Cervical Cancer Detection Techniques: A Chronological Review
Abstract
:1. Introduction
2. Materials and Methods
3. Review of the Study
3.1. 1996–2015
3.2. 2016–2018
3.3. 2019–2020
3.4. 2021–2022
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Azizah, A.M.; Hashimah, B.; Nirmal, K.; Siti Zubaidah, A.R.; Puteri, N.A.; Nabihah, A.; Sukumaran, R.; Balqis, B.; Nadia, S.M.R.; Sharifah, S.S.S.; et al. Malaysia National Cancer Registry Report (MNCR) 2012–2016; National Cancer Registry Department: Putrajaya, Malaysia, 2019.
- Ezat, S.W.P.; Aljunid, S. Comparative cost-effectiveness of HPV vaccines in the prevention of cervical cancer in Malaysia. Asian Pacific J. Cancer Prev. 2010, 11, 943–951. [Google Scholar] [CrossRef]
- Mustafa, W.A.; Halim, A.; Ab Rahman, K.S. A Narrative Review: Classification of Pap Smear Cell Image for Cervical Cancer Diagnosis. Oncologie 2020, 22, 53–63. [Google Scholar] [CrossRef]
- Mustafa, W.A.; Halim, A.; Jamlos, M.A.; Idrus, S.Z.S. A Review: Pap Smear Analysis Based on Image Processing Approach. J. Physics Conf. Ser. 2020, 1529, 022080. [Google Scholar] [CrossRef]
- Mustafa, W.A.; Wei, L.Z.; Ab Rahman, K.S. Automated Cell Nuclei Segmentation on Cervical Smear Images Using Structure Analysis. J. Biomim. Biomater. Biomed. Eng. 2021, 51, 105–115. [Google Scholar] [CrossRef]
- Halim, A.; Mustafa, W.A.; Ahmad, W.K.W.; Rahim, H.A.; Sakeran, H. Nucleus Detection on Pap Smear Images for Cervical Cancer Diagnosis: A Review Analysis. Oncologie 2021, 23, 73–88. [Google Scholar] [CrossRef]
- Rudmann, D.G.; Foley, G.L. Female Reproductive System. In Fundamentals of Toxicologic Pathology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 517–545. [Google Scholar] [CrossRef]
- Shetty, A.; Shah, V. Survey of Cervical Cancer Prediction Using Machine Learning: A Comparative Approach. In Proceedings of the 2018 9th International Conference on Computing, Communication and Networking Technologies ICCCNT 2018, Bengaluru, India, 10–12 July 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Ortelli, T.A. The National Library of Medicine. AJN Am. J. Nurs. 2019, 119, 53–54. [Google Scholar] [CrossRef]
- Muñoz, N.; Bosch, F.X.; Castellsagué, X.; Díaz, M.; de Sanjose, S.; Hammouda, D.; Shah, K.V.; Meijer, C.J. Against which human papillomavirus types shall we vaccinate and screen? the international perspective. Int. J. Cancer 2004, 111, 278–285. [Google Scholar] [CrossRef]
- Ali, F.; Kuelker, R.; Wassie, B. Understanding cervical cancer in the context of developing countries. Ann. Trop. Med. Public Health 2012, 5, 3–15. [Google Scholar] [CrossRef]
- Rajarao, C.; Singh, R.P. Improved normalized graph cut with generalized data for enhanced segmentation in cervical cancer detection. Evol. Intell. 2019, 13, 3–8. [Google Scholar] [CrossRef]
- Logeswaran, K.; Suresh, P.; Savitha, S.; Prasanna Kumar, K.R.; Ponselvakumar, A.P.; Kannan, A.R. Data driven diagnosis of cervical cancer using association rule mining with trivial rule expulsion approach. Int. J. Emerg. Technol. 2020, 11, 110–115. [Google Scholar]
- Lu, J.; Song, E.; Ghoneim, A.; Alrashoud, M. Machine learning for assisting cervical cancer diagnosis: An ensemble approach. Futur. Gener. Comput. Syst. 2020, 106, 199–205. [Google Scholar] [CrossRef]
- Singh, S.K.; Goyal, A. Performance Analysis of Machine Learning Algorithms for Cervical Cancer Detection. Int. J. Health Inf. Syst. Inform. 2020, 15, 1–21. [Google Scholar] [CrossRef]
- Rehman, A.-U.; Ali, N.; Taj, I.; Sajid, M.; Karimov, K.S. An Automatic Mass Screening System for Cervical Cancer Detection Based on Convolutional Neural Network. Math. Probl. Eng. 2020, 2020, 4864835. [Google Scholar] [CrossRef]
- Bhuvaneshwari, K.V.; Poornima, B. Cervical cancer cell identification & detection using fuzzy C mean and K nearest neighbor techniques. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 1080–1084. [Google Scholar] [CrossRef]
- Sirovich, B.E.; Welch, H.G. The frequency of Pap smear screening in the United States. J. Gen. Intern. Med. 2004, 19, 243–250. [Google Scholar] [CrossRef]
- Chan, S.W.; Leung, K.; Wong, W.F. An expert system for the detection of cervical cancer cells using knowledge-based image analyzer. Artif. Intell. Med. 1996, 8, 67–90. [Google Scholar] [CrossRef]
- Okimoto, G.S.; Parker, M.F.; Mooradian, G.C.; Saggese, S.J.; Grisanti, A.A.; O’Connor, D.M.; Miyazawa, K. New features for detecting cervical precancer using hyperspectral diagnostic imaging. Clin. Diagn. Syst. 2001, 4255, 67–80. [Google Scholar] [CrossRef]
- Lonappan, A.; Thimothy, V.O.; Rajasekaran, C.; Thomas, V.; Jacob, J.; Mathew, K.T. A novel method of detecting cervical cancer using microwaves. Microw. Opt. Technol. Lett. 2008, 50, 1552–1554. [Google Scholar] [CrossRef]
- Weber, C.R.; Schwarz, R.A.; Atkinson, E.N.; Cox, D.D.; MacAulay, C.; Follen, M.; Richards-Kortum, R.R. Model-based analysis of reflectance and fluorescence spectra for in vivo detection of cervical dysplasia and cancer. J. Biomed. Opt. 2008, 13, 064016. [Google Scholar] [CrossRef]
- Wu, T.; Cheung, T.-H.; Yim, S.-F.; Qu, J.Y. Clinical study of quantitative diagnosis of early cervical cancer based on the classification of acetowhitening kinetics. J. Biomed. Opt. 2010, 15, 026001. [Google Scholar] [CrossRef]
- Hai, T.H.; Phuc, L.H.; Vinh, L.K.; Long, B.D.; Kieu, T.T.; Bich, N.N.; Lan, T.N.; Hien, N.Q.; Khoa, L.H.A.; Van Tam, N.N. Immobilising of anti-HPV18 and E. coli O157:H7 antibodies on magnetic silica-coated Fe3O4 for early diagnosis of cervical cancer and diarrhoea. Int. J. Nanotechnol. 2011, 8, 383. [Google Scholar] [CrossRef]
- DPruski, D.; Przybylski, M.; Kędzia, W.; Kędzia, H.; Jagielska-Pruska, J.; Spaczyński, M. Optoelectronic method for detection of cervical intraepithelial neoplasia and cervical cancer. Opto-Electron. Rev. 2011, 19, 478–485. [Google Scholar] [CrossRef]
- Xie, Y.; Xu, G.; Shen, P.; Pan, X.; Yan, R.; Chen, L.; Zhang, Y.; Zhu, F. Study on The Value Assessment of hWAPL Histological Expression in Histological and Cytological Diagnosis of Cervical Cancer and Cervical Intraepithelial Neoplasia. J. Converg. Inf. Technol. 2011, 6, 330–337. [Google Scholar] [CrossRef]
- Gertych, A.; Joseph, A.O.; Walts, A.E.; Bose, S. Automated Detection of Dual p16/Ki67 Nuclear Immunoreactivity in Liquid-Based Pap Tests for Improved Cervical Cancer Risk Stratification. Ann. Biomed. Eng. 2012, 40, 1192–1204. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Chelikani, S.; Jaffray, D.A.; Milosevic, M.F.; Staib, L.H.; Duncan, J.S. Simultaneous nonrigid registration, segmentation, and tumor detection in MRI guided cervical cancer radiation therapy. IEEE Trans. Med. Imaging 2012, 31, 1213–1227. [Google Scholar] [CrossRef]
- Masilamani, V.; AlSalhi, M.S.; Vijmasi, T.; Govindarajan, K.; Rai, R.R.; Atif, M.; Prasad, S.; Aldwayyan, A.S. Fluorescence spectra of blood and urine for cervical cancer detection. J. Biomed. Opt. 2012, 17, 0980011. [Google Scholar] [CrossRef] [PubMed]
- Kalaivani, R.; Masilamani, V.; AlSalhi, M.S.; Devanesan, S.; Ramamurthy, P.; Palled, S.R.; Ganesh, K.M. Cervical cancer detection by time-resolved spectra of blood components. J. Biomed. Opt. 2014, 19, 057011. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Guo, A.; Guo, Z.; Xie, L.; Wei, Q.; Du, B. Simultaneous electrochemical detection of cervical cancer markers using reduced graphene oxide-tetraethylene pentamine as electrode materials and distinguishable redox probes as labels. Biosens. Bioelectron. 2014, 54, 634–639. [Google Scholar] [CrossRef]
- Devi, S.; Panigrahi, P.K.; Pradhan, A. Detecting cervical cancer progression through extracted intrinsic fluorescence and principal component analysis. J. Biomed. Opt. 2014, 19, 127003. [Google Scholar] [CrossRef]
- Ramapraba, P.S.; Ranganathan, H. Feature fusion for cervical cancer detection using colposcopic images. Int. J. Appl. Eng. Res. 2015, 10, 4803–4810. [Google Scholar]
- Sukumar, P.; Gnanamurthy, R.K. Computer Aided Detection of Cervical Cancer Using Pap Smear Images Based on Hybrid Classifier. Int. J. Appl. Eng. Res. 2015, 10, 21021–21032. [Google Scholar]
- Das, A.; Kar, A.; Bhattacharyya, D. A novel illumination correction and intensity normalization method on cervigrams in the early detection of uterine cervical cancer. ARPN J. Eng. Appl. Sci. 2015, 10, 6376–6380. [Google Scholar]
- Yamal, J.; Guillaud, M.; Atkinson, E.N.; Follen, M.; MacAulay, C.; Cantor, S.B.; Cox, D.D. Prediction using hierarchical data: Applications for automated detection of cervical cancer. Stat. Anal. Data Mining ASA Data Sci. J. 2015, 8, 65–74. [Google Scholar] [CrossRef]
- Amini, N.; Supriyanto, E.; Marvibaigi, M.; Majid, F.A.A. Human papilloma virus E6/E7 messenger RNA as a biomarker for detecting the risk evaluation of cervical cancer progression: Overview of recent clinical. J. Teknol. 2015, 75, 215–224. [Google Scholar] [CrossRef]
- Narayanan, N.; Karunakaran, V.; Paul, W.; Venugopal, K.; Sujathan, K.; Maiti, K.K. Aggregation induced Raman scattering of squaraine dye: Implementation in diagnosis of cervical cancer dysplasia by SERS imaging. Biosens. Bioelectron. 2015, 70, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Sajeena, T.A.; Jereesh, A.S. Cervical cancer detection through automatic segmentation and classification of Pap smear cells. Int. J. Appl. Eng. Res. 2015, 10, 39078–39084. [Google Scholar]
- Li, H.; Wang, X.; Geng, J.; Zhao, X. Clinical Study of Styping Detection of Human Papillomavirus (HPV) Infection with Microarray from Paraffinembedded Specimens of Cervical Cancer and Precursor Lesions. J. Nanosci. Nanotechnol. 2015, 15, 6423–6428. [Google Scholar] [CrossRef] [PubMed]
- Guz, N.V.; Dokukin, M.E.; Woodworth, C.D.; Cardin, A.; Sokolov, I. Towards early detection of cervical cancer: Fractal dimension of AFM images of human cervical epithelial cells at different stages of progression to cancer. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1667–1675. [Google Scholar] [CrossRef] [PubMed]
- Vidya, R. The early detection and handling of cervical cancer with nano technology and biomarkers—A comprehensive study. Int. J. Appl. Eng. Res. 2015, 10, 387–390. [Google Scholar]
- Duangkaew, P.; Tapaneeyakorn, S.; Apiwat, C.; Dharakul, T.; Laiwejpithaya, S.; Kanatharana, P.; Laocharoensuk, R. Ultrasensitive electrochemical immunosensor based on dual signal amplification process for p16INK4a cervical cancer detection in clinical samples. Biosens. Bioelectron. 2015, 74, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Song, C.; Wang, M.; Xie, Y.; Mi, L.; Wang, G. Rapid, Label-Free, and Highly Sensitive Detection of Cervical Cancer with Fluorescence Lifetime Imaging Microscopy. IEEE J. Sel. Top. Quantum Electron. 2015, 22, 228–234. [Google Scholar] [CrossRef]
- Athinarayanan, S.; Srinath, M.V. Robust and efficient diagnosis of cervical cancer in pap smear images using textures features with rbf and kernel SVM classification. ARPN J. Eng. Appl. Sci. 2016, 11, 4504–4515. [Google Scholar]
- Devi, M.A.; Ravi, S.; Vaishnavi, J.; Punitha, S. Detection of cervical cancer using the image analysis algorithms. Int. J. Control Theory Appl. 2016, 9, 3193–3203. [Google Scholar]
- Xu, X.; Li, Z.; Qiu, X.; Wei, Z. Diagnosis performance of positron emission tomography-computed tomography among cervical cancer patients. J. X-ray Sci. Technol. 2016, 24, 531–536. [Google Scholar] [CrossRef]
- Palacio, J.A.A.; Van Noije, W.A. High stability voltage controlled current source for cervical cancer detection using electrical impedance spectroscopy. Analog. Integr. Circuits Signal Process. 2016, 89, 541–547. [Google Scholar] [CrossRef]
- Sobar; Machmud, R.; Wijaya, A. Behavior Determinant Based Cervical Cancer Early Detection with Machine Learning Algorithm. Adv. Sci. Lett. 2016, 22, 3120–3123. [Google Scholar] [CrossRef]
- Sitompul, I.R.H.; A Yoga, P.; Rosa, R.T.; Shahab, S.N.; Nasution, V.A.F.; Reza, M.; Nuryanto, K.H. Overview Knowledge of Reproductive Aged Women of the Prevention and Early Detection of Cervical Cancer at Cakung Sub-District Community Health Centre in 2015. Adv. Sci. Lett. 2017, 23, 6984–6986. [Google Scholar] [CrossRef]
- Jeftic, B.; Papic-Obradovic, M.; Muncan, J.; Matija, L.; Koruga, D. Optomagnetic Imaging Spectroscopy Application in Cervical Dysplasia and Cancer Detection: Comparation of Stained and Unstained Papanicolaou Smears. J. Med. Biol. Eng. 2017, 37, 936–943. [Google Scholar] [CrossRef]
- Iliyasu, A.M.; Fatichah, C. A Quantum Hybrid PSO Combined with Fuzzy k-NN Approach to Feature Selection and Cell Classification in Cervical Cancer Detection. Sensors 2017, 17, 2935. [Google Scholar] [CrossRef]
- Wu, W.; Zhou, H. Data-Driven Diagnosis of Cervical Cancer With Support Vector Machine-Based Approaches. IEEE Access 2017, 5, 25189–25195. [Google Scholar] [CrossRef]
- Carow, K.; Gölitz, M.; Wolf, M.; Häfner, N.; Jansen, L.; Hoyer, H.; Schwarz, E.; Runnebaum, I.B.; Dürst, M. Viral-Cellular DNA Junctions as Molecular Markers for Assessing Intra-Tumor Heterogeneity in Cervical Cancer and for the Detection of Circulating Tumor DNA. Int. J. Mol. Sci. 2017, 18, 2032. [Google Scholar] [CrossRef] [PubMed]
- Kudva, V.; Prasad, K.; Guruvare, S. Detection of Specular Reflection and Segmentation of Cervix Region in Uterine Cervix Images for Cervical Cancer Screening. IRBM 2017, 38, 281–291. [Google Scholar] [CrossRef]
- Sun, G. Cervical Cancer Diagnosis based on Random Forest. Int. J. Perform. Eng. 2017, 17, 446. [Google Scholar] [CrossRef]
- Shaikh, R.; Prabitha, V.G.; Dora, T.K.; Chopra, S.; Maheshwari, A.; Deodhar, K.; Rekhi, B.; Sukumar, N.; Krishna, C.M.; Subhash, N. A comparative evaluation of diffuse reflectance and Raman spectroscopy in the detection of cervical cancer. J. Biophotonics 2016, 10, 242–252. [Google Scholar] [CrossRef]
- Muljo, H.H.; Pardamean, B.; Perbangsa, A.S. The Implementation of Online Learning for Early Detection of Cervical Cancer. J. Comput. Sci. 2017, 13, 600–607. [Google Scholar] [CrossRef]
- Arya, M.; Mittal, N.; Singh, G. Texture-based feature extraction of smear images for the detection of cervical cancer. IET Comput. Vis. 2018, 12, 1049–1059. [Google Scholar] [CrossRef]
- Sharma, A.; Jha, A.K.; Mishra, S.; Jain, A.; Chauhan, B.S.; Kathuria, M.; Rawat, K.S.; Gupta, N.M.; Tripathi, R.; Mitra, K.; et al. Imaging and Quantitative Detection of Lipid Droplets by Yellow Fluorescent Probes in Liver Sections of Plasmodium Infected Mice and Third Stage Human Cervical Cancer Tissues. Bioconjugate Chem. 2018, 29, 3606–3613. [Google Scholar] [CrossRef]
- Fernandes, K.; Chicco, D.; Cardoso, J.S.; Fernandes, J. Supervised deep learning embeddings for the prediction of cervical cancer diagnosis. PeerJ Comput. Sci. 2018, 4, e154. [Google Scholar] [CrossRef]
- Jing, Y.; Wang, Y.; Wang, X.; Song, C.; Ma, J.; Xie, Y.; Fei, Y.; Zhang, Q.; Mi, L. Label-free imaging and spectroscopy for early detection of cervical cancer. J. Biophotonics 2018, 11, e201700245. [Google Scholar] [CrossRef]
- Dillak, R.Y.; Manulangga, G.C.; Lalandos, J.L. Early warning system for cervical cancer diagnosis using ridge polynomial neural network and chaos optimization algorithm. J. Theor. Appl. Inf. Technol. 2018, 96, 1989–1998. [Google Scholar]
- Kudva, V.; Prasad, K.; Guruvare, S. Automation of Detection of Cervical Cancer Using Convolutional Neural Networks. Crit. Rev. Biomed. Eng. 2018, 46, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Abdoh, S.F.; Rizka, M.A.; Maghraby, F.A. Cervical Cancer Diagnosis Using Random Forest Classifier With SMOTE and Feature Reduction Techniques. IEEE Access 2018, 6, 59475–59485. [Google Scholar] [CrossRef]
- Devi, L.; Thirumurugan, D. Automated Detection of Cervical Cancer. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 1399–1401. [Google Scholar] [CrossRef]
- Abdullah, A.A.; Giong, A.F.D.; Zahri, N.A.H. Cervical cancer detection method using an improved cellular neural network (CNN) algorithm. Indones. J. Electr. Eng. Comput. Sci. 2019, 14, 210–218. [Google Scholar] [CrossRef]
- Jaya, S.; Latha, M. Diagnosis of cervical cancer using CLAHE and SGLDM on RGB pap smear images through ANN. Int. J. Innov. Technol. Explor. Eng. 2019, 9, 530–534. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, C.; Bao, K.; Xu, C. Recognition and Clinical Diagnosis of Cervical Cancer Cells Based on our Improved Lightweight Deep Network for Pathological Image. J. Med. Syst. 2019, 43, 1–9. [Google Scholar] [CrossRef]
- William, W.; Ware, A.; Basaza-Ejiri, A.H.; Obungoloch, J. A pap-smear analysis tool (PAT) for detection of cervical cancer from pap-smear images. Biomed. Eng. Online 2019, 18, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Sangwan, S.R.; Bachhety, S.; Garg, S.; Upadhyay, Y. Optimized Model for Cervical Cancer Detection Using Binary Cuckoo Search. Recent Patents Comput. Sci. 2019, 12, 293–303. [Google Scholar] [CrossRef]
- Adem, K.; Kiliçarslan, S.; Cömert, O. Classification and diagnosis of cervical cancer with stacked autoencoder and softmax classification. Expert Syst. Appl. 2018, 115, 557–564. [Google Scholar] [CrossRef]
- Wei, S.; Dai, P.; Wang, Z. Cervical Cancer Detection and Diagnosis Based on Saliency Single Shot MultiBox Detector in Ultrasonic Elastography. J. Med. Syst. 2019, 43, 250. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Hulipalled, V.R.; Patil, S.S.; Kappaparambil, R.A. DPCCG-EJA: Detection of key pathways and cervical cancer related genes using enhanced Johnson’s algorithm. Int. J. Adv. Sci. Technol. 2019, 28, 124–138. [Google Scholar]
- Huang, M.; Zhang, Z.; Wang, X.; Xie, Y.; Fei, Y.; Ma, J.; Wang, J.; Chen, L.; Mi, L.; Wang, Y. Detecting benign uterine tumors by autofluorescence lifetime imaging microscopy through adjacent healthy cervical tissues. J. Innov. Opt. Health Sci. 2019, 12, 1940006. [Google Scholar] [CrossRef]
- Asiedu, M.N.; Simhal, A.; Chaudhary, U.; Mueller, J.L.; Lam, C.T.; Schmitt, J.W.; Venegas, G.; Sapiro, G.; Ramanujam, N. Development of Algorithms for Automated Detection of Cervical Pre-Cancers With a Low-Cost, Point-of-Care, Pocket Colposcope. IEEE Trans. Biomed. Eng. 2018, 66, 2306–2318. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Xia, J.; Deng, Z.; Cao, X. Detection of squamous cell carcinoma antigen in cervical cancer by surface-enhanced Raman scattering-based immunoassay. Anal. Methods 2019, 11, 2809–2818. [Google Scholar] [CrossRef]
- Vaijayanthimala, M.; Kumari, S.R. FSSBFS: Fuzzy Swallow Swarm based Feature Selection for Diagnosis of Cervical Cancer. J. Adv. Res. Dyn. Control Syst. 2019, 11, 77–88. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Xue, P.; Tang, C.; Chang, J.; Chu, C.; Ma, K.; Li, Q.; Zheng, Y.; Qiao, Y. Computer-Aided Cervical Cancer Diagnosis Using Time-Lapsed Colposcopic Images. IEEE Trans. Med. Imaging 2020, 39, 3403–3415. [Google Scholar] [CrossRef]
- Ma, D.; Liu, J.; Li, J.; Zhou, Y. Cervical cancer detection in cervical smear images using deep pyramid inference with refinement and spatial-aware booster. IET Image Process. 2020, 14, 4717–4725. [Google Scholar] [CrossRef]
- Jia, A.D.; Li, B.Z.; Zhang, C.C. Detection of cervical cancer cells based on strong feature CNN-SVM network. Neurocomputing 2020, 411, 112–127. [Google Scholar] [CrossRef]
- Li, X.-X.; Lin, T.-T.; Liu, B.; Wei, W. Diagnosis of Cervical Cancer With Parametrial Invasion on Whole-Tumor Dynamic Contrast-Enhanced Magnetic Resonance Imaging Combined With Whole-Lesion Texture Analysis Based on T2- Weighted Images. Front. Bioeng. Biotechnol. 2020, 8, 590. [Google Scholar] [CrossRef]
- Ramasamy, R.; Chinnasamy, C. Detection and segmentation of cancer regions in cervical images using fuzzy logic and adaptive neuro fuzzy inference system classification method. Int. J. Imaging Syst. Technol. 2019, 30, 412–420. [Google Scholar] [CrossRef]
- Ijaz, M.F.; Attique, M.; Son, Y. Data-Driven Cervical Cancer Prediction Model with Outlier Detection and Over-Sampling Methods. Sensors 2020, 20, 2809. [Google Scholar] [CrossRef] [PubMed]
- Zaffar, M.; Pradhan, A. Assessment of anisotropy of collagen structures through spatial frequencies of Mueller matrix images for cervical pre-cancer detection. Appl. Opt. 2020, 59, 1237–1248. [Google Scholar] [CrossRef]
- Mahmoodi, P.; Rezayi, M.; Rasouli, E.; Avan, A.; Gholami, M.; Mobarhan, M.G.; Karimi, E.; Alias, Y. Early-stage cervical cancer diagnosis based on an ultra-sensitive electrochemical DNA nanobiosensor for HPV-18 detection in real samples. J. Nanobiotechnol. 2020, 18, 11. [Google Scholar] [CrossRef]
- Sahoo, G.R.; Dey, R.; Das, N.; Ghosh, N.; Pradhan, A. Two dimensional multifractal detrended fluctuation analysis of low coherence images for diagnosis of cervical pre-cancer. Biomed. Phys. Eng. Express 2020, 6, 025011. [Google Scholar] [CrossRef]
- Chitra, B.; Kumar, S.S. Recent advancement in cervical cancer diagnosis for automated screening: A detailed review. J. Ambient. Intell. Humaniz. Comput. 2021, 13, 251–269. [Google Scholar] [CrossRef]
- Ali, M.; Ahmed, K.; Bui, F.M.; Paul, B.K.; Ibrahim, S.M.; Quinn, J.M.; Moni, M.A. Machine learning-based statistical analysis for early stage detection of cervical cancer. Comput. Biol. Med. 2021, 139, 104985. [Google Scholar] [CrossRef] [PubMed]
- Chitra, B.; Kumar, S.S. An optimized deep learning model using Mutation-based Atom Search Optimization algorithm for cervical cancer detection. Soft Comput. 2021, 25, 15363–15376. [Google Scholar] [CrossRef]
- Zhang, C.; Jia, D.; Wu, N.; Guo, Z.; Ge, H. Quantitative detection of cervical cancer based on time series information from smear images. Appl. Soft Comput. 2021, 112, 107791. [Google Scholar] [CrossRef]
- Jahan, S.; Islam, M.D.S.; Islam, L.; Rashme, T.Y.; Prova, A.A.; Paul, B.K.; Mosharof, M.K. Automated invasive cervical cancer disease detection at early stage through suitable machine learning model. SN Appl. Sci. 2021, 3, 1–17. [Google Scholar] [CrossRef]
- Cao, L.; Yang, J.; Rong, Z.; Li, L.; Xia, B.; You, C.; Lou, G.; Jiang, L.; Du, C.; Meng, H.; et al. A novel attention-guided convolutional network for the detection of abnormal cervical cells in cervical cancer screening. Med. Image Anal. 2021, 73, 102197. [Google Scholar] [CrossRef]
- Pirovano, A.; Almeida, L.G.; Ladjal, S.; Bloch, I.; Berlemont, S. Computer-aided diagnosis tool for cervical cancer screening with weakly supervised localization and detection of abnormalities using adaptable and explainable classifier. Med. Image Anal. 2021, 73, 102167. [Google Scholar] [CrossRef] [PubMed]
- Pareek, S.; Jain, U.; Bharadwaj, M.; Chauhan, N. A label free nanosensing platform for the detection of cervical cancer through analysis of ultratrace DNA hybridization. Sens. Bio-Sens. Res. 2021, 33, 100444. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, C.; Ma, C.; Zhu, Z.; Yang, B.; Chen, F.; Jia, D.; Li, Y.; Lv, X. Feature Fusion Combined With Raman Spectroscopy for Early Diagnosis of Cervical Cancer. IEEE Photon- J. 2021, 13, 3075958. [Google Scholar] [CrossRef]
- Ponnusamy, S.; Samikannu, R.; Venkatachary, S.K.; Sukumar, S.; Ravi, R. RETRACTED ARTICLE: Computer aided innovation method for detection and classification of cervical cancer using ANFIS classifier. J. Ambient. Intell. Humaniz. Comput. 2020, 12, 6231–6240. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, S.; Zhang, T.; Liu, D.; Yang, K. Ultrasound image analysis technology under deep belief networks in evaluation on the effects of diagnosis and chemotherapy of cervical cancer. J. Supercomput. 2020, 77, 4151–4171. [Google Scholar] [CrossRef]
- Daly, A.; Yazid, H.; Solaiman, B.; Ben Amara, N.E. Multiatlas-based segmentation of female pelvic organs: Application for computer-aided diagnosis of cervical cancer. Int. J. Imaging Syst. Technol. 2020, 31, 302–312. [Google Scholar] [CrossRef]
- Ilyas, Q.M.; Ahmad, M. An Enhanced Ensemble Diagnosis of Cervical Cancer: A Pursuit of Machine Intelligence Towards Sustainable Health. IEEE Access 2021, 9, 12374–12388. [Google Scholar] [CrossRef]
- Khan, I.U.; Aslam, N.; Alshehri, R.; Alzahrani, S.; Alghamdi, M.; Almalki, A.; Balabeed, M. Cervical Cancer Diagnosis Model Using Extreme Gradient Boosting and Bioinspired Firefly Optimization. Sci. Program. 2021, 2021, 5540024. [Google Scholar] [CrossRef]
- Adweb, K.M.A.; Cavus, N.; Sekeroglu, B. Cervical Cancer Diagnosis Using Very Deep Networks Over Different Activation Functions. IEEE Access 2021, 9, 46612–46625. [Google Scholar] [CrossRef]
- Bhatt, A.R.; Ganatra, A.; Kotecha, K. Cervical cancer detection in pap smear whole slide images using convNet with transfer learning and progressive resizing. PeerJ Comput. Sci. 2021, 7, e348. [Google Scholar] [CrossRef]
- Balaji, G.; Suryanarayana, S.; Sengathir, J. Enhanced boykov’s graph cuts based segmentation for cervical cancer detection. EAI Endorsed Trans. Pervasive Health Technol. 2021, 21, e3. [Google Scholar] [CrossRef]
- Li, P.; Highfield, P.E.; Lang, Z.-Q.; Kell, D. Cervical cancer prognosis and diagnosis using electrical impedance spectroscopy. J. Electr. Bioimpedance 2021, 12, 153–162. [Google Scholar] [CrossRef]
- Sun, W.-L.; Shen, Y.; Yuan, Y.; Zhou, X.-J.; Li, W.-P. The Value and Clinical Significance of Tumor Marker Detection in Cervical Cancer. Sci. Program. 2021, 2021, 6643782. [Google Scholar] [CrossRef]
- Shi, W.; Wang, Y.; Hou, L.; Ma, C.; Yang, L.; Dong, C.; Wang, Z.; Wang, H.; Guo, J.; Xu, S.; et al. Detection of living cervical cancer cells by transient terahertz spectroscopy. J. Biophotonics 2021, 14, e202000237. [Google Scholar] [CrossRef]
- Xue, P.; Wang, J.; Qin, D.; Yan, H.; Qu, Y.; Seery, S.; Jiang, Y.; Qiao, Y. Deep learning in image-based breast and cervical cancer detection: A systematic review and meta-analysis. NPJ Digit. Med. 2022, 5, 19. [Google Scholar] [CrossRef]
- An, J.M.; Suh, J.; Kim, J.; Kim, Y.; Chung, J.Y.; Kim, H.S.; Cho, S.Y.; Ku, J.H.; Kwak, C.; Kim, H.H.; et al. First-in-Class: Cervical cancer diagnosis based on a urine test with fluorescent cysteine probe. Sens. Actuators B Chem. 2022, 360, 131646. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, J.; Zhang, S.; Dai, H.; Lv, L.; Lin, Y. Photothermal triggered clinical swab point-of-care testing diagnostics: Fluorescence-pressure multi-signal readout detection of cervical cancer biomarker. Chem. Eng. J. 2022, 436, 135205. [Google Scholar] [CrossRef]
- Fekri-Ershad, S.; Ramakrishnan, S. Cervical cancer diagnosis based on modified uniform local ternary patterns and feed forward multilayer network optimized by genetic algorithm. Comput. Biol. Med. 2022, 144, 105392. [Google Scholar] [CrossRef]
- Brenes, D.; Barberan, C.; Hunt, B.; Parra, S.G.; Salcedo, M.P.; Possati-Resende, J.C.; Cremer, M.L.; Castle, P.E.; Fregnani, J.H.; Maza, M.; et al. Multi-task network for automated analysis of high-resolution endomicroscopy images to detect cervical precancer and cancer. Comput. Med. Imaging Graph. 2022, 97, 102052. [Google Scholar] [CrossRef]
- Jia, D.; He, Z.; Zhang, C.; Yin, W.; Wu, N.; Li, Z. Detection of cervical cancer cells in complex situation based on improved YOLOv3 network. Multimedia Tools Appl. 2022, 81, 8939–8961. [Google Scholar] [CrossRef]
- Palanisamy, V.S.; Athiappan, R.K.; Nagalingam, T. Pap smear based cervical cancer detection using residual neural networks deep learning architecture. Concurr. Comput. Pr. Exp. 2021, 34, e6608. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Z.; Tian, Y.; Liu, B. The Value of Three-Dimensional Tomographic Ultrasound Imaging under Backpropagation Algorithm in the Local Staging Diagnosis of Cervical Cancer. Sci. Program. 2022, 2022, 7017580. [Google Scholar] [CrossRef]
- AbuKhalil, T.; Alqaralleh, B.A.Y.; Al-Omari, A.H. Optimal Deep Learning Based Inception Model for Cervical Cancer Diagnosis. Comput. Mater. Contin. 2022, 72, 57–71. [Google Scholar] [CrossRef]
- Waly, M.I.; Sikkandar, M.Y.; Aboamer, M.A.; Kadry, S.; Thinnukool, O. Optimal Deep Convolution Neural Network for Cervical Cancer Diagnosis Model. Comput. Mater. Contin. 2022, 70, 3295–3309. [Google Scholar] [CrossRef]
- RElakkiya, R.; Teja, K.S.S.; Deborah, L.J.; Bisogni, C.; Medaglia, C. Imaging based cervical cancer diagnostics using small object detection—Generative adversarial networks. Multimedia Tools Appl. 2021, 81, 191–207. [Google Scholar] [CrossRef]
- Devi, M.A.; Sheeba, J.; Joseph, K.S. Neutrosophic graph cut-based segmentation scheme for efficient cervical cancer detection. J. King Saud Univ.-Comput. Inf. Sci. 2018, 34, 1352–1360. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA A Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- American Cancer Society. Statistics for Cervical Cancer. J. Gynecol. Womens Health 2021, 2, 1–9. [Google Scholar]
- Das, D.K. Promising Deep Learning-Based CAD System for Cervical Cancer. Oncol. Times UK 2022, 44, 30. [Google Scholar] [CrossRef]
- Purwono, R.R.P.A.; Purwanti, E.; Rulaningtyas, R. Segmentation of cervical cancer CT-scan images using K-nearest neighbors method. AIP Conf. Proc. 2020, 2314. [Google Scholar] [CrossRef]
- Alsmariy, R.; Healy, G.; Abdelhafez, H. Predicting Cervical Cancer using Machine Learning Methods. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 110723. [Google Scholar] [CrossRef]
- Mehmood, M.; Rizwan, M.; Ml, M.G.; Abbas, S. Machine Learning Assisted Cervical Cancer Detection. Front. Public Health 2021, 9, 788376. [Google Scholar] [CrossRef] [PubMed]
- Tanimu, J.J.; Hamada, M.; Hassan, M.; Kakudi, H.; Abiodun, J.O. A Machine Learning Method for Classification of Cervical Cancer. Electronics 2022, 11, 463. [Google Scholar] [CrossRef]
Keyword | Cervix, Cervical, Cancer, Tumor, Detect, Diagnosis |
---|---|
Inclusion | Article, Journal, English, computer science, and engineering |
Exclusion | Pure medicine, review article, other languages |
Final Search String (Scopus) | TITLE ((cervix OR cervical) AND (cancer OR tumor) AND (detect* OR diagnosis)) AND (LIMIT-TO (PUBSTAGE, “final”)) AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (SUBJAREA, “ENGI”) OR LIMIT-TO (SUBJAREA, “COMP”)) AND (LIMIT-TO (LANGUAGE, “English”)) AND (LIMIT-TO (SRCTYPE, “j”)) |
Number of Primary Article | 108 |
Cell | Class Name | Cell Count | Sub-Total |
---|---|---|---|
Normal | Normal Superficial Squamous | 74 | 242 |
Normal Intermediate Squamous | 70 | ||
Normal Columnar | 98 | ||
Abnormal | Carcinoma In Situ | 150 | 675 |
Light Dysplastic | 182 | ||
Moderate Dysplastic | 146 | ||
Severe Dysplastic | 197 | ||
Total | 917 | 917 |
Detection Methods | Targets | Liner Range | LOD (Limit of Detection) |
---|---|---|---|
Magnetic sensor | VCP | 25–200 ng/mL | 2.5 × 10−5 ng/mL |
Colorimetric assay | HPV | 20–2500 nM | 1.03 nM |
Electrochemical | pGEM-T/E6 | 40–5000 ng/mL | 0.016 ng/mL |
Electrochemical | GST-p16 | 15.6–250 ng/mL | 1.3 ng/mL |
Swab immunoassay | E6 protein | 10−6–1 ng/mL | 1.60 × 10−6 ng/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafa, W.A.; Ismail, S.; Mokhtar, F.S.; Alquran, H.; Al-Issa, Y. Cervical Cancer Detection Techniques: A Chronological Review. Diagnostics 2023, 13, 1763. https://doi.org/10.3390/diagnostics13101763
Mustafa WA, Ismail S, Mokhtar FS, Alquran H, Al-Issa Y. Cervical Cancer Detection Techniques: A Chronological Review. Diagnostics. 2023; 13(10):1763. https://doi.org/10.3390/diagnostics13101763
Chicago/Turabian StyleMustafa, Wan Azani, Shahrina Ismail, Fahirah Syaliza Mokhtar, Hiam Alquran, and Yazan Al-Issa. 2023. "Cervical Cancer Detection Techniques: A Chronological Review" Diagnostics 13, no. 10: 1763. https://doi.org/10.3390/diagnostics13101763
APA StyleMustafa, W. A., Ismail, S., Mokhtar, F. S., Alquran, H., & Al-Issa, Y. (2023). Cervical Cancer Detection Techniques: A Chronological Review. Diagnostics, 13(10), 1763. https://doi.org/10.3390/diagnostics13101763