Semi-Supervised Facial Acne Segmentation Using Bidirectional Copy–Paste
Abstract
:1. Introduction
- Fusion of labeled loss and synthetic loss: We propose a method that simultaneously calculates and fuses the labeled loss for training labeled images and the synthetic loss for training unlabeled images;
- Comparison of acne segmentation performance with semi-supervised learning methods: We compared the acne segmentation performance with previous semi-supervised learning methods based on our acne database and ACNE04. Additionally, through ablation studies, we compared the acne segmentation performance as the parameters of U-Net were increased.
2. Related Works
2.1. Acne Detection
2.2. Semi-Supervised Learning
3. Method
3.1. Overall Structure
Algorithm 1 Training process of the proposed acne segmentation model. | |
| |
|
3.2. Pre-Trained Weight
3.3. Bidirectional Copy–Paste for Synthetic Images
3.4. Pseudo Synthetic Ground Truth for Supervisory Signals
3.5. Semi-Supervised Loss Computation
4. Experimental Results
4.1. Experimental Setup
4.2. Comparison of Results
4.2.1. Comparison between Synthetic Images and Labeled Images for Pre-Trained Weight
4.2.2. Semi-Supervised Learning Comparison
5. Ablation Study
5.1. Performance Variation according to and the Number of Channels in U-Net
5.2. Acne Segmentation Performance on ACNE04
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mekonnen, B.; Hsieh, T.; Tsai, D.; Liaw, S.; Yang, F.; Huang, S. Generation of Augmented Capillary Network Optical Coherence Tomography Image Data of Human Skin for Deep Learning and Capillary Segmentation. Diagnostics 2021, 11, 685. [Google Scholar] [CrossRef] [PubMed]
- Bekmirzaev, S.; Oh, S.; Yo, S. RethNet: Object-by-object learning for detecting facial skin problems. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Yoon, H.; Kim, S.; Lee, J.; Yoo, S. Deep-Learning-Based Morphological Feature Segmentation for Facial Skin Image Analysis. Diagnostics 2023, 13, 1894. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Yoon, H.; Kim, S.; Lee, C.; Lee, J.; Yoo, S. Deep learning-based skin care product recommendation: A focus on cosmetic ingredient analysis and facial skin conditions. J. Cosmet. Dermatol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Budhi, G.; Adipranata, R.; Gunawan, A. Acne segmentation and classification using region growing and self-organizing map. In Proceedings of the 2017 International Conference on Soft Computing, Intelligent System and Information Technology (ICSIIT), Denpasar, Indonesia, 26–29 September 2017. [Google Scholar] [CrossRef]
- Alamdari, N.; Tavakolian, K.; Alhashim, M.; Fazel-Rezai, R. Detection and classification of acne lesions in acne patients: A mobile application. In Proceedings of the 2016 IEEE International Conference on Electro Information Technology (EIT), Grand Forks, ND, USA, 19–21 May 2016. [Google Scholar] [CrossRef]
- Yadav, N.; Alfayeed, S.; Khamparia, A.; Pandey, B.; Thanh, D.; Pande, S. HSV model-based segmentation driven facial acne detection using deep learning. Expert Syst. 2022, 39, e12760. [Google Scholar] [CrossRef]
- Rashataprucksa, K.; Chuangchaichatchavarn, C.; Triukose, S.; Nitinawarat, S.; Pongprutthipan, M.; Piromsopa, K. Acne detection with deep neural networks. In Proceedings of the 2020 2nd International Conference on Image Processing and Machine Vision, Bangkok, Thailand, 5–7 August 2020; pp. 53–56. [Google Scholar] [CrossRef]
- Huynh, Q.; Nguyen, P.; Le, H.; Ngo, L.; Trinh, N.; Tran, M.; Nguyen, H.; Vu, N.; Nguyen, A.; Suda, K.; et al. Automatic Acne Object Detection and Acne Severity Grading Using Smartphone Images and Artificial Intelligence. Diagnostics 2022, 12, 1879. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Li, Y.; He, K.; Sun, J. R-FCN: Object Detection via Region-based Fully Convolutional Networks. In Proceedings of the 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 5–10 December 2016. [Google Scholar]
- Min, K.; Lee, G.; Lee, S. ACNet: Mask-aware attention with dynamic context enhancement for robust acne detection. In Proceedings of the 2021 IEEE International Conference On Systems, Man, And Cybernetics (SMC), Melbourne, Australia, 17–20 October 2021; pp. 2724–2729. [Google Scholar]
- Junayed, M.; Islam, M.; Anjum, N. A Transformer-Based Versatile Network for Acne Vulgaris Segmentation. In Proceedings of the 2022 Innovations In Intelligent Systems And Applications Conference (ASYU), Antalya, Turkey, 7–9 September 2022; pp. 1–6. [Google Scholar]
- Kim, S.; Lee, C.; Jung, G.; Yoon, H.; Lee, J.; Yoo, S. Facial Acne Segmentation based on Deep Learning with Center Point Loss. In Proceedings of the 2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS), L’Aquila, Italy, 22–24 June 2023; pp. 678–683. [Google Scholar]
- Laine, S.; Aila, T. Temporal ensembling for semi-supervised learning. arXiv 2016, arXiv:1610.02242. [Google Scholar]
- Yun, S.; Han, D.; Oh, S.; Chun, S.; Choe, J.; Yoo, Y. CutMix: Regularization strategy to train strong classifiers with localizable features. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Bai, Y.; Chen, D.; Li, Q.; Shen, W.; Wang, Y. Bidirectional copy-paste for semi-supervised medical image segmentation. In Proceedings of the IEEE/CVF Conference On Computer Vision And Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 11514–11524. [Google Scholar]
- Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. Analyzing and Improving the Image Quality of StyleGAN. arXiv 2019, arXiv:1912.04958. [Google Scholar]
- Karras, T.; Aittala, M.; Hellsten, J.; Laine, S.; Lehtinen, J.; Aila, T. Training Generative Adversarial Networks with Limited Data. arXiv 2020, arXiv:2006.06676. [Google Scholar]
- Sankar, A.; Chaturvedi, K.; Nayan, A.; Hesamian, M.; Braytee, A.; Prasad, M. Utilizing Generative Adversarial Networks for Acne Dataset Generation in Dermatology. BioMedInformatics 2024, 4, 1059–1070. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Lee, C.; Lee, J. Improving Facial Acne Segmentation through Semi-Supervised Learning with Synthetic Images. J. Korea Multimed. Soc. 2024, 27, 241–249. [Google Scholar] [CrossRef]
- Wu, X.; Wen, N.; Liang, J.; Lai, Y.K.; She, D.; Cheng, M.M.; Yang, J. Joint acne image grading and counting via label distribution learning. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Kim, S.; Yoon, H.; Lee, J.; Yoo, S. Semi-automatic labeling and training strategy for deep learning-based facial wrinkle detection. In Proceedings of the 2022 IEEE 35th International Symposium On Computer-Based Medical Systems (CBMS), Shenzen, China, 21–23 July 2022; pp. 383–388. [Google Scholar]
- Kim, S.; Yoon, H.; Lee, J.; Yoo, S. Facial wrinkle segmentation using weighted deep supervision and semi-automatic labeling. Artif. Intell. Med. 2023, 145, 102679. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Lozada, V.; Bettoli, V.; Tan, J.; Rueda, M.; Layton, A.; Petit, L.; Dréno, B. New Atrophic Acne Scar Classification: Reliability of Assessments Based on Size, Shape, and Number. J. Drugs Dermatol. JDD 2016, 15, 693–702. [Google Scholar] [PubMed]
- Sohn, K.; Berthelot, D.; Carlini, N.; Zhang, Z.; Zhang, H.; Raffel, C.; Cubuk, E.; Kurakin, A.; Li, C. FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence. Adv. Neural Inf. Process. Syst. 2020, 33, 596–608. [Google Scholar]
- Chen, Y.; Tan, X.; Zhao, B.; Chen, Z.; Song, R.; Liang, J.; Lu, X. Boosting semi-supervised learning by exploiting all unlabeled data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 7548–7557. [Google Scholar]
- Wu, Y.; Wu, Z.; Wu, Q.; Ge, Z.; Cai, J. Exploring smoothness and class-separation for semi-supervised medical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2022; pp. 34–43. [Google Scholar]
- Yang, L.; Qi, L.; Feng, L.; Zhang, W.; Shi, Y. Revisiting weak-to-strong consistency in semi-supervised semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 7236–7246. [Google Scholar]
- Lumini. Lumini KIOSK V2 Home Page. 2020. Available online: https://www.lulu-lab.com/bbs/write.php?bo_table=product_en&sca=LUMINI+KIOSK (accessed on 9 July 2020).
Loss Type | Ratio | Metrics | ||
---|---|---|---|---|
Labeled | Unlabeled | Dice Score | Jaccard Index | |
Synthetic loss | 3% | 0% | 0.4423 | 0.3108 |
Labeled loss | 3% | 0% | 0.4570 | 0.3203 |
Synthetic loss | 7% | 0% | 0.4784 | 0.3425 |
Labeled loss | 7% | 0% | 0.4951 | 0.3517 |
Method | Ratio | Metrics | ||
---|---|---|---|---|
Labeled | Unlabeled | Dice Score | Jaccard Index | |
SS-Net [28] | 3% | 97% | 0.4732 | 0.3333 |
BCP [17] | 3% | 97% | 0.5054 | 0.3617 |
Ours | 3% | 97% | 0.5251 | 0.3777 |
SS-Net [28] | 7% | 93% | 0.5162 | 0.3750 |
BCP [17] | 7% | 93% | 0.5357 | 0.3912 |
Ours | 7% | 93% | 0.5603 | 0.4117 |
Ratio | Metrics | |||
---|---|---|---|---|
Labeled | Unlabeled | Dice Score | Jaccard Index | |
0.1 | 3% | 97% | 0.5177 | 0.3693 |
0.5 | 3% | 97% | 0.5251 | 0.3777 |
1.0 | 3% | 97% | 0.5205 | 0.3753 |
0.1 | 7% | 93% | 0.5522 | 0.4060 |
0.5 | 7% | 93% | 0.5603 | 0.4122 |
1.0 | 7% | 93% | 0.5588 | 0.4117 |
# Channels | Ratio | Metrics | ||
---|---|---|---|---|
Labeled | Unlabeled | Dice Score | Jaccard Index | |
16 (BCP [17]) | 3% | 97% | 0.5054 | 0.3617 |
16 (ours) | 3% | 97% | 0.5251 | 0.3777 |
32 (ours) | 3% | 97% | 0.5394 | 0.3912 |
64 (ours) | 3% | 97% | 0.5458 | 0.3965 |
16 (BCP [17]) | 7% | 93% | 0.5357 | 0.3912 |
16 (ours) | 7% | 93% | 0.5603 | 0.4117 |
32 (ours) | 7% | 93% | 0.5709 | 0.4233 |
64 (ours) | 7% | 93% | 0.5781 | 0.4271 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Yoon, H.; Lee, J. Semi-Supervised Facial Acne Segmentation Using Bidirectional Copy–Paste. Diagnostics 2024, 14, 1040. https://doi.org/10.3390/diagnostics14101040
Kim S, Yoon H, Lee J. Semi-Supervised Facial Acne Segmentation Using Bidirectional Copy–Paste. Diagnostics. 2024; 14(10):1040. https://doi.org/10.3390/diagnostics14101040
Chicago/Turabian StyleKim, Semin, Huisu Yoon, and Jongha Lee. 2024. "Semi-Supervised Facial Acne Segmentation Using Bidirectional Copy–Paste" Diagnostics 14, no. 10: 1040. https://doi.org/10.3390/diagnostics14101040
APA StyleKim, S., Yoon, H., & Lee, J. (2024). Semi-Supervised Facial Acne Segmentation Using Bidirectional Copy–Paste. Diagnostics, 14(10), 1040. https://doi.org/10.3390/diagnostics14101040