Comparison of Regularized Reconstruction and Ordered Subset Expectation Maximization Reconstruction in the Diagnostics of Prostate Cancer Using Digital Time-of-Flight 68Ga-PSMA-11 PET/CT Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. PET/CT Protocol
2.3. Reconstruction Algorithm
2.4. PET/CT Evaluation
2.5. Statistical Analysis
2.6. Ethics Declaration
3. Results
4. Discussion
4.1. Comparison of Reconstruction Algorithms
4.2. Selection of β-Value
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global Cancer Statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [Green Version]
- Maurer, T.; Eiber, M.; Schwaiger, M.; Gschwend, J.E. Current Use of PSMA-PET in Prostate Cancer Management. Nat. Rev. Urol. 2016, 13, 226–235. [Google Scholar] [CrossRef]
- Ghosh, A.; Heston, W.D.W. Tumor Target Prostate Specific Membrane Antigen (PSMA) and Its Regulation in Prostate Cancer. J. Cell. Biochem. 2004, 91, 528–539. [Google Scholar] [CrossRef]
- Cunha, A.C.; Weigle, B.; Kiessling, A.; Bachmann, M.; Rieber, E.P. Tissue-Specificity of Prostate Specific Antigens: Comparative Analysis of Transcript Levels in Prostate and Non-Prostatic Tissues. Cancer Lett. 2006, 236, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Minner, S.; Wittmer, C.; Graefen, M.; Salomon, G.; Steuber, T.; Haese, A.; Huland, H.; Bokemeyer, C.; Yekebas, E.; Dierlamm, J.; et al. High Level PSMA Expression Is Associated with Early PSA Recurrence in Surgically Treated Prostate Cancer. Prostate 2011, 71, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Eder, M.; Schäfer, M.; Bauder-Wüst, U.; Hull, W.-E.; Wängler, C.; Mier, W.; Haberkorn, U.; Eisenhut, M. 68Ga-Complex Lipophilicity and the Targeting Property of a Urea-Based PSMA Inhibitor for PET Imaging. Bioconjug. Chem. 2012, 23, 688–697. [Google Scholar] [CrossRef]
- Herlemann, A.; Wenter, V.; Kretschmer, A.; Thierfelder, K.M.; Bartenstein, P.; Faber, C.; Gildehaus, F.-J.; Stief, C.G.; Gratzke, C.; Fendler, W.P. 68Ga-PSMA Positron Emission Tomography/Computed Tomography Provides Accurate Staging of Lymph Node Regions Prior to Lymph Node Dissection in Patients with Prostate Cancer. Eur. Urol. 2016, 70, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Eiber, M.; Maurer, T.; Souvatzoglou, M.; Beer, A.J.; Ruffani, A.; Haller, B.; Graner, F.-P.; Kübler, H.; Haberkorn, U.; Eisenhut, M.; et al. Evaluation of Hybrid 68Ga-PSMA Ligand PET/CT in 248 Patients with Biochemical Recurrence After Radical Prostatectomy. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2015, 56, 668–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shepp, L.A.; Logan, B.F. The Fourier Reconstruction of a Head Section. IEEE Trans. Nucl. Sci. 1974, 21, 21–43. [Google Scholar] [CrossRef]
- Tong, S.; Alessio, A.M.; Kinahan, P.E. Image Reconstruction for PET/CT Scanners: Past Achievements and Future Challenges. Imaging Med. 2010, 2, 529–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hudson, H.M.; Larkin, R.S. Accelerated Image Reconstruction Using Ordered Subsets of Projection Data. IEEE Trans. Med. Imaging 1994, 13, 601–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chilcott, A.K.; Bradley, K.M.; McGowan, D.R. Effect of a Bayesian Penalized Likelihood PET Reconstruction Compared with Ordered Subset Expectation Maximization on Clinical Image Quality Over a Wide Range of Patient Weights. AJR Am. J. Roentgenol. 2018, 210, 153–157. [Google Scholar] [CrossRef]
- Boellaard, R.; van Lingen, A.; Lammertsma, A.A. Experimental and Clinical Evaluation of Iterative Reconstruction (OSEM) in Dynamic PET: Quantitative Characteristics and Effects on Kinetic Modeling. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2001, 42, 808–817. [Google Scholar]
- Ross, S. Q.Clear. Available online: https://www.gehealthcare.com.sg/-/jssmedia/739d885baa59485aaef5ac0e0eeb44a4.pdf. (accessed on 23 February 2021).
- Ahn, S.; Ross, S.G.; Asma, E.; Miao, J.; Jin, X.; Cheng, L.; Wollenweber, S.D.; Manjeshwar, R.M. Quantitative Comparison of OSEM and Penalized Likelihood Image Reconstruction Using Relative Difference Penalties for Clinical PET. Phys. Med. Biol. 2015, 60, 5733–5751. [Google Scholar] [CrossRef]
- Caribé, P.R.R.V.; Koole, M.; D’Asseler, Y.; Van Den Broeck, B.; Vandenberghe, S. Noise Reduction Using a Bayesian Penalized-Likelihood Reconstruction Algorithm on a Time-of-Flight PET-CT Scanner. EJNMMI Phys. 2019, 6, 22. [Google Scholar] [CrossRef]
- Parvizi, N.; Franklin, J.M.; McGowan, D.R.; Teoh, E.J.; Bradley, K.M.; Gleeson, F.V. Does a Novel Penalized Likelihood Reconstruction of 18F-FDG PET-CT Improve Signal-to-Background in Colorectal Liver Metastases? Eur. J. Radiol. 2015, 84, 1873–1878. [Google Scholar] [CrossRef] [PubMed]
- Sah, B.-R.; Stolzmann, P.; Delso, G.; Wollenweber, S.D.; Hüllner, M.; Hakami, Y.A.; Queiroz, M.A.; Barbosa, F.d.G.; von Schulthess, G.K.; Pietsch, C.; et al. Clinical Evaluation of a Block Sequential Regularized Expectation Maximization Reconstruction Algorithm in 18F-FDG PET/CT Studies. Nucl. Med. Commun. 2017, 38, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Ter Voert, E.E.G.W.; Muehlematter, U.J.; Delso, G.; Pizzuto, D.A.; Müller, J.; Nagel, H.W.; Burger, I.A. Quantitative Performance and Optimal Regularization Parameter in Block Sequential Regularized Expectation Maximization Reconstructions in Clinical 68Ga-PSMA PET/MR. EJNMMI Res. 2018, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Lindström, E.; Velikyan, I.; Regula, N.; Alhuseinalkhudhur, A.; Sundin, A.; Sörensen, J.; Lubberink, M. Regularized Reconstruction of Digital Time-of-Flight 68Ga-PSMA-11 PET/CT for the Detection of Recurrent Disease in Prostate Cancer Patients. Theranostics 2019, 9, 3476–3484. [Google Scholar] [CrossRef]
- Fendler, W.P.; Eiber, M.; Beheshti, M.; Bomanji, J.; Ceci, F.; Cho, S.; Giesel, F.; Haberkorn, U.; Hope, T.A.; Kopka, K.; et al. 68Ga-PSMA PET/CT: Joint EANM and SNMMI Procedure Guideline for Prostate Cancer Imaging: Version 1.0. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1014–1024. [Google Scholar] [CrossRef]
- Mottet, N.; Bellmunt, J.; Bolla, M.; Joniau, S.; Mason, M.; Matveev, V.; Schmid, H.-P.; Van der Kwast, T.; Wiegel, T.; Zattoni, F.; et al. EAU Guidelines on Prostate Cancer. Part II: Treatment of Advanced, Relapsing, and Castration-Resistant Prostate Cancer. Eur. Urol. 2011, 59, 572–583. [Google Scholar] [CrossRef] [PubMed]
- Brierley, J.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours; Wiley-Blackwell: Hoboken, NJ, USA, 2017; ISBN 978-1-119-26357-9. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Liljequist, D.; Elfving, B.; Skavberg Roaldsen, K. Intraclass Correlation—A Discussion and Demonstration of Basic Features. PLoS ONE 2019, 14. [Google Scholar] [CrossRef] [Green Version]
- McHugh, M.L. Interrater Reliability: The Kappa Statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Fendler, W.P.; Calais, J.; Allen-Auerbach, M.; Bluemel, C.; Eberhardt, N.; Emmett, L.; Gupta, P.; Hartenbach, M.; Hope, T.A.; Okamoto, S.; et al. 68Ga-PSMA-11 PET/CT Interobserver Agreement for Prostate Cancer Assessments: An International Multicenter Prospective Study. J. Nucl. Med. 2017, 58, 1617–1623. [Google Scholar] [CrossRef] [Green Version]
- Messerli, M.; Stolzmann, P.; Egger-Sigg, M.; Trinckauf, J.; D’Aguanno, S.; Burger, I.A.; von Schulthess, G.K.; Kaufmann, P.A.; Huellner, M.W. Impact of a Bayesian Penalized Likelihood Reconstruction Algorithm on Image Quality in Novel Digital PET/CT: Clinical Implications for the Assessment of Lung Tumors. EJNMMI Phys. 2018, 5. [Google Scholar] [CrossRef] [PubMed]
Number of patients | 61 |
Age at exam, y, median (range) | 69 (48–81) |
Body mass index, kg/m2, median (range) | 27 (20–43) |
PSA pre-exam, ng/mL, median (range) | 0.77 (0–788) |
Gleason score, median (range) | 7 (6–9) |
Reason for PET/CT exam | |
Suspected relapse (%) | 54 (89) |
De novo disease staging (%) | 7 (11) |
History of prior treatment | |
Prostatectomy only (%) | 33 (54) |
Radiotherapy only (%) | 14 (23) |
Combined prostatectomy and radiotherapy (%) | 7 (11) |
Neither prostatectomy nor radiotherapy (%) | 7 (11) |
Time since diagnosis, years, median (range) | 5 (0–20) |
Median injected radiation activity MBq/kg (range) | 2.1 (1.9–2.4) |
Median time in minutes between injection and start of imaging (range) | 64 (52–88) |
OSEM, n = Lesions (SD) * | BSREM, n = Lesion (SD) * | OSEM ICC (95% CI) | BSREM ICC (95% CI) | |
---|---|---|---|---|
Local uptake, definitive | 14.3 (1.2) | 13.7 (3.2) | 0.61 (0.48–0.73) | 0.68 (0.56–0.78) |
Regional lymph nodes, definitive | 45 (6.6) | 47 (2.1) | 0.73 (0.62–0.82) | 0.91 (0.86–0.94) † |
Metastatic lymph nodes, definitive | 75 (12) | 76 (5) | 0.97 (0.95–0.98) †† | 0.98 (0.97–0.99) †† |
Bone metastasis, definitive | 30 (2.5) | 34 (2.6) | 0.98 (0.97–0.99) †† | 0.98 (0.97–0.99) †† |
Local uptake, equivocal | 6.7 (3.5) | 6 (3) | 0.32 (0.17–0.49) | 0.10 (−0.05–0.27) |
Regional lymph nodes, equivocal | 20 (10) | 13 (4.5) | 0.42 (0.26–0.57) | 0.15 (−0.004–0.32) |
Metastatic lymph nodes, equivocal | 19 (9.8) | 13 (2.5) | 0.30 (0.14–0.46) | 0.34 (0.18–0.50) |
Bone metastasis, equivocal | 20 (16) | 13 (14) | 0.52 (0.33–0.67) | 0.20 (0.05–0.36) |
Other findings clearly suspicious of prostate cancer | 2.3 (2.1) | 1.67 (1.5) | 0.19 (−0.07–0.42) | 0.27 (0.02–0.49) |
Total reported lesions | 187 (27) | 175 (22) | ||
Cases with any findings | 50 (4.5) | 46 (3.5) |
OSEM | BSREM | |||
---|---|---|---|---|
Cohen’s Kappa * | Range † | Cohen’s Kappa * | Range † | |
Local tumor | 0.66 | 0.53–0.73 | 0.61 | 0.54–0.65 |
Regional lymph nodes | 0.74 | 0.72–0.77 | 0.63 | 0.62–0.74 |
Metastatic lymph nodes | 0.61 | 0.55–0.65 | 0.66 | 0.60–0.69 |
Bone metastasis | 0.43 | 0.37–0.72 | 0.53 | 0.53–0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jonmarker, O.; Axelsson, R.; Nilsson, T.; Gabrielson, S. Comparison of Regularized Reconstruction and Ordered Subset Expectation Maximization Reconstruction in the Diagnostics of Prostate Cancer Using Digital Time-of-Flight 68Ga-PSMA-11 PET/CT Imaging. Diagnostics 2021, 11, 630. https://doi.org/10.3390/diagnostics11040630
Jonmarker O, Axelsson R, Nilsson T, Gabrielson S. Comparison of Regularized Reconstruction and Ordered Subset Expectation Maximization Reconstruction in the Diagnostics of Prostate Cancer Using Digital Time-of-Flight 68Ga-PSMA-11 PET/CT Imaging. Diagnostics. 2021; 11(4):630. https://doi.org/10.3390/diagnostics11040630
Chicago/Turabian StyleJonmarker, Olof, Rimma Axelsson, Ted Nilsson, and Stefan Gabrielson. 2021. "Comparison of Regularized Reconstruction and Ordered Subset Expectation Maximization Reconstruction in the Diagnostics of Prostate Cancer Using Digital Time-of-Flight 68Ga-PSMA-11 PET/CT Imaging" Diagnostics 11, no. 4: 630. https://doi.org/10.3390/diagnostics11040630
APA StyleJonmarker, O., Axelsson, R., Nilsson, T., & Gabrielson, S. (2021). Comparison of Regularized Reconstruction and Ordered Subset Expectation Maximization Reconstruction in the Diagnostics of Prostate Cancer Using Digital Time-of-Flight 68Ga-PSMA-11 PET/CT Imaging. Diagnostics, 11(4), 630. https://doi.org/10.3390/diagnostics11040630