Overestimation of Relative Risk and Prevalence Ratio: Misuse of Logistic Modeling
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Macmahon, B.; Trichopoulos, D. Epidemiology: Principles and Methods, 2nd ed.; Little Brown and Company: Boston, MA, USA, 1996; pp. 65–84. [Google Scholar]
- Rothman, K.J.; Greenland, S. Modern Epidemiology, 2nd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 1998; pp. 67–114. [Google Scholar]
- Kleinbaum, D.; Kupper, L.; Morgenstern, H. Epidemiologic Research; Van Nostrand Reinhold: New York, NY, USA, 1982; pp. 97–148. [Google Scholar]
- Greenland, S.; Thomas, D.C. On the need for the rare disease assumption in case–control studies. Am. J. Epidemiol. 1982, 116, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Tamhane, A.R.; Westfall, A.O.; Burkholder, G.A.; Cutter, G.R. Prevalence Odds Ratio versus Prevalence Ratio: Choice Comes with Conseq. Stat. Med. 2016, 35, 5730–5735. [Google Scholar] [CrossRef] [PubMed]
- Eckermann, S.; Coory, M.; Willan, A.R. Indirect comparison: Relative risk fallacies and odds solution. J. Clin. Epidemiol. 2009, 62, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Doi, S.A.; Furuya-Kanamori, L.; Xu, C.; Lin, L.; Chivese, T.; Thalib, L. Controversy and Debate: Questionable utility of the relative risk in clinical research: Paper 1: A call for change to practice. J. Clin. Epidemiol. 2022, 142, 271–279. [Google Scholar] [CrossRef]
- Walter, S.D. Choice of effect measure for epidemiological data. J. Clin. Epidemiol. 2000, 53, 931–939. [Google Scholar] [CrossRef]
- Senn, S.; Walter, S.; Olkin, I. Odds ratio revisited. Evid. Based Med. 1998, 3, 71. [Google Scholar]
- Cook, T.D. Advanced statistics: Up with odds ratios! A case for odds ratios when outcomes are common. Acad. Emerg. Med. 2002, 9, 1430–1434. [Google Scholar] [CrossRef] [PubMed]
- Greenland, S. Interpretation and choice of effect measures in epidemiologic analyses. Am. J. Epidemiol. 1987, 125, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Newman, S.C. Biostatistical Methods in Epidemiology; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Greenland, S. Noncollapsibility, confounding, and sparse-data bias. Part 1: The oddities of odds. J. Clin. Epidemiol. 2021, 138, 178–181. [Google Scholar] [CrossRef]
- Greenland, S. Noncollapsibility, confounding, and sparse-data bias. Part 2: What should researchers make of persistent controversies about the odds ratio? J. Clin. Epidemiol. 2021, 139, 264–268. [Google Scholar] [CrossRef]
- Huitfeldt, A.; Stensrud, M.J.; Suzuki, E. On the collapsibility of measures of effect in the counterfactual causal framework. Emerg. Themes Epidemiol. 2019, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Cummings, P. The Relative Merits of Risk Ratios and Odds Ratios. Arch. Pediatr. Adolesc. Med. 2009, 163, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yu, K.F. What’s the Relative Risk? A method of Correcting the Odds Ratio in Cohort Studies of Common Outcomes. JAMA 1998, 280, 1690–1691. [Google Scholar] [CrossRef]
- Holland, P.W. A note on the covariance of the Mantel–Haenszel log-odds-ratio estimator and the sample marginal rates. Biometrics 1989, 45, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- McNutt, L.A.; Chuntao, W.; Xiaonan, X.; Hafner, J.P. Estimating the relative risk in cohort studies and clinical trials of common outcomes. Am. J. Epidemiol. 2003, 157, 940–943. [Google Scholar] [CrossRef]
- Greenland, S.; Holland, P.W. Estimating standardized risk differences from odds ratios. Biometrics 1991, 47, 319–322. [Google Scholar] [CrossRef]
- Hosmer, W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley and Sons: New York, NY, USA, 2000. [Google Scholar]
- Collett, D. Modelling Binary Data; Chapman and Hall: London, UK, 1991. [Google Scholar]
- Greenland, S. Model-based estimation of relative risks and other epidemiologic measures in studies of common outcomes and in case-control studies. Am. J. Epidemiol. 2004, 160, 301–305. [Google Scholar] [CrossRef]
- Knol, M.J.; Le Cessie, S.; Algra, A.; Vandenbroucke, J.P.; Groenwold, R.H. Overestimation of risk ratios by odds ratios in trials and cohort studies: Alternatives to logistic regression. CMAJ 2012, 184, 895–899. [Google Scholar] [CrossRef]
- Richardson, S.T.; Robins, M.J.; Wang, L. On Modeling and Estimation for the Relative Risk and Risk Difference. JASA 2017, 112, 1121–1130. [Google Scholar] [CrossRef]
- Agnantis, N.J.; Behraki, E.; Gnardellis, C.; Vassilaki, I.; Mahera, H. Comparative study of 5-year survival in no special type ductal and mixed type breast cancer. Breast 1992, 1, 196–198. [Google Scholar] [CrossRef]
- Winkelmann, R.; Zimmermann, K.F. Robust Poisson Regression; Fahrmeir, L., Francis, B., Gilchrist, R., Tutz, G., Eds.; Springer: New York, NY, USA, 1992; pp. 201–206. [Google Scholar]
- McCullagh, P. Quasi-Likelihood Functions. Ann. Stat. 1983, 11, 59–67. [Google Scholar] [CrossRef]
- Zou, G. A Modified Poisson Regression Approach to Prospective Studies with Binary Data. Am. J. Epidemiol. 2004, 159, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Yelland, L.N.; Salter, A.B.; Ryan, P. Performance of the Modified Poisson Regression Approach for Estimating Relative Risks from Clustered Prospective Data. Am. J. Epidemiol. 2011, 174, 984–992. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Qian, L.; Shi, J.; Franklin, M. Comparing performance between log-binomial and robust Poisson regression models for estimating risk ratios under model misspesification. BMC Med. Res. Methodol. 2018, 18, 63. [Google Scholar] [CrossRef] [PubMed]
- Knol, M.J.; Duijnhoven, R.G.; Grobbee, D.E.; Moons, K.G.M.; Groenwold, R.H. Potential Misinterpretation of Treatment Effects Due to Use of Odds Ratios and Logistic Regression in Randomized Controlled Trials. PLoS ONE 2011, 6, e21248. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.J.D.; Hirakata, V.N. Alternatives for logistic regression in cross-sectional studies: An empirical comparison of models that directly estimate the prevalence ratio. BMC Med. Res. Methodol. 2003, 3, 21. [Google Scholar] [CrossRef]
- Jean-Luis, G.; Turner, A.D.; Seixas, A.; Jin, P.; Rosenthal, D.; Liu, M.; Avirappatu, G. Epidemiologic Methods to Estimate Insufficient Sleep in the US Population. Int. J. Environ. Res. Public Health 2020, 17, 9337. [Google Scholar] [CrossRef]
- Martinez, B.A.F.; Leotti, V.B.; Silva, G.S.E.; Nunes, L.N.; Machado, G.; Corbellini, L.G. Odds Ratio or Prevalence Ratio? An Overview of Reported Statistical Methods and Appropriateness of Interpretations in Cross-sectional Studies with Dichotomous Outcomes in Veterinary Medicine. Font. Vet. Sci. 2017, 4, 193. [Google Scholar] [CrossRef]
- Petersen, R.M.; Deddens, A.J. A comparison of two methods for estimating prevalence ratios. BMC Med. Res. Methodol. 2008, 28, 9. [Google Scholar] [CrossRef]
- Williamson, T.; Misha Eliasziw, M.; Fick, H.G. Log-binomial models: Exploring failed convergence. Emerg. Themes Epidemiol. 2013, 10, 14. [Google Scholar] [CrossRef]
- Nurminen, M. Asymptotic Efficiency of General Noniterative Estimators of Common Relative Risk. Biometrika 1981, 68, 525–530. [Google Scholar] [CrossRef]
- Tarone, E.R. On summary estimators of relative risk. J. Chronic Dis. 1981, 34, 463–468. [Google Scholar] [CrossRef]
- Chen, W.; Shi, J.; Qian, L.; Azen, S.P. Comparison of robustness to outliers between robust poisson models and log-binomial models when estimating relative risks for common binary outcomes: A simulation study. BMC Med. Res. Methodol. 2014, 14, 82. [Google Scholar] [CrossRef] [PubMed]
- Gallis, A.J.; Turner, L.E. Relative Measures of Association for Binary Outcomes: Challenges and Recommendations for the Global Health Researcher. Ann. Glob. Health 2019, 85, 1–12. [Google Scholar] [CrossRef]
- Coutinho, L.; Scazufca, M.; Menezes, P.R. Methods for estimating prevalence ratios in cross-sectional studies. Rev. Saud. Publica 2008, 42, 992–998. [Google Scholar] [CrossRef]
Outcome (Disease) | |||
---|---|---|---|
Factor | Event | No Event | Total |
exposed | a | b | a + b |
unexposed | c | d | c + d |
Total | a + c | b + d | n = a + b + c + d |
Dead | Alive | Total | ||
---|---|---|---|---|
Histological type | Mixed | 26 | 8 | 34 |
76.5% | 23.5% | 100.0% | ||
Ductal | 38 | 60 | 98 | |
38.8% | 61.2% | 100.0% | ||
Total | 64 | 68 | 132 | |
48.5% | 51.5% | 100.0% |
Logistic Regression | Β | OR | p-Value | 95% CI OR |
Histological type (mixed vs. ductal) | 1.64 | 5.13 | <0.001 | 2.11–12.50 |
Poisson Regression | Β | RR | p-Value | 95% CI RR |
Histological type (mixed vs. ductal) | 0.68 | 1.97 | <0.001 | 1.45–2.69 |
Logistic Regression | Β | OR | p-Value | 95% CI OR |
Histological type (mixed vs. ductal) | 1.66 | 5.25 | <0.001 | 1.94–14.22 |
Age of patients (in years) | 0.01 | 1.01 | 0.723 | 0.95–1.08 |
Grade of malignancy (Grade III vs. Grade II) | 0.44 | 1.55 | 0.360 | 0.61–3.95 |
Lymphocytic infiltration | 0.66 | 1.93 | 0.219 | 0.68–5.51 |
Lymph node metastases (>3) | 0.32 | 1.38 | 0.430 | 0.62–3.10 |
Poisson Regression | B | RR | p-Value | 95% CI RR |
Histological type (mixed vs. ductal) | 0.66 | 1.94 | <0.001 | 1.36–2.75 |
Age of patients (in years) | 0.01 | 1.01 | 0.688 | 0.98–1.03 |
Grade of malignancy (Grade III vs. Grade II) | 0.17 | 1.18 | 0.380 | 0.81–1.72 |
Lymphocytic infiltration | 0.29 | 1.34 | 0.250 | 0.81–2.22 |
Lymph node metastases (>3) | 0.16 | 1.17 | 0.368 | 0.82–1.68 |
Logistic Regression | Β | OR | p-Value | 95% CI OR |
Histological type (mixed vs. ductal) | −1.66 | 0.19 | 0.001 | 0.07–0.52 |
Age of patients (in years) | −0.01 | 0.99 | 0.723 | 0.93–1.06 |
Grade of malignancy (Grade III vs. Grade II) | −0.44 | 0.65 | 0.360 | 0.25–1.65 |
Lymphocytic infiltration | −0.66 | 0.52 | 0.219 | 0.18–1.48 |
Lymph node metastases (>3) | −0.32 | 0.72 | 0.430 | 0.32–1.62 |
Poisson Regression | B | RR | p- Value | 95% CI RR |
Histological type (mixed vs. ductal) | −0.92 | 0.40 | 0.005 | 0.21–0.76 |
Age of patients (in years) | −0.01 | 0.99 | 0.659 | 0.97–1.02 |
Grade of malignancy (Grade III vs. Grade II) | −0.24 | 0.79 | 0.353 | 0.48–1.30 |
Lymphocytic infiltration | −0.24 | 0.78 | 0.208 | 0.54–1.15 |
Lymph node metastases (>3) | −0.12 | 0.88 | 0.434 | 0.65–1.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gnardellis, C.; Notara, V.; Papadakaki, M.; Gialamas, V.; Chliaoutakis, J. Overestimation of Relative Risk and Prevalence Ratio: Misuse of Logistic Modeling. Diagnostics 2022, 12, 2851. https://doi.org/10.3390/diagnostics12112851
Gnardellis C, Notara V, Papadakaki M, Gialamas V, Chliaoutakis J. Overestimation of Relative Risk and Prevalence Ratio: Misuse of Logistic Modeling. Diagnostics. 2022; 12(11):2851. https://doi.org/10.3390/diagnostics12112851
Chicago/Turabian StyleGnardellis, Charalambos, Venetia Notara, Maria Papadakaki, Vasilis Gialamas, and Joannes Chliaoutakis. 2022. "Overestimation of Relative Risk and Prevalence Ratio: Misuse of Logistic Modeling" Diagnostics 12, no. 11: 2851. https://doi.org/10.3390/diagnostics12112851
APA StyleGnardellis, C., Notara, V., Papadakaki, M., Gialamas, V., & Chliaoutakis, J. (2022). Overestimation of Relative Risk and Prevalence Ratio: Misuse of Logistic Modeling. Diagnostics, 12(11), 2851. https://doi.org/10.3390/diagnostics12112851