum) | |
---|---|
Age (years) | 32.1 (19–72) |
Age at first sexual intercourse (years) | 17.1 (13–34) |
n (N%) | |
Number of children | |
0 | 74 (23.4%) |
1 | 48 (15.2%) |
2 | 98 (31.0%) |
3 | 72 (22.8%) |
4 | 24 (7.6%) |
Number of lifetime sexual partners | |
1 | 24 (7.6%) |
2 | 98 (31.0%) |
3 | 62 (19.6%) |
4 | 88 (27.9%) |
>4 | 44 (13.9%) |
Smoking | |
Yes | 170 (53.8%) |
No | 146 (46.2%) |
Use of prophylactics | |
Yes | 132 (41.8%) |
No | 184 (58.2%) |
HPV vaccination | |
Yes | 96 (30.4%) |
No | 220 (69.6%) |
Referral Cytology | n (N%) | Cytology | n (N%) |
---|---|---|---|
NILM | 0 (0.0%) | NILM | 20 (6.3%) |
ASC-US | 68 (21.5%) | ASC-US | 48 (15.2%) |
ASC-H | 22 (7.0%) | ASC-H | 16 (5.1%) |
LSIL | 176 (55.7%) | LSIL | 162 (51.3%) |
HSIL | 48 (15.2%) | HSIL | 67 (21.2%) |
SCC | 2 (0.6%) | SCC | 3 (0.9%) |
Total | 316 (100%) | Total | 316 (100%) |
Colposcopy Alone | n (N%) | EIS/ZedScan-Assisted Colposcopy | n (N%) | Histology | n (N%) |
---|---|---|---|---|---|
NEGATIVE | 58 (18.4%) | NEGATIVE | 44 (14.0%) | NEGATIVE | 42 (13.3%) |
CIN1/LSIL | 206 (65.2%) | CIN1/LSIL | 166 (52.5%) | CIN1/LSIL | 178 (56.4%) |
CIN2/CIN3/HSIL | 49 (15.5%) | CIN2/CIN3/HSIL | 103 (32.6%) | CIN2/CIN3/HSIL | 93 (29.4%) |
SCC | 3 (0.9%) | SCC | 3 (0.9%) | SCC | 3 (0.9%) |
Total | 316 (100%) | Total | 316 (100%) | Total | 316 (100%) |
HPV mRNA Test | n (N%) | p16/Ki67 Immunocytochemistry Results | n (N%) | ||
---|---|---|---|---|---|
NEGATIVE | 104 (32.9%) | NEGATIVE | 178 (56.3%) | ||
POSITIVE | 212 (67.1%) | POSITIVE | 138 (33.7%) | ||
Total | 316 (100%) | Total | 316 (100%) | ||
Women with positive HPV mRNA | CIN2+ by colposcopy alone | p-value | CIN2+ by EIS/ZedScan-assisted colposcopy | p-value | |
HPV-16 (+) | 116 (54.7%) | 37 (71.2%) | 0.129 | 84 (79.2%) | 0.061 |
HPV-18/45 (+) | 48 (22.7%) | 3 (5.7%) | 0.213 | 6 (5.7%) | 0.189 |
HPV-16 (+) and HPV-18/45 (+) | 10 (4.7%) | 8 (15.5%) | 0.099 | 10 (9.4%) | 0.094 |
other hr-HPV (+) | 38 (17.9%) | 4 (7.6%) | 0.347 | 6 (5.7%) | 0.298 |
Total | 212 (100%) | 52 (100%) | 106 (100%) |
Colposcopy Alone | EIS/ZedScan-Assisted Colposcopy | HPV mRNA Test | p16/Ki67 Immunostaining | |||||
---|---|---|---|---|---|---|---|---|
Parameter | p | Spearman’s Rho ρ | p | Spearman’s Rho ρ | p | Spearman’s Rho ρ | p | Spearman’s Rho ρ |
Age | 0.324 | 0.268 | 0.235 | 0.125 | 0.127 | 0.388 | 0.314 | 0.297 |
Age at first sexual intercourse | 0.041 | 0.802 | 0.021 | 0.749 | 0.048 | 0.857 | 0.032 | 0.796 |
Number of children | 0.087 | 0.397 | 0.092 | 0.371 | 0.109 | 0.297 | 0.109 | 0.274 |
Number of lifetime sexual partners | 0.065 | 0.448 | 0.074 | 0.658 | 0.087 | 0.602 | 0.089 | 0.591 |
Smoking | 0.073 | 0.287 | 0.065 | 0.357 | 0.061 | 0.279 | 0.081 | 0.263 |
Use of prophylactics | 0.020 | 0.845 | 0.035 | 0.892 | 0.040 | 0.798 | 0.029 | 0.841 |
HPV vaccination | 0.098 | 0.159 | 0.076 | 0.186 | 0.192 | 0.349 | 0.087 | 0.293 |
Colposcopy Alone | 95% CI | EIS/ZedScan-Assisted Colposcopy | 95% CI | HPV mRNA Test | 95% CI | p16/Ki67 Immunostaining | 95% CI | |
---|---|---|---|---|---|---|---|---|
Sensitivity | 54.17% | 43.69–64.38% | 100.00% | 96.23–100.00% | 100.00% | 96.23–100.00% | 100.00% | 96.23–100.00% |
Specificity | 100.00% | 98.34–100.00% | 95.45% | 91.80–97.80% | 47.27% | 40.52–54.10% | 80.91% | 75.08–85.88% |
PPV | 100.00% | 93.15–100.00% | 90.57% | 83.97–94.62% | 45.28% | 42.20–48.40% | 69.57% | 63.52–75.00% |
NPV | 83.33% | 80.09–89.70% | 100.00% | 98.26–100.00% | 100.00% | 96.52–100.00% | 100.00% | 97.95–100.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsampazis, N.; Vavoulidis, E.; Margioula-Siarkou, C.; Symeonidou, M.; Intzes, S.; Papanikolaou, A.; Dinas, K.; Daniilidis, A. The Diagnostic Accuracy of Electrical Impedance Spectroscopy-Assisted Colposcopy, HPV mRNA Test, and P16/Ki67 Immunostaining as CIN2+ Predictors in Greek Population. Diagnostics 2024, 14, 1379. https://doi.org/10.3390/diagnostics14131379
Tsampazis N, Vavoulidis E, Margioula-Siarkou C, Symeonidou M, Intzes S, Papanikolaou A, Dinas K, Daniilidis A. The Diagnostic Accuracy of Electrical Impedance Spectroscopy-Assisted Colposcopy, HPV mRNA Test, and P16/Ki67 Immunostaining as CIN2+ Predictors in Greek Population. Diagnostics. 2024; 14(13):1379. https://doi.org/10.3390/diagnostics14131379
Chicago/Turabian StyleTsampazis, Nikolaos, Eleftherios Vavoulidis, Chrysoula Margioula-Siarkou, Marianthi Symeonidou, Stergios Intzes, Alexios Papanikolaou, Konstantinos Dinas, and Angelos Daniilidis. 2024. "The Diagnostic Accuracy of Electrical Impedance Spectroscopy-Assisted Colposcopy, HPV mRNA Test, and P16/Ki67 Immunostaining as CIN2+ Predictors in Greek Population" Diagnostics 14, no. 13: 1379. https://doi.org/10.3390/diagnostics14131379
APA StyleTsampazis, N., Vavoulidis, E., Margioula-Siarkou, C., Symeonidou, M., Intzes, S., Papanikolaou, A., Dinas, K., & Daniilidis, A. (2024). The Diagnostic Accuracy of Electrical Impedance Spectroscopy-Assisted Colposcopy, HPV mRNA Test, and P16/Ki67 Immunostaining as CIN2+ Predictors in Greek Population. Diagnostics, 14(13), 1379. https://doi.org/10.3390/diagnostics14131379