Susceptibility of Ocular Surface Bacteria to Various Antibiotic Agents in a Romanian Ophthalmology Clinic
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arber, W. Horizontal Gene Transfer among Bacteria and Its Role in Biological Evolution. Life 2014, 4, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Boto, L. Horizontal Gene Transfer in Evolution: Facts and Challenges. Proc. Biol. Sci. 2010, 277, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Bisorca-Gassendorf, L.; Boden, K.T.; Szurman, P.; Al-Nawaiseh, S.; Rickmann, A.; Januschowski, K. Postoperative Endophthalmitis Im Spiegel Der Literatur. Ophthalmologe 2021, 118, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Gentile, R.C.; Shukla, S.; Shah, M.; Ritterband, D.C.; Engelbert, M.; Davis, A.; Hu, D.-N. Microbiological Spectrum and Antibiotic Sensitivity in Endophthalmitis: A 25-Year Review. Ophthalmology 2014, 121, 1634–1642. [Google Scholar] [CrossRef]
- Bremond-Gignac, D.; Chiambaretta, F.; Milazzo, S. A European Perspective on Topical Ophthalmic Antibiotics: Current and Evolving Options. Ophthalmol. Eye Dis. 2011, 3, 29–43. [Google Scholar] [CrossRef]
- Simina, D.S.; Larisa, I.; Otilia, C.; Ana Cristina, G.; Liliana, M.V.; Aurelian, M.G. The Ocular Surface Bacterial Contamination and Its Management in the Prophylaxis of Post Cataract Surgery Endophthalmitis. Rom. J. Ophthalmol. 2021, 65, 2–9. [Google Scholar] [CrossRef]
- Gutiérrez-Abejón, E.; Herrera-Gómez, F.; Ayestarán-Martínez, I.J.; Álvarez, F.J. Trend in the Use of Topical Ocular Anti-Infectives in a Region of Spain between 2015 and 2019: A Population-Based Registry Study. Rev. Esp. Quim. 2020, 33, 453–458. [Google Scholar] [CrossRef]
- Yu, Z.; Zhu, J.; Jin, J.; Yu, L.; Han, G. Trends in Outpatient Prescribing Patterns for Ocular Topical Anti-Infectives in Six Major Areas of China, 2013–2019. Antibiotics 2021, 10, 916. [Google Scholar] [CrossRef]
- O’Gallagher, M.; Bunce, C.; Hingorani, M.; Larkin, F.; Tuft, S.; Dahlmann-Noor, A. Topical Treatments for Blepharokeratoconjunctivitis in Children. Cochrane Database Syst. Rev. 2017, 2, CD011965. [Google Scholar] [CrossRef]
- Subedi, D.; Vijay, A.K.; Willcox, M. Overview of Mechanisms of Antibiotic Resistance in Pseudomonas aeruginosa: An Ocular Perspective. Clin. Exp. Optom. 2018, 101, 162–171. [Google Scholar] [CrossRef]
- Chang, V.S.; Dhaliwal, D.K.; Raju, L.; Kowalski, R.P. Antibiotic Resistance in the Treatment of Staphylococcus aureus Keratitis: A 20-Year Review. Cornea 2015, 34, 698–703. [Google Scholar] [CrossRef] [PubMed]
- Sadaka, A.; Durand, M.L.; Sisk, R.; Gilmore, M.S. Staphylococcus aureus and Its Bearing on Ophthalmic Disease. Ocul. Immunol. Inflamm. 2017, 25, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Fàbrega, A.; Madurga, S.; Giralt, E.; Vila, J. Mechanism of Action of and Resistance to Quinolones. Microb. Biotechnol. 2009, 2, 40–61. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.C.; Jacoby, G.A. Mechanisms of Drug Resistance: Quinolone Resistance. Ann. N. Y. Acad. Sci. 2015, 1354, 12–31. [Google Scholar] [CrossRef]
- Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An Overview. Cold Spring Harb. Perspect. Med. 2016, 6, a027029. [Google Scholar] [CrossRef]
- M07-A10; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 10th ed. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015.
- Peck, T.J.; Patel, S.N.; Ho, A.C. Endophthalmitis after Cataract Surgery: An Update on Recent Advances. Curr. Opin. Ophthalmol. 2021, 32, 62–68. [Google Scholar] [CrossRef]
- Bowen, R.C.; Zhou, A.X.; Bondalapati, S.; Lawyer, T.W.; Snow, K.B.; Evans, P.R.; Bardsley, T.; McFarland, M.; Kliethermes, M.; Shi, D.; et al. Comparative Analysis of the Safety and Efficacy of Intracameral Cefuroxime, Moxifloxacin and Vancomycin at the End of Cataract Surgery: A Meta-Analysis. Br. J. Ophthalmol. 2018, 102, 1268–1276. [Google Scholar] [CrossRef]
- Grzybowski, A.; Brona, P.; Zeman, L.; Stewart, M.W. Commonly Used Intracameral Antibiotics for Endophthalmitis Prophylaxis: A Literature Review. Surv. Ophthalmol. 2021, 66, 98–108. [Google Scholar] [CrossRef]
- George, N.K.; Stewart, M.W. The Routine Use of Intracameral Antibiotics to Prevent Endophthalmitis After Cataract Surgery: How Good Is the Evidence? Ophthalmol. Ther. 2018, 7, 233–245. [Google Scholar] [CrossRef]
- Brockhaus, L.; Goldblum, D.; Eggenschwiler, L.; Zimmerli, S.; Marzolini, C. Revisiting Systemic Treatment of Bacterial Endophthalmitis: A Review of Intravitreal Penetration of Systemic Antibiotics. Clin. Microbiol. Infect. 2019, 25, 1364–1369. [Google Scholar] [CrossRef]
- Chen, K.-J.; Sun, M.-H.; Hou, C.-H.; Chen, H.-C.; Chen, Y.-P.; Wang, N.-K.; Liu, L.; Wu, W.-C.; Chou, H.-D.; Kang, E.Y.-C.; et al. Susceptibility of Bacterial Endophthalmitis Isolates to Vancomycin, Ceftazidime, and Amikacin. Sci. Rep. 2021, 11, 15878. [Google Scholar] [CrossRef]
- Monticelli, J.; Knezevich, A.; Luzzati, R.; Di Bella, S. Clinical Management of Non-Faecium Non-Faecalis Vancomycin-Resistant Enterococci Infection. Focus on Enterococcus Gallinarum and Enterococcus Casseliflavus/Flavescens. J. Infect. Chemother. 2018, 24, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Relhan, N.; Albini, T.A.; Pathengay, A.; Kuriyan, A.E.; Miller, D.; Flynn, H.W. Endophthalmitis Caused by Gram-Positive Organisms with Reduced Vancomycin Susceptibility: Literature Review and Options for Treatment. Br. J. Ophthalmol. 2016, 100, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Babalola, O.E. Intravitreal Linezolid in the Management of Vancomycin-Resistant Enterococcal Endophthalmitis. Am. J. Ophthalmol. Case Rep. 2020, 20, 100974. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.K.; Reddy, R.R.; Paruvelli, M.R.; Ambatipudi, S.; Rani, A.; Lodhi, S.A.K.; Reddy, J.M.L.; Reddy, K.R.; Pandey, N.; Videkar, R.; et al. Susceptibility of Bacterial Isolates to Vancomycin and Ceftazidime from Patients with Endophthalmitis: Is There a Need to Change the Empirical Therapy in Suspected Bacterial Endophthalmitis? Int. Ophthalmol. 2015, 35, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Shao, E.H.; Yates, W.B.; Ho, I.-V.; Chang, A.A.; Simunovic, M.P. Endophthalmitis: Changes in Presentation, Management and the Role of Early Vitrectomy. Ophthalmol. Ther. 2021, 10, 877–890. [Google Scholar] [CrossRef] [PubMed]
- Fliney, G.D.; Pecen, P.E.; Cathcart, J.N.; Palestine, A.G. Trends in Treatment Strategies for Suspected Bacterial Endophthalmitis. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.N.; Storey, P.P.; Levin, H.; Pancholy, M.; Obeid, A.; Wibbelsman, T.D.; Kuley, B.; Ho, A.C.; Hsu, J.; Garg, S.J.; et al. Endophthalmitis after Cataract Surgery: Changes in Management Based on Microbiologic Cultures. Ophthalmol. Retin. 2021, 5, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ji, J.; Li, S.; Wang, Z.; Tang, L.; Cao, W.; Sun, X. Microbiological Isolates and Antibiotic Susceptibilities: A 10-Year Review of Culture-Proven Endophthalmitis Cases. Curr. Eye Res. 2017, 42, 443–447. [Google Scholar] [CrossRef]
- Tabatabaei, S.A.; Aminzade, S.; Ahmadraji, A.; Soleimani, M.; Sefidan, B.B.; Kasaee, A.; Cheraqpour, K. Early and Complete Vitrectomy versus Tap and Inject in Acute Post Cataract Surgery Endophthalmitis Presenting with Hand Motion Vision; A Quasi-Experimental Study. BMC Ophthalmol. 2022, 22, 16. [Google Scholar] [CrossRef]
- Muqit, M.M.; Mehat, M.; Bunce, C.; Bainbridge, J.W. Early Vitrectomy for Exogenous Endophthalmitis Following Surgery. Cochrane Database Syst. Rev. 2022, 2022, CD013760. [Google Scholar] [CrossRef]
- Montan, P.G.; Wejde, G.; Koranyi, G.; Rylander, M. Prophylactic Intracameral Cefuroxime. Efficacy in Preventing Endophthalmitis after Cataract Surgery. J. Cataract Refract. Surg. 2002, 28, 977–981. [Google Scholar] [CrossRef]
- Ma, X.; Xie, L.; Huang, Y. Intraoperative Cefuroxime Irrigation Prophylaxis for Acute-Onset Endophthalmitis After Phacoemulsification Surgery. Infect. Drug Resist. 2020, 13, 1455–1463. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N.; Murphy, C.C. Impact of Intracameral Cefuroxime on the Incidence of Postoperative Endophthalmitis Following Cataract Surgery in Ireland. Ir. J. Med. Sci. 2015, 184, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Röck, T.; Bramkamp, M.; Bartz-Schmidt, K.-U.; Mutlu, U.; Yörük, E.; Röck, D.; Thaler, S. Reduktion Der Postoperativen Endophthalmitisrate Durch Intrakamerale Cerfuroximgabe: Ergebnisse Aus 5 Jahren Erfahrungen an Der Universitäts-Augenklinik Tübingen. Klin. Monbl. Augenheilkd. 2014, 231, 1023–1028. [Google Scholar] [CrossRef]
- Conci, L.d.S.; Favarato, A.P.; Pinheiro, A.G. Cost Effectiveness of Intracameral Cefuroxime Prophylaxis and Its Efficacy in Preventing Endophthalmitis after Cataract Surgery in a Referral Hospital. Arq. Bras. Oftalmol. 2022, 86, 308–313. [Google Scholar] [CrossRef]
- Friling, E.; Montan, P. Bacteriology and Cefuroxime Resistance in Endophthalmitis Following Cataract Surgery before and after the Introduction of Prophylactic Intracameral Cefuroxime: A Retrospective Single-Centre Study. J. Hosp. Infect. 2019, 101, 88–92. [Google Scholar] [CrossRef]
- Ng, A.L.-K.; Tang, W.W.-T.; Li, P.S.-H.; Li, K.K.-W. Intracameral Cefuroxime in the Prevention of Postoperative Endophthalmitis: An Experience from Hong Kong. Graefes Arch. Clin. Exp. Ophthalmol. 2016, 254, 1987–1992. [Google Scholar] [CrossRef]
- Lim, L.W.; Tan, C.S. Intracameral Cefuroxime in the Prevention of Postoperative Endophthalmitis. Graefes Arch. Clin. Exp. Ophthalmol. 2017, 255, 1681–1682. [Google Scholar] [CrossRef]
- Braga-Mele, R.; Chang, D.F.; Henderson, B.A.; Mamalis, N.; Talley-Rostov, A.; Vasavada, A. ASCRS Clinical Cataract Committee Intracameral Antibiotics: Safety, Efficacy, and Preparation. J. Cataract Refract. Surg. 2014, 40, 2134–2142. [Google Scholar] [CrossRef]
- Arshinoff, S.A.; Felfeli, T.; Modabber, M. Aqueous Level Abatement Profiles of Intracameral Antibiotics: A Comparative Mathematical Model of Moxifloxacin, Cefuroxime, and Vancomycin with Determination of Relative Efficacies. J. Cataract Refract. Surg. 2019, 45, 1568–1574. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Yamamoto, T.; Torikai, T.; Ohashi, Y. Combination Effect of Cefuroxime and Levofloxacin Against Bacteria Isolated from the Healthy Conjunctival Sac and Endophthalmitis Cases Using a Fractional Inhibitory Concentration Index. J. Ocul. Pharmacol. Ther. 2017, 33, 19–23. [Google Scholar] [CrossRef]
- Shorstein, N.H.; Liu, L.; Carolan, J.A.; Herrinton, L. Endophthalmitis Prophylaxis Failures in Patients Injected With Intracameral Antibiotic During Cataract Surgery. Am. J. Ophthalmol. 2021, 227, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Mesnard, C.; Beral, L.; Hage, R.; Merle, H.; Farès, S.; David, T. Endophthalmitis after Cataract Surgery despite Intracameral Antibiotic Prophylaxis with Licensed Cefuroxime. J. Cataract Refract. Surg. 2016, 42, 1318–1323. [Google Scholar] [CrossRef] [PubMed]
- Gower, E.W.; Lindsley, K.; Tulenko, S.E.; Nanji, A.A.; Leyngold, I.; McDonnell, P.J. Perioperative Antibiotics for Prevention of Acute Endophthalmitis after Cataract Surgery. Cochrane Database Syst. Rev. 2017, 2, CD006364. [Google Scholar] [CrossRef]
- Sun, J.; Guo, Z.; Li, H.; Yang, B.; Wu, X. Acute Infectious Endophthalmitis After Cataract Surgery: Epidemiological Characteristics, Risk Factors and Incidence Trends, 2008–2019. Infect. Drug Resist. 2021, 14, 1231–1238. [Google Scholar] [CrossRef]
- Shockley, R.K.; Jay, W.M.; Friberg, T.R.; Aziz, A.M.; Rissing, J.P.; Aziz, M.Z. Intravitreal Ceftriaxone in a Rabbit Model. Dose- and Time-Dependent Toxic Effects and Pharmacokinetic Analysis. Arch. Ophthalmol. 1984, 102, 1236–1238. [Google Scholar] [CrossRef]
- Tiecco, G.; Laurenda, D.; Mulè, A.; Arsuffi, S.; Storti, S.; Migliorati, M.; Boldini, A.; Signorini, L.; Castelli, F.; Quiros-Roldan, E. Gram-Negative Endogenous Endophthalmitis: A Systematic Review. Microorganisms 2022, 11, 80. [Google Scholar] [CrossRef]
- López-Cabezas, C.; Muner, D.S.; Massa, M.R.; Mensa Pueyo, J.M. Antibiotics in Endophthalmitis: Microbiological and Pharmacokinetic Considerations. Curr. Clin. Pharmacol. 2010, 5, 47–54. [Google Scholar] [CrossRef]
- Schauersberger, J.; Amon, M.; Wedrich, A.; Nepp, J.; El Menyawi, I.; Derbolav, A.; Graninger, W. Penetration and Decay of Meropenem into the Human Aqueous Humor and Vitreous. J. Ocul. Pharmacol. Ther. 1999, 15, 439–445. [Google Scholar] [CrossRef]
- Tappeiner, C.; Schuerch, K.; Goldblum, D.; Zimmerli, S.; Fleischhauer, J.; Frueh, B. Combined Meropenem and Linezolid as a Systemic Treatment for Postoperative Endophthalmitis. Klin. Monbl. Augenheilkd. 2010, 227, 257–261. [Google Scholar] [CrossRef]
- Bozkurt, E.; Muhafiz, E.; Kepenek, H.S.; Bozlak, Ç.E.B.; Koç Saltan, S.; Bingol, S.A. A New Treatment Experience in Pseudomonas Keratitis: Topical Meropenem and Cefepime. Eye Contact Lens Sci. Clin. Pract. 2021, 47, 174–179. [Google Scholar] [CrossRef]
- Sueke, H.; Kaye, S.; Wilkinson, M.C.; Kennedy, S.; Kearns, V.; Zheng, Y.; Roberts, P.; Tuft, S.; Neal, T. Pharmacokinetics of Meropenem for Use in Bacterial Keratitis. Investig. Ophthalmol. Vis. Sci. 2015, 56, 5731. [Google Scholar] [CrossRef][Green Version]
- Galvis, V.; Tello, A.; Sánchez, W.; Camacho, P.; Villarreal, D.; García, D. Minimum Inhibitory Concentrations and Resistance for Selected Antimicrobial Agents (Including Imipenem, Linezolid and Tigecycline) of Bacteria Obtained from Eye Infections. Rom. J. Ophthalmol. 2020, 64, 269–279. [Google Scholar] [CrossRef]
- Ay, G.M.; Akhan, S.C.; Erturk, S.; Aktas, E.S.; Ozkara, S.K.; Caglar, Y. Comparison of Intravitreal Ceftazidime and Meropenem in Treatment of Experimental Pseudomonal Posttraumatic Endophthalmitis in a Rabbit Model. J. Appl. Res. 2004, 4, 336–345. [Google Scholar]
- Radhika, M.; Mithal, K.; Bawdekar, A.; Dave, V.; Jindal, A.; Relhan, N.; Albini, T.; Pathengay, A.; Flynn, H.W. Pharmacokinetics of Intravitreal Antibiotics in Endophthalmitis. J. Ophthalmic Inflamm. Infect. 2014, 4, 22. [Google Scholar] [CrossRef]
- Sharma, S. Antibiotic Resistance in Ocular Bacterial Pathogens. Indian J. Med. Microbiol. 2011, 29, 218–222. [Google Scholar] [CrossRef]
- McDonald, M.; Blondeau, J.M. Emerging Antibiotic Resistance in Ocular Infections and the Role of Fluoroquinolones. J. Cataract Refract. Surg. 2010, 36, 1588–1598. [Google Scholar] [CrossRef]
- Grandi, G.; Bianco, G.; Boattini, M.; Scalabrin, S.; Iannaccone, M.; Fea, A.; Cavallo, R.; Costa, C. Bacterial Etiology and Antimicrobial Resistance Trends in Ocular Infections: A 30-Year Study, Turin Area, Italy. Eur. J. Ophthalmol. 2021, 31, 405–414. [Google Scholar] [CrossRef]
- Miller, D. Update on the Epidemiology and Antibiotic Resistance of Ocular Infections. Middle East. Afr. J. Ophthalmol. 2017, 24, 30–42. [Google Scholar] [CrossRef]
- Milder, E.; Vander, J.; Shah, C.; Garg, S. Changes in Antibiotic Resistance Patterns of Conjunctival Flora Due to Repeated Use of Topical Antibiotics after Intravitreal Injection. Ophthalmology 2012, 119, 1420–1424. [Google Scholar] [CrossRef]
- Baudin, F.; Benzenine, E.; Mariet, A.-S.; Ghezala, I.B.; Bron, A.M.; Daien, V.; Gabrielle, P.-H.; Quantin, C.; Creuzot-Garcher, C. Topical Antibiotic Prophylaxis and Intravitreal Injections: Impact on the Incidence of Acute Endophthalmitis—A Nationwide Study in France from 2009 to 2018. Pharmaceutics 2022, 14, 2133. [Google Scholar] [CrossRef]
- Sanfilippo, C.M.; Morrissey, I.; Janes, R.; Morris, T.W. Surveillance of the Activity of Aminoglycosides and Fluoroquinolones Against Ophthalmic Pathogens from Europe in 2010–2011. Curr. Eye Res. 2016, 41, 581–589. [Google Scholar] [CrossRef]
- Chatterjee, S.; Agrawal, D.; Gomase, S.; Parchand, S.; Gangwe, A.; Mishra, M. Fluoroquinolone Resistance in Bacterial Isolates from Ocular Infections: Trend in Antibiotic Susceptibility Patterns between 2005–2020. Indian J. Ophthalmol. 2022, 70, 4391. [Google Scholar] [CrossRef]
- Iwasaki, T.; Nejima, R.; Miyata, K. Ocular Surface Flora and Prophylactic Antibiotics for Cataract Surgery in the Age of Antimicrobial Resistance. Jpn. J. Ophthalmol. 2022, 66, 111–118. [Google Scholar] [CrossRef]
- Schechter, B.A.; Sheppard, J.D.; Sanfilippo, C.M.; DeCory, H.H.; Asbell, P.A. An Evaluation of Staphylococci from Ocular Surface Infections Treated Empirically with Topical Besifloxacin: Antibiotic Resistance, Molecular Characteristics, and Clinical Outcomes. Ophthalmol. Ther. 2020, 9, 159–173. [Google Scholar] [CrossRef]
- Durrani, A.F.; Atta, S.; Bhat, A.K.; Mammen, A.; Dhaliwal, D.; Kowalski, R.P.; Jhanji, V. Methicillin-Resistant Staphylococcus aureus Keratitis: Initial Treatment, Risk Factors, Clinical Features, and Treatment Outcomes. Am. J. Ophthalmol. 2020, 214, 119–126. [Google Scholar] [CrossRef]
- Ahmad, A.; Rehman, M. Efficacy of Injecting Intra-Vitreal Moxifloxacin in Acute Post-Operative Endophthalmitis. J. Ayub Med. Coll. Abbottabad 2023, 35, 166–168. [Google Scholar] [CrossRef]
- Kuriakose, R.K.; Cho, S.; Nassiri, S.; Hwang, F.S. Comparative Outcomes of Standard Perioperative Eye Drops, Intravitreal Triamcinolone Acetonide-Moxifloxacin, and Intracameral Dexamethasone-Moxifloxacin-Ketorolac in Cataract Surgery. J. Ophthalmol. 2022, 2022, 4857696. [Google Scholar] [CrossRef]
- Lucena, N.d.P.; Pereira, I.M.d.S.; Gaete, M.I.L.; Ferreira, K.S.A.; Mélega, M.V.; Lira, R.P.C. Intracameral Moxifloxacin after Cataract Surgery: A Prospective Study. Arq. Bras. Oftalmol. 2018, 81, 92–94. [Google Scholar] [CrossRef]
- Leung, E.H.; Gibbons, A.; Stout, T.J.; Koch, D.D. Intracameral Moxifloxacin for Endophthalmitis Prophylaxis after Cataract Surgery: Cost-Effectiveness Analysis. J. Cataract Refract. Surg. 2018, 44, 971–978. [Google Scholar] [CrossRef]
- Mitchell, W.; Tom, L.; Durai, I.; Rajagopal, S.; Vimalanathan, M.; Rengaraj, V.; Srinivasan, K.; Zebardast, N. The Effectiveness of Intracameral Moxifloxacin Endophthalmitis Prophylaxis for Trabeculectomy. Ophthalmol. Glaucoma 2021, 4, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Linertová, R.; Abreu-González, R.; García-Pérez, L.; Alonso-Plasencia, M.; Cordovés-Dorta, L.M.; Abreu-Reyes, J.A.; Serrano-Aguilar, P. Intracameral Cefuroxime and Moxifloxacin Used as Endophthalmitis Prophylaxis after Cataract Surgery: Systematic Review of Effectiveness and Cost-Effectiveness. Clin. Ophthalmol. 2014, 8, 1515–1522. [Google Scholar] [CrossRef] [PubMed]
- Alseqely, M.; Newton-Foot, M.; Khalil, A.; El-Nakeeb, M.; Whitelaw, A.; Abouelfetouh, A. Association between Fluoroquinolone Resistance and MRSA Genotype in Alexandria, Egypt. Sci. Rep. 2021, 11, 4253. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.K.; Melton, R.; Asbell, P.A. Antibiotic Resistance among Ocular Pathogens: Current Trends from the ARMOR Surveillance Study (2009–2016). Clin. Optom. 2019, 11, 15–26. [Google Scholar] [CrossRef]
- Bispo, P.J.M.; Sahm, D.F.; Asbell, P.A. A Systematic Review of Multi-Decade Antibiotic Resistance Data for Ocular Bacterial Pathogens in the United States. Ophthalmol. Ther. 2022, 11, 503–520. [Google Scholar] [CrossRef]
- Petrillo, F.; Pignataro, D.; Di Lella, F.M.; Reibaldi, M.; Fallico, M.; Castellino, N.; Parisi, G.; Trotta, M.C.; D’Amico, M.; Santella, B.; et al. Antimicrobial Susceptibility Patterns and Resistance Trends of Staphylococcus Aureus and Coagulase-Negative Staphylococci Strains Isolated from Ocular Infections. Antibiotics 2021, 10, 527. [Google Scholar] [CrossRef]
- Asbell, P.A.; DeCory, H.H. Antibiotic Resistance among Bacterial Conjunctival Pathogens Collected in the Antibiotic Resistance Monitoring in Ocular Microorganisms (ARMOR) Surveillance Study. PLoS ONE 2018, 13, e0205814. [Google Scholar] [CrossRef]
- Cagini, C.; Piccinelli, F.; Lupidi, M.; Messina, M.; Cerquaglia, A.; Manes, S.; Fiore, T.; Pellegrino, R.M. Ocular Penetration of Topical Antibiotics: Study on the Penetration of Chloramphenicol, Tobramycin and Netilmicin into the Anterior Chamber after Topical Administration. Clin. Exp. Ophthalmol. 2013, 41, 644–647. [Google Scholar] [CrossRef]
- Herrinton, L.J.; Shorstein, N.H.; Paschal, J.F.; Liu, L.; Contreras, R.; Winthrop, K.L.; Chang, W.J.; Melles, R.B.; Fong, D.S. Comparative Effectiveness of Antibiotic Prophylaxis in Cataract Surgery. Ophthalmology 2016, 123, 287–294. [Google Scholar] [CrossRef]
- Ma, W.; Hou, G.; Wang, J.; Liu, T.; Tian, F. Evaluation of the Effect of Gentamicin in Surgical Perfusion Solution on Cataract Postoperative Endophthalmitis. BMC Ophthalmol. 2022, 22, 410. [Google Scholar] [CrossRef]
- Torres-Costa, S.; Ramos, D.; Brandão, E.; Carneiro, Â.; Rosas, V.; Rocha-Sousa, A.; Falcão-Reis, F.; Falcão, M. Incidence of Endophthalmitis after Intravitreal Injection with and without Topical Antibiotic Prophylaxis. Eur. J. Ophthalmol. 2021, 31, 600–606. [Google Scholar] [CrossRef]
- Schwartz, S.G.; Flynn, H.W.; Grzybowski, A. Controversies in Topical Antibiotics Use with Intravitreal Injections. Curr. Pharm. Des. 2015, 21, 4703–4706. [Google Scholar] [CrossRef]
- Kareem Rhumaid, A.; Alak Mahdi Al-Buhilal, J.; Al-Rubaey, N.K.F.; Yassen Al-Zamily, K. Prevalence and Antibiotic Susceptibility of Pathogenic Bacteria Associated with Ocular Infections in Adult Patients. Arch. Razi Inst. 2022, 77, 1917–1924. [Google Scholar] [CrossRef]
- Oong, G.C.; Tadi, P. Chloramphenicol; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Bale, B.I.; Elebesunu, E.E.; Manikavasagar, P.; Agwuna, F.O.; Ogunkola, I.O.; Sow, A.U.; Lucero-Prisno, D.E. Antibiotic Resistance in Ocular Bacterial Infections: An Integrative Review of Ophthalmic Chloramphenicol. Trop. Med. Health 2023, 51, 15. [Google Scholar] [CrossRef] [PubMed]
- Nithya, V.; Rathinam, S.; Siva Ganesa Karthikeyan, R.; Lalitha, P. A Ten Year Study of Prevalence, Antimicrobial Susceptibility Pattern, and Genotypic Characterization of Methicillin Resistant Staphylococcus aureus Causing Ocular Infections in a Tertiary Eye Care Hospital in South India. Infect. Genet. Evol. 2019, 69, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, D. Chloramphenicol Resurrected: A Journey from Antibiotic Resistance in Eye Infections to Biofilm and Ocular Microbiota. Microorganisms 2019, 7, 278. [Google Scholar] [CrossRef] [PubMed]
- Fraunfelder, F.W.; Fraunfelder, F.T. Restricting Topical Ocular Chloramphenicol Eye Drop Use in the United States. Did We Overreact? Am. J. Ophthalmol. 2013, 156, 420–422. [Google Scholar] [CrossRef]
- Wong, E.S.; Chow, C.W.Y.; Luk, W.K.; Fung, K.S.C.; Li, K.K.W. A 10-Year Review of Ocular Methicillin-Resistant Staphylococcus aureus Infections: Epidemiology, Clinical Features, and Treatment. Cornea 2017, 36, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Harford, D.A.; Greenan, E.; Knowles, S.J.; Fitzgerald, S.; Murphy, C.C. The Burden of Methicillin-Resistant Staphylococcus aureus in the Delivery of Eye Care. Eye 2022, 36, 1368–1372. [Google Scholar] [CrossRef] [PubMed]
- Croghan, C.; Lockington, D. Management of MRSA-Positive Eye Swabs and the Potential Advantages of Chloramphenicol Availability in the United Kingdom. Eye 2018, 32, 157–159. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Singha, M.; Senapati, K.; Saha, S.; Mandal, S.; Mandal, S.M.; Ghosh, A.K.; Basak, A. Chloramphenicol-Borate/Boronate Complex for Controlling Infections by Chloramphenicol-Resistant Bacteria. RSC Adv. 2018, 8, 18016–18022. [Google Scholar] [CrossRef]
- Andaluz-Scher, L.; Medow, N.B. Chloramphenicol Eye Drops: An Old Dog in a New House. Ophthalmology 2020, 127, 1289–1291. [Google Scholar] [CrossRef] [PubMed]
- Cave, J.A. Chloramphenicol Eye Drops, Boron, Infants and Fertility. Drug Ther. Bull. 2021, 59, 98. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.R.; Solomon, A.W.; Kumar, R.; Perez, Á.; Singh, B.P.; Srivastava, R.M.; Harding-Esch, E. Antibiotics for Trachoma. Cochrane Database Syst. Rev. 2019, 9, CD001860. [Google Scholar] [CrossRef] [PubMed]
- Ta, C.N.; Chang, R.T.; Singh, K.; Egbert, P.R.; Shriver, E.M.; Blumenkranz, M.S.; Miño de Kaspar, H. Antibiotic Resistance Patterns of Ocular Bacterial Flora: A Prospective Study of Patients Undergoing Anterior Segment Surgery. Ophthalmology 2003, 110, 1946–1951. [Google Scholar] [CrossRef]
- Belyhun, Y.; Moges, F.; Endris, M.; Asmare, B.; Amare, B.; Bekele, D.; Tesfaye, S.; Alemayehu, M.; Biadgelegne, F.; Mulu, A.; et al. Ocular Bacterial Infections and Antibiotic Resistance Patterns in Patients Attending Gondar Teaching Hospital, Northwest Ethiopia. BMC Res. Notes 2018, 11, 597. [Google Scholar] [CrossRef]
- Khan, M.; Willcox, M.D.P.; Rice, S.A.; Sharma, S.; Stapleton, F. Development of Antibiotic Resistance in the Ocular Pseudomonas aeruginosa Clone ST308 over Twenty Years. Exp. Eye Res. 2021, 205, 108504. [Google Scholar] [CrossRef]
- Toribio, A.; Marrodán, T.; Fernández-Natal, I.; Martínez-Blanco, H.; Rodríguez-Aparicio, L.; Ferrero, M.Á. Conjunctival Flora in Anophthalmic Patients: Microbiological Spectrum and Antibiotic Sensitivity. Int. J. Ophthalmol. 2019, 12, 765–773. [Google Scholar] [CrossRef]
- West, S.K.; Munoz, B.; Mkocha, H.; Gaydos, C.; Quinn, T. Trachoma and Ocular Chlamydia Trachomatis Were Not Eliminated Three Years after Two Rounds of Mass Treatment in a Trachoma Hyperendemic Village. Investig. Ophthalmol. Vis. Sci. 2007, 48, 1492–1497. [Google Scholar] [CrossRef][Green Version]
- Gaynor, B.D.; Chidambaram, J.D.; Cevallos, V.; Miao, Y.; Miller, K.; Jha, H.C.; Bhatta, R.C.; Chaudhary, J.S.P.; Osaki Holm, S.; Whitcher, J.P.; et al. Topical Ocular Antibiotics Induce Bacterial Resistance at Extraocular Sites. Br. J. Ophthalmol. 2005, 89, 1097–1099. [Google Scholar] [CrossRef][Green Version]
- Jabbehdari, S.; Memar, O.M.; Caughlin, B.; Djalilian, A.R. Update on the Pathogenesis and Management of Ocular Rosacea: An Interdisciplinary Review. Eur. J. Ophthalmol. 2021, 31, 22–33. [Google Scholar] [CrossRef]
- Stone, D.U.; Chodosh, J. Ocular Rosacea: An Update on Pathogenesis and Therapy. Curr. Opin. Ophthalmol. 2004, 15, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Stone, D.U.; Chodosh, J. Oral Tetracyclines for Ocular Rosacea: An Evidence-Based Review of the Literature. Cornea 2004, 23, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kroumpouzos, G.; Kassir, M.; Galadari, H.; Goren, A.; Grabbe, S.; Goldust, M. Rosacea Management: A Comprehensive Review. J. Cosmet. Dermatol. 2022, 21, 1895–1904. [Google Scholar] [CrossRef] [PubMed]
- Schaller, M.; Kemény, L.; Havlickova, B.; Jackson, J.M.; Ambroziak, M.; Lynde, C.; Gooderham, M.; Remenyik, E.; Del Rosso, J.; Weglowska, J.; et al. A Randomized Phase 3b/4 Study to Evaluate Concomitant Use of Topical Ivermectin 1% Cream and Doxycycline 40-Mg Modified-Release Capsules, versus Topical Ivermectin 1% Cream and Placebo in the Treatment of Severe Rosacea. J. Am. Acad. Dermatol. 2020, 82, 336–343. [Google Scholar] [CrossRef]
- Halim, M.S.; Onghanseng, N.; Hassan, M.; Besalti, Z.; Ng, S.M.; Nguyen, Q.D. Oral Antibiotics for Chronic Blepharitis. Cochrane Database Syst. Rev. 2020, 6, CD013697. [Google Scholar] [CrossRef]
- Garnock-Jones, K.P. Azithromycin 1.5% Ophthalmic Solution: In Purulent Bacterial or Trachomatous Conjunctivitis. Drugs 2012, 72, 361–373. [Google Scholar] [CrossRef]
- Opitz, D.L.; Harthan, J.S. Review of Azithromycin Ophthalmic 1% Solution (AzaSite®) for the Treatment of Ocular Infections. Ophthalmol. Eye Dis. 2012, 4, 1–14. [Google Scholar] [CrossRef]
- Kagkelaris, K.A.; Makri, O.E.; Georgakopoulos, C.D.; Panayiotakopoulos, G.D. An Eye for Azithromycin: Review of the Literature. Ther. Adv. Ophthalmol. 2018, 10, 2515841418783622. [Google Scholar] [CrossRef]
- Patel, P.H.; Hashmi, M.F. Macrolides; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
Bacterial Isolates Species | No. | AS | Commonly Tested Antimicrobial, No. (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AMP | AMX | CLR | CXM | CIP | ERY | GEN | LVX | OFX | TET | TOB | VAN | |||
Staphylococcus aureus | 90 | S | 3 (15.7) | 6 (46.15) | 12 (52.17) | 19 (82.6) | 54 (84.37) | 34 (47.22) | 55 (82.08) | 29 (82.85) | 15 (75) | 24 (52.17) | 25 (75.75) | 26 (100) |
I | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 5 (7.81) | 4 (5.55) | 2 (2.98) | 4 (11.42) | 1 (5) | 2 (4.34) | 4 (12.12) | 0 (0) | ||
R | 16 (84.2) | 7 (53.84) | 11 (47.8) | 4 (17.39) | 5 (7.81) | 34 (47.220 | 10 (14.92) | 2 (5.71) | 4 (20) | 20 (43.47) | 4 (12.12) | 0 (0) | ||
Coagulase-Negative Staphylococci | 35 | S | 1 (12.5) | 3 (60) | 5 (45.45) | 10 (76.92) | 19 (79.16) | 7 (30.43) | 21 (70) | 12 (85.71) | 5 (100) | 7 (41.17) | 9 (69.23) | 11 (91.67) |
I | 0 (0) | 0 (0) | 0 (0) | 1 (7.69) | 2 (8.33) | 2 (8.69) | 1 (3.33) | 0 (0) | 0 (0) | 1 (5.88) | 3 (23.07) | 1 (8.33) | ||
R | 7 (87.5) | 2 (40) | 6 (54.54) | 2 (15.38) | 3 (12.5) | 14 (60.86) | 8 (26.67) | 2 (14.2) | 0 (0) | 9 (52.94) | 1 (7.69) | 0 (0) | ||
Klebsiella spp. | 7 | S | 0 (0) | 1 (100) | - | 2 (33.33) | 3 (100) | - | 6 (100) | 4 (100) | 4 (100) | 1 (100) | 2 (100) | - |
I | 0 (0) | 0 (0) | - | 0 (0) | 0 (0) | - | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | - | ||
R | 5 (100) | 0 (0) | - | 4 (66.67) | 0 (0) | - | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | - | ||
Methicilin-Resistent Staphylococcus Aureus | 5 | S | - | 0 (0) | 1 (100) | 1 | 4 (80) | 1 (33.33) | 2 (66.67) | 1 (100) | 3 (100) | 0 (0) | 1 (33.33) | 1 (100) |
I | - | 0 (0) | 0 (0) | 0 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (33.33) | 0 (0) | ||
R | - | 1 (100) | 0 (0) | 2 | 1 (20) | 2 (66.67) | 1 (33.33) | 0 (0) | 0 (0) | 3 (100) | 1 (33.33) | 0 (0) | ||
Enterococcus spp. | 4 | S | 1 (33.33) | - | - | 0 | 3 (100) | - | 1 (100) | 3 (100) | - | 1 (50) | - | 3 (75) |
I | 0 (0) | - | - | 0 | 0 (0) | - | 0 (0) | 0 (0) | - | 0 (0) | - | 0 (0) | ||
R | 2 (66.7) | - | - | 0 | 0 (0) | - | 0 (0) | 0 (0) | - | 1 (50) | - | 1 (25) | ||
Proteus spp. | 6 | S | 1 (33.33) | 0 (0) | - | 1 | 5 (100) | - | 5 (100) | 5 (100) | 1 (100) | 0 (0) | 2 (100) | - |
I | 0 (0) | 0 (0) | - | 0 | 0 (0) | - | 0 (0) | 0 (0) | 0 (0) | 1 (100) | 0 (0) | - | ||
R | 2 (66.67) | 1 (100) | - | 1 | 0 (0) | - | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | - | ||
Corynebacterium macginleyi | 2 | S | - | - | - | - | 2 (100) | - | - | - | - | 2 (100) | - | 1 (100) |
I | - | - | - | - | 0 (0) | - | - | - | - | 0 (0) | - | 0 (0) | ||
R | - | - | - | - | 0 (0) | - | - | - | - | 0 (0) | - | 0 (0) | ||
Pseudomonas aeruginosa | 3 | S | 0 (0) | - | - | - | 3 (100) | - | 2 (100) | 1 (100) | 1 (100) | - | 2 (100) | - |
I | 0 (0) | - | - | - | 0 (0) | - | 0 (0) | 0 (0) | 0 (0) | - | 0 (0) | - | ||
R | 1 (100) | - | - | - | 0 (0) | - | 0 (0) | 0 (0) | 0 (0) | - | 0 (0) | - | ||
Streptococcus pyogenes (Beta-hemolytic) | 3 | S | - | - | - | - | 1 (100) | 2 (100) | 1 (100) | 1 (100) | - | 1 (50) | - | 2 (100) |
I | - | - | - | - | 0 (0) | 0 (0) | 0 (0) | 0 (0) | - | 0 (0) | - | 0 (0) | ||
R | - | - | - | - | 0 (0) | 0 (0) | 0 (0) | 0 (0) | - | 1 (50) | - | 0 (0) | ||
Escherichia coli | 2 | S | 0 (0) | 1 (50) | 1 (100) | 1 (100) | 2 (100) | - | 2 (100) | 2 (100) | 2 (100) | 2 (100) | 1 (100) | - |
I | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | - | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | - | ||
R | 2 (100) | 1 (50) | 0 (0) | 0 (0) | 0 (0) | - | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | - | ||
Enterobacter spp. | 1 | S | 0 (0) | 1 (50) | - | - | - | - | 1 (100) | - | - | - | - | - |
I | 0 (0) | 0 (0) | - | - | - | - | 0 (0) | - | - | - | - | - | ||
R | 1 (100) | 0 (0) | - | - | - | - | 0 (0) | - | - | - | - | - | ||
Haemophilus spp. | 2 | S | 1 (50) | 0 (0) | - | - | 2 (100) | - | - | 1 (100) | 1 (100) | 1 (100) | - | - |
I | 0 (0) | 0 (0) | - | - | 0 (0) | - | - | 0 (0) | 0 (0) | 0 (0) | - | - | ||
R | 1 (50) | 1 (100) | - | - | 0 (0) | - | - | 0 (0) | 0 (0) | 0 (0) | - | - | ||
Serratia marcescens | 1 | S | - | - | - | 0 (0) | 1 (100) | - | 1 (100) | 1 (100) | - | - | 1 (100) | - |
I | - | - | - | 0 (0) | 0 (0) | - | 0 (0) | 0 (0) | - | - | 0 (0) | - | ||
R | - | - | - | 1 (100) | 0 (0) | - | 0 (0) | 0 (0) | - | - | 0 (0) | - |
Type of Antibiotic Tested | Abbrev. | Total Number of Bacteria | Response of Bacteria to Antibiotic | |||||
---|---|---|---|---|---|---|---|---|
S | I | R | S % | I % | R % | |||
Vancomycin | VAN | 46 | 44 | 1 | 1 | 97.8 | 2.2 | 0 |
Ceftriaxone | CRO | 24 | 18 | 2 | 4 | 75 | 8.3 | 16.7 |
Cefuroxime | CXM | 50 | 35 | 1 | 14 | 70 | 2 | 28 |
Cefazolin | CFZ | 3 | 1 | 0 | 2 | 33.3 | 0 | 66.7 |
Meropenem | MEM | 17 | 16 | 0 | 1 | 94.1 | 0 | 5.9 |
Imipenem | IPM | 15 | 14 | 0 | 1 | 93.3 | 0 | 6.7 |
Moxifloxacin | MXF | 39 | 32 | 4 | 3 | 82.1 | 7.7 | 10.3 |
Levofloxacin | LVX | 68 | 60 | 4 | 4 | 88.2 | 5.9 | 5.9 |
Ofloxacin | OFX | 38 | 33 | 1 | 4 | 86.8 | 2.6 | 10.5 |
Ciprofloxacin | CIP | 117 | 100 | 7 | 10 | 85.5 | 6 | 8.5 |
Netilmicin | NET | 20 | 19 | 1 | 0 | 95 | 5 | 0 |
Tobramycin | TOB | 58 | 44 | 8 | 6 | 75.9 | 13.8 | 10.3 |
Amikacin | AMK | 20 | 19 | 0 | 1 | 95 | 0 | 5 |
Kanamycin | KAN | 9 | 6 | 0 | 3 | 66.7 | 0 | 33.3 |
Gentamicin | GEN | 121 | 99 | 3 | 19 | 81.8 | 2.5 | 15.7 |
Chloramphenicol | CHL | 54 | 49 | 1 | 4 | 90.7 | 7.4 | 1.9 |
Tetracycline | TET | 77 | 39 | 4 | 34 | 50.6 | 5.2 | 44.2 |
Doxycycline | DOX | 24 | 14 | 0 | 10 | 58.3 | 0 | 41.7 |
Rifampicin | RIF | 41 | 38 | 1 | 2 | 92.7 | 2.4 | 4.9 |
Azithromycin | AZM | 19 | 6 | 0 | 13 | 31.6 | 0 | 68.4 |
Clarithromycin | CLR | 36 | 19 | 0 | 17 | 52.8 | 0 | 47.2 |
Erythromycin | ERY | 100 | 44 | 6 | 50 | 44 | 6 | 50 |
Ampicillin | AMP | 45 | 7 | 0 | 38 | 15.6 | 0 | 84.4 |
Amoxicillin | AMX | 20 | 19 | 0 | 1 | 95 | 0 | 5 |
Type of Antibiotic Tested | Abbrev. | Total Number of Gram-Positive Bacteria | Response of Bacteria to Antibiotic | |||||
---|---|---|---|---|---|---|---|---|
S | I | R | S % | I % | R % | |||
Vancomycin | VAN | 45 | 44 | 1 | 0 | 97.8 | 2.2 | 0 |
Ceftriaxone | CRO | 15 | 9 | 2 | 4 | 60 | 13.3 | 26.7 |
Cefuroxime | CXM | 39 | 30 | 1 | 8 | 76.9 | 2.6 | 20.5 |
Cefazolin | CFZ | 1 | 0 | 0 | 1 | 0 | 0 | 100 |
Meropenem | MEM | 11 | 10 | 0 | 1 | 90.9 | 0 | 9.1 |
Imipenem | IPM | 12 | 11 | 0 | 1 | 91.7 | 0 | 8.3 |
Moxifloxacin | MXF | 36 | 29 | 3 | 4 | 80.6 | 8.3 | 11.1 |
Levofloxacin | LVX | 54 | 46 | 4 | 4 | 85.2 | 7.4 | 7.4 |
Ofloxacin | OFX | 28 | 23 | 1 | 4 | 82.1 | 3.6 | 14.3 |
Ciprofloxacin | CIP | 99 | 82 | 7 | 10 | 82.8 | 7.1 | 10.1 |
Netilmicin | NET | 19 | 18 | 1 | 0 | 94.7 | 5.3 | 0 |
Tobramycin | TOB | 48 | 35 | 7 | 6 | 72.9 | 14.6 | 12.5 |
Amikacin | AMK | 10 | 9 | 0 | 1 | 90 | 0 | 10 |
Kanamycin | KAN | 8 | 5 | 0 | 3 | 62.5 | 0 | 37.5 |
Gentamicin | GEN | 102 | 80 | 3 | 19 | 78.4 | 2.9 | 18.6 |
Chloramphenicol | CHL | 47 | 42 | 1 | 4 | 89.4 | 2.1 | 8.5 |
Tetracycline | TET | 70 | 33 | 3 | 34 | 47.1 | 4.3 | 48.6 |
Doxycycline | DOX | 19 | 9 | 0 | 10 | 47.4 | 0 | 52.6 |
Rifampicin | RIF | 38 | 36 | 1 | 1 | 94.7 | 2.6 | 2.6 |
Azithromycin | AZM | 18 | 5 | 0 | 13 | 27.8 | 0 | 72.2 |
Clarithromycin | CLR | 35 | 18 | 0 | 17 | 51.4 | 0 | 48.6 |
Erythromycin | ERY | 99 | 44 | 6 | 49 | 44.4 | 6.1 | 49.5 |
Ampicillin | AMP | 29 | 5 | 0 | 24 | 17.2 | 0 | 82.8 |
Amoxicillin | AMX | 19 | 9 | 0 | 10 | 47.4 | 0 | 52.6 |
Type of Antibiotic Tested | Abbrev. | Total Number of Gram-Negative Bacteria | Response of Bacteria to Antibiotic | |||||
---|---|---|---|---|---|---|---|---|
S | I | R | S % | I % | R % | |||
Vancomycin | VAN | 1 | 0 | 0 | 1 | 0 | 0 | 100 |
Ceftriaxone | CRO | 9 | 9 | 0 | 0 | 100 | 0 | 0 |
Cefuroxime | CXM | 11 | 5 | 0 | 6 | 45.5 | 0 | 54.5 |
Cefazolin | CFZ | 2 | 1 | 0 | 1 | 50 | 0 | 50 |
Meropenem | MEM | 6 | 6 | 0 | 0 | 100 | 0 | 0 |
Imipenem | IPM | 3 | 3 | 0 | 0 | 100 | 0 | 0 |
Moxifloxacin | MXF | 3 | 3 | 0 | 0 | 100 | 0 | 0 |
Levofloxacin | LVX | 14 | 14 | 0 | 0 | 100 | 0 | 0 |
Ofloxacin | OFX | 10 | 10 | 0 | 0 | 100 | 0 | 0 |
Ciprofloxacin | CIP | 18 | 18 | 0 | 0 | 100 | 0 | 0 |
Netilmicin | NET | 1 | 1 | 0 | 0 | 100 | 0 | 0 |
Tobramycin | TOB | 10 | 9 | 1 | 0 | 90 | 10 | 0 |
Amikacin | AMK | 10 | 10 | 0 | 0 | 100 | 0 | 0 |
Kanamycin | KAN | 1 | 1 | 0 | 0 | 100 | 0 | 0 |
Gentamicin | GEN | 19 | 19 | 0 | 0 | 100 | 0 | 0 |
Chloramphenicol | CHL | 7 | 7 | 0 | 0 | 100 | 0 | 0 |
Tetracycline | TET | 7 | 6 | 1 | 0 | 85.7 | 14.3 | 0 |
Doxycycline | DOX | 5 | 5 | 0 | 0 | 100 | 0 | 0 |
Rifampicin | RIF | 3 | 2 | 0 | 1 | 66.7 | 0 | 33.3 |
Azithromycin | AZM | 1 | 1 | 0 | 0 | 100 | 0 | 0 |
Clarithromycin | CLR | 1 | 1 | 0 | 0 | 100 | 0 | 0 |
Erythromycin | ERY | 1 | 0 | 0 | 1 | 0 | 0 | 100 |
Ampicillin | AMP | 16 | 2 | 0 | 14 | 12.5 | 0 | 87.5 |
Amoxicillin | AMX | 6 | 3 | 0 | 3 | 50 | 0 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghita, A.M.; Iliescu, D.A.; Ghita, A.C.; Ilie, L.A. Susceptibility of Ocular Surface Bacteria to Various Antibiotic Agents in a Romanian Ophthalmology Clinic. Diagnostics 2023, 13, 3409. https://doi.org/10.3390/diagnostics13223409
Ghita AM, Iliescu DA, Ghita AC, Ilie LA. Susceptibility of Ocular Surface Bacteria to Various Antibiotic Agents in a Romanian Ophthalmology Clinic. Diagnostics. 2023; 13(22):3409. https://doi.org/10.3390/diagnostics13223409
Chicago/Turabian StyleGhita, Aurelian Mihai, Daniela Adriana Iliescu, Ana Cristina Ghita, and Larisa Adriana Ilie. 2023. "Susceptibility of Ocular Surface Bacteria to Various Antibiotic Agents in a Romanian Ophthalmology Clinic" Diagnostics 13, no. 22: 3409. https://doi.org/10.3390/diagnostics13223409
APA StyleGhita, A. M., Iliescu, D. A., Ghita, A. C., & Ilie, L. A. (2023). Susceptibility of Ocular Surface Bacteria to Various Antibiotic Agents in a Romanian Ophthalmology Clinic. Diagnostics, 13(22), 3409. https://doi.org/10.3390/diagnostics13223409