Added Value of CCTA-Derived Features to Predict MACEs in Stable Patients Undergoing Coronary Computed Tomography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. CCTA Technique
2.3. Pericoronary Fat Attenuation
2.4. Clinical Endpoint
2.5. Statistical Analysis
3. Results
3.1. Population Characteristics
3.2. CCTA Features and pFAI Values
3.3. Outcome Analysis
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kolossváry, M.; Szilveszter, B.; Merkely, B.; Maurovich-Horvat, P. Plaque imaging with CT—A comprehensive review on coronary CT angiography based risk assessment. Cardiovasc. Diagn. Ther. 2017, 7, 489–506. [Google Scholar] [CrossRef]
- Cury, R.C.; Abbara, S.; Achenbach, S.; Agatston, A.; Berman, D.S.; Budoff, M.J.; Dill, K.E.; Jacobs, J.E.; Maroules, C.D.; Rubin, G.; et al. Coronary Artery Disease—Reporting and Data System (CAD-RADS). JACC Cardiovasc. Imaging 2016, 9, 1099–1113. [Google Scholar] [CrossRef]
- Goldstein, J.A.; Chinnaiyan, K.M.; Abidov, A.; Achenbach, S.; Berman, D.S.; Hayes, S.W.; Hoffmann, U.; Lesser, J.R.; Mikati, I.A.; O’Neil, B.J.; et al. The CT-STAT (Coronary Computed Tomographic Angiography for Systematic Triage of Acute Chest Pain Patients to Treatment) Trial. J. Am. Coll. Cardiol. 2011, 58, 1414–1422. [Google Scholar] [CrossRef]
- Hoffmann, U.; Truong, Q.A.; Schoenfeld, D.A.; Chou, E.T.; Woodard, P.K.; Nagurney, J.T.; Pope, J.H.; Hauser, T.H.; White, C.S.; Weiner, S.; et al. Coronary CT Angiography versus Standard Evaluation in Acute Chest Pain. N. Engl. J. Med. 2012, 367, 299–308. [Google Scholar] [CrossRef]
- Litt, H.I.; Gatsonis, C.; Snyder, B.; Singh, H.; Miller, C.D.; Entrikin, D.W.; Leaming, J.M.; Gavin, L.J.; Pacella, C.B.; Hollander, J.E. CT Angiography for Safe Discharge of Patients with Possible Acute Coronary Syndromes. N. Engl. J. Med. 2012, 366, 1393–1403. [Google Scholar] [CrossRef]
- Ferencik, M.; Mayrhofer, T.; Puchner, S.B.; Lu, M.T.; Maurovich-Horvat, P.; Liu, T.; Ghemigian, K.; Kitslaar, P.; Broersen, A.; Bamberg, F.; et al. Computed tomography-based high-risk coronary plaque score to predict acute coronary syndrome among patients with acute chest pain—Results from the ROMICAT II trial. J. Cardiovasc. Comput. Tomogr. 2015, 9, 538–545. [Google Scholar] [CrossRef]
- Hamilton-Craig, C.; Fifoot, A.; Hansen, M.; Pincus, M.; Chan, J.; Walters, D.L.; Branch, K. Diagnostic performance and cost of CT angiography versus stress ECG—A randomized prospective study of suspected acute coronary syndrome chest pain in the emergency department (CT-COMPARE). Int. J. Cardiol. 2014, 177, 867–873. [Google Scholar] [CrossRef]
- Blaser, A.R.; Starkopf, L.; Deane, A.M.; Poeze, M.; Starkopf, J. Comparison of Different Definitions of Feeding Intolerance: A Retrospective Observational Study. Clin. Nutr. 2015, 34, 956–961. [Google Scholar] [CrossRef]
- Rodriguez-Granillo, G.A.; Carrascosa, P.; Bruining, N.; Waksman, R.; Garcia-Garcia, H.M. Defining the non-vulnerable and vulnerable patients with computed tomography coronary angiography: Evaluation of atherosclerotic plaque burden and composition. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 481–491. [Google Scholar] [CrossRef]
- Agatston, A.S.; Janowitz, W.R.; Hildner, F.J.; Zusmer, N.R.; Viamonte, M., Jr.; Detrano, R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990, 15, 827–832. [Google Scholar] [CrossRef]
- Munnur, R.K.; Cameron, J.D.; Ko, B.S.; Meredith, I.T.; Wong, D.T.L. Cardiac CT: Atherosclerosis to acute coronary syndrome. Cardiovasc. Diagn. Ther. 2014, 4, 430–448. [Google Scholar] [CrossRef]
- Oikonomou, E.; Marwan, M.; Desai, M.Y.; Mancio, J.; Alashi, A.; Centeno, E.H.; Thomas, S.; Herdman, L.; Kotanidis, C.; Thomas, K.E.; et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): A post-hoc analysis of prospective outcome data. Lancet 2018, 392, 929–939. [Google Scholar] [CrossRef]
- Pergola, V.; Previtero, M.; Cecere, A.; Storer, V.; Castiello, T.; Baritussio, A.; Cabrelle, G.; Mele, D.; Motta, R.; Caforio, A.; et al. Clinical Value and Time Course of Pericoronary Fat Inflammation in Patients with Angiographically Nonobstructive Coronaries: A Preliminary Report. J. Clin. Med. 2021, 10, 1786. [Google Scholar] [CrossRef]
- Gaibazzi, N.; Tuttolomondo, D.; Nicolini, F.; Tafuni, A.; Sartorio, D.; Martini, C.; Maestri, F.; Gallingani, A.; De Filippo, M.; Corradi, D. The Histopathological Correlate of Peri-Vascular Adipose Tissue Attenuation on Computed Tomography in Surgical Ascending Aorta Aneurysms: Is This a Measure of Tissue Inflammation? Diagnostics 2021, 11, 1799. [Google Scholar] [CrossRef]
- Setshedi, K.J.; Mutingwende, N.; Ngqwala, N.P. The Use of Artificial Neural Networks to Predict the Physicochemical Characteristics of Water Quality in Three District Municipalities, Eastern Cape Province, South Africa. Int. J. Environ. Res. Public Health 2021, 18, 5248. [Google Scholar] [CrossRef]
- Van Diemen, P.A.; Bom, M.J.; Driessen, R.S.; Schumacher, S.P.; Everaars, H.; de Winter, R.W.; van den Ben, P.M.; Freiman, M.; Goshen, L.; Heijtel, D.; et al. Prognostic Value of RCA Pericoronary Adipose Tissue CT-Attenuation Beyond High-Risk Plaques, Plaque Volume, and Ischemia. JACC Cardiovasc. Imaging 2021, 14, 1598–1610. [Google Scholar] [CrossRef]
- Sun, J.T.; Sheng, X.C.; Feng, Q.; Yin, Y.; Li, Z.; Ding, S.; Pu, J. Pericoronary Fat Attenuation Index Is Associated With Vulnerable Plaque Components and Local Immune-Inflammatory Activation in Patients With Non-ST Elevation Acute Coronary Syndrome. J. Am. Heart Assoc. 2022, 11, e022879. [Google Scholar] [CrossRef]
- Serruys, P.W.; Hara, H.; Garg, S.; Kawashima, H.; Nørgaard, B.L.; Dweck, M.R.; Bax, J.J.; Knuuti, J.; Nieman, K.; Leipsic, J.A.; et al. Coronary Computed Tomographic Angiography for Complete Assessment of Coronary Artery Disease. J. Am. Coll. Cardiol. 2021, 78, 713–736. [Google Scholar] [CrossRef]
- Pergola, V.; Cabrelle, G.; De Conti, G.; Barbiero, G.; Mele, D.; Motta, R. Challenging Cases of Aortic Prosthesis Dysfunction, the Importance of Multimodality Imaging, a Case Series. Diagnostics 2021, 11, 2305. [Google Scholar] [CrossRef]
- Pergola, V.; Cabrelle, G.; Barbiero, G.; Dellino, C.M.; Reffo, E.; Di Salvo, G.; Motta, R. Single coronary artery originating from right sinus. Role of MDCT and a review of literature. Monaldi Arch Chest Dis. 2021, 92. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulos, A.S.; Sanna, F.; Sabharwal, N.; Thomas, S.; Oikonomou, E.K.; Herdman, L.; Margaritis, M.; Shirodaria, C.; Kampoli, A.-M.; Akoumianakis, I.; et al. Detecting human coronary inflammation by imaging perivascular fat. Sci. Transl. Med. 2017, 9, eaal2658. [Google Scholar] [CrossRef] [PubMed]
- Andreini, D.; Conte, E.; Serruys, P.W. Coronary plaque features on CTA can identify patients at increased risk of cardiovascular events. Curr. Opin. Cardiol. 2021, 36, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Nance, J.W.; Schlett, C.L.; Schoepf, U.J.; Oberoi, S.; Leisy, H.B.; Barraza, J.M.; Headden, G.F.; Nikolaou, K.; Bamberg, F. Incremental Prognostic Value of Different Components of Coronary Atherosclerotic Plaque at Cardiac CT Angiography beyond Coronary Calcification in Patients with Acute Chest Pain. Radiology 2012, 264, 679–690. [Google Scholar] [CrossRef]
- Nadjiri, J.; Hausleiter, J.; Jähnichen, C.; Will, A.; Hendrich, E.; Martinoff, S.; Hadamitzky, M. Incremental prognostic value of quantitative plaque assessment in coronary CT angiography during 5 years of follow up. J. Cardiovasc. Comput. Tomogr. 2016, 10, 97–104. [Google Scholar] [CrossRef]
- Williams, M.C.; Moss, A.J.; Dweck, M.; Adamson, P.D.; Alam, S.; Hunter, A.; Shah, A.; Pawade, T.; Weir-McCall, J.R.; Roditi, G.; et al. Coronary Artery Plaque Characteristics Associated With Adverse Outcomes in the SCOT-HEART Study. J. Am. Coll. Cardiol. 2019, 73, 291–301. [Google Scholar] [CrossRef]
- Goeller, M.; Achenbach, S.; Duncker, H.; Dey, D.; Marwan, M. Imaging of the Pericoronary Adipose Tissue (PCAT) Using Cardiac Computed Tomography. J. Thorac. Imaging 2021, 36, 149–161. [Google Scholar] [CrossRef]
- Yan, H.; Zhao, N.; Geng, W.; Hou, Z.; Gao, Y.; Lu, B. Pericoronary fat attenuation index and coronary plaque quantified from coronary computed tomography angiography identify ischemia-causing lesions. Int. J. Cardiol. 2022, 357, 8–13. [Google Scholar] [CrossRef]
Group N (%) | LAP 136 (37) | n-LAP 37 (10) | p | CAD-RADS ≤ 1 183 (49) | CAD-RADS < 1 with pFAI ≥ −70 HU 15 (4) | p |
---|---|---|---|---|---|---|
Male | 106 (77.9) | 25 (67.5) | 0.168 | 90 (49%) | 9 (60%) | 0.413 |
Age (years) | 65.3 ± 10.4 | 59.5 ± 13.5 | 0.005 | 52 ± 14.8 | 56.3 ± 15.5 | 0.282 |
BMI (Kg/m2) | 30.2 ± 9.6 | 26.1 ± 8.2 | 0.018 | 25 ± 6.9 | 27.3 ± 4.8 | 0.207 |
eGFR(mL/min/m2) | 80.0 ± 20.5 | 87.9 ± 17.4 | 0.036 | 93.0 ± 19.2 | 93.6 ± 21.5 | 0.908 |
Troponin (ng/L) | 14.3 ± 8.7 | 16.5 ± 5.6 | 0.147 | 13.9 ± 7.4 | 13.4 ± 9.1 | 0.999 |
Sinus rhythm | 116 (85.3) | 34 (91.8) | 0.270 | 179 (97.8) | 15 (100) | 0.562 |
Hypertension | 100 (49.5) | 28 (13.9) | 0.0001 | 68 (37.1) | 9 (60) | 0.079 |
Hyperlipemia | 66 (49.6) | 22 (16.5) | 0.0003 | 45 (24.6) | 7 (47.7) | 0.05 |
Smoking | 50 (41.3) | 11 (9.1) | 0.0003 | 50 (27.3) | 9 (60) | 0.007 |
Diabetes | 27 (79.4) | 3 (8.8) | <0.0001 | 5 (2.7) | 0 (0) | 0.520 |
CAD familiarity | 50 (42) | 14 (11.8) | 0.0007 | 60 (32.8) | 5 (33.3) | 0.981 |
Ejection fraction (%) | 57.0 ± 10.1 | 60.0 ± 6.9 | 0.0909 | 58 ± 9.2 |
Group N (%) | LAP 136 (37) | n-LAP 37 (10) | p | CAD-RADS ≤ 1 183 (49) | CAD-RADS < 1 with pFAI ≥ −70 HU 15 (4) | p |
---|---|---|---|---|---|---|
ASA | 55 (40.7) | 15 (40.5) | 0.982 | 41 (22.4) | 0 (0) | 0.04 |
Clopidogrel | 10 (7.4) | 1 (2.7) | 0.301 | 2 (1.1) | 0 (0) | 0.697 |
Coumadin | 4 (3.0) | 1 (2.7) | 0.923 | 2 (1.1) | 2 (13.3) | 0.0009 |
NAO | 10 (7.5) | 1 (2.7) | 0.294 | 4 (2.2) | 8 (53.3) | <0.0001 |
β-Blockers | 58 (43) | 14 (37.8) | 0.585 | 48 (26.2) | 1 (6.7) | 0.088 |
Ca Antagonists | 26 (19.3) | 8 (21.6) | 0.684 | 22 (12.0) | 7 (46.7) | 0.0002 |
ACE Inhibitors | 62 (45.9) | 14 (37.8) | 0.386 | 55 (30.0) | 6 (40.0) | 0.421 |
Statins | 54 (40) | 16 (43.2) | 0.742 | 23 (12.5) | 0 (0) | 0.146 |
Diuretics | 28 (20.9) | 5 (13.5) | 0.307 | 7 (3.8) | 12 (6.7) | 0.583 |
Group N (%) | LAP 136 (37) | n-LAP 37 (10) | p | CAD-RADS ≤ 1 183 (49) | CAD-RADS < 1 with pFAI ≥ −70 HU 15 (4) | p |
---|---|---|---|---|---|---|
Coronary Dominance | ||||||
Right | 106 (78) | 33 (89) | 0.136 | 161 (81) | 14 (93) | 0.256 |
Left | 10 (7) | 3 (8) | 0.835 | 16 (8) | 1 (6) | 0.963 |
Balanced | 20 (15) | 1 (3) | 0.050 | 21 (11) | 0 | 0.116 |
Patients with HRPS | 49 (36) | 7 (19) | 0.020 | 0 | 0 | |
Overall Plaque Number | 321 | 49 | <0.001 | 0 | 0 | |
LAD Preference | 144 (44.8) | 28 (57) | 0.194 | 0 | 0 | |
pFAI Analysis | ||||||
Volume (mL) | 1.686 ± 0.788 | 1.663 ± 0.719 | 0.811 | 1.6439.719 | 1.657 ± 0.719 | 0.878 |
Median pFAI (HU) | −86.750 ± 10.487 | −91.219 ± 9.814 | 0.021 | −90 ± 10,3 | 64.653 ± 7.506 | <0.0001 |
Mean pFAI (HU) | −90.362 ± 8.970 | −94.344 ± 8.206 | 0.016 | −93.5 ± 8.5 | 66.326 ± 5.206 | <0.0001 |
(a) | ||||||
Composite MACEs | p | |||||
Events (N) | Patients (N, %) | |||||
LAP | 47 | 136 (36,8) | 0.04 | |||
n-LAP | 2 | 37 (9,9) | ||||
High-Risk Plaque Signs * | 20 | 70 (18,9) | 0.03 | |||
(b) | ||||||
Median pFAI < −70 HU (N = 183) | Median pFAI ≥ −70 HU (N = 189) | p | Mean pFAI < −70 HU (N = 185) | Mean pFAI ≥ −70 HU (N = 187) | p | |
CV Mortality | 2 | 11 | 0.001 | 2 | 11 | 0.010 |
ACS | 16 | 29 | 0.051 | 16 | 29 | 0.035 |
PTCA/S | 2 | 9 | 0.004 | 2 | 9 | 0.031 |
CABG | 1 | 5 | 0.108 | 1 | 5 | 0.097 |
(a) | ||||||
Independent Variables | Coefficient | Std. Error | t | p | rpartial | rsemipartial |
(Constant) | 0.07242 | |||||
BMI | 0.006654 | 0.005284 | 1.259 | 0.2094 | 0.09005 | 0.08755 |
Dyslipidemia | 0.01966 | 0.06883 | 0.286 | 0.7754 | 0.02051 | 0.01986 |
Diabetes | −0.2419 | 0.1003 | −2.411 | 0.0169 | −0.1705 | 0.1676 |
Smoke | 0.02292 | 0.06385 | 0.359 | 0.7200 | 0.02577 | 0.02496 |
Hypertension | −0.03415 | 0.06955 | −0.491 | 0.6239 | −0.03523 | 0.03414 |
Plaque Type (LAP = 1) | −0.1192 | 0.05089 | −2.342 | 0.0202 | −0.1658 | 0.1628 |
pFAI_(mean) | −0.002275 | 0.003338 | −0.681 | 0.4965 | −0.04886 | 0.04736 |
(b) | ||||||
Independent Variables | Coefficient | Std. Error | t | p | rpartial | rsemipartial |
(Constant) | 0.3096 | |||||
BMI | −0.001087 | 0.001423 | −0.764 | 0.4459 | −0.05490 | 0.05087 |
Dyslipidemia | −0.04544 | 0.01873 | −2.426 | 0.0162 | −0.1720 | 0.1615 |
Diabetes | −0.06300 | 0.02743 | −2.297 | 0.0227 | −0.1631 | 0.1530 |
CAD Familiarity | −0.003840 | 0.01748 | −0.220 | 0.8263 | −0.01581 | 0.01463 |
Smoke | −0.03002 | 0.01718 | −1.748 | 0.0821 | −0.1248 | 0.1164 |
Hypertension | 0.04946 | 0.01835 | 2.695 | 0.0077 | 0.1904 | 0.1795 |
pFAI_(mean) | 0.002944 | 0.0009139 | 3.222 | 0.0015 | 0.2259 | 0.2146 |
Plaque Type(LAP = 1) | 0.04791 | 0.01956 | 2.449 | 0.0152 | 0.1736 | 0.1631 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pergola, V.; Cabrelle, G.; Mattesi, G.; Cattarin, S.; Furlan, A.; Dellino, C.M.; Continisio, S.; Montonati, C.; Giorgino, A.; Giraudo, C.; et al. Added Value of CCTA-Derived Features to Predict MACEs in Stable Patients Undergoing Coronary Computed Tomography. Diagnostics 2022, 12, 1446. https://doi.org/10.3390/diagnostics12061446
Pergola V, Cabrelle G, Mattesi G, Cattarin S, Furlan A, Dellino CM, Continisio S, Montonati C, Giorgino A, Giraudo C, et al. Added Value of CCTA-Derived Features to Predict MACEs in Stable Patients Undergoing Coronary Computed Tomography. Diagnostics. 2022; 12(6):1446. https://doi.org/10.3390/diagnostics12061446
Chicago/Turabian StylePergola, Valeria, Giulio Cabrelle, Giulia Mattesi, Simone Cattarin, Antonio Furlan, Carlo Maria Dellino, Saverio Continisio, Carolina Montonati, Adelaide Giorgino, Chiara Giraudo, and et al. 2022. "Added Value of CCTA-Derived Features to Predict MACEs in Stable Patients Undergoing Coronary Computed Tomography" Diagnostics 12, no. 6: 1446. https://doi.org/10.3390/diagnostics12061446
APA StylePergola, V., Cabrelle, G., Mattesi, G., Cattarin, S., Furlan, A., Dellino, C. M., Continisio, S., Montonati, C., Giorgino, A., Giraudo, C., Leoni, L., Bariani, R., Barbiero, G., Bauce, B., Mele, D., Perazzolo Marra, M., De Conti, G., Iliceto, S., & Motta, R. (2022). Added Value of CCTA-Derived Features to Predict MACEs in Stable Patients Undergoing Coronary Computed Tomography. Diagnostics, 12(6), 1446. https://doi.org/10.3390/diagnostics12061446