The Clinical Significance of the Hyperintense Acute Reperfusion Marker Sign in Subacute Infarction Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. MRI Acquisition
2.3. Image Analysis
2.4. Statistical Analysis
3. Result
3.1. Patient Demographics
3.2. Image Interpretation
4. Discussion and Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuh, W.T.; Crain, M.R.; Loes, D.J.; Greene, G.M.; Ryals, T.J.; Sato, Y. MR imaging of cerebral ischemia: Findings in the first 24 h. AJNR Am. J. Neuroradiol. 1991, 12, 621–629. [Google Scholar]
- Crain, M.R.; Yuh, W.T.; Greene, G.M.; Loes, D.J.; Ryals, T.J.; Sato, Y.; Hart, M.N. Cerebral ischemia: Evaluation with contrast-enhanced MR imaging. AJNR Am. J. Neuroradiol. 1991, 12, 631–639. [Google Scholar]
- Sage, M.R.; Wilson, A.J.; Scroop, R. Contrast media and the brain. The basis of CT and MR imaging enhancement. Neuroimaging Clin. N. Am. 1998, 8, 695–707. [Google Scholar]
- Bozzao, A.; Floris, R.; Fasoli, F.; Fantozzi, L.M.; Colonnese, C.; Simonetti, G. Cerebrospinal fluid changes after intravenous injection of gadolinium chelate: Assessment by FLAIR MR imaging. Eur. Radiol. 2003, 13, 592–597. [Google Scholar] [CrossRef]
- Fukuoka, H.; Hirai, T.; Okuda, T.; Shigematsu, Y.; Sasao, A.; Kimura, E.; Hirano, T.; Yano, S.; Murakami, R.; Yamashita, Y. Comparison of the added value of contrast-enhanced 3D fluid-attenuated inversion recovery and magnetization-prepared rapid acquisition of gradient echo sequences in relation to conventional postcontrast T1-weighted images for the evaluation of leptomeningeal diseases at 3T. AJNR Am. J. Neuroradiol. 2010, 31, 868–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karonen, J.O.; Partanen, P.L.; Vanninen, R.L.; Vainio, P.A.; Aronen, H.J. Evolution of MR contrast enhancement patterns during the first week after acute ischemic stroke. AJNR Am. J. Neuroradiol. 2001, 22, 103–111. [Google Scholar]
- Rydberg, J.N.; Hammond, C.A.; Grimm, R.C.; Erickson, B.J.; Jack, C.R., Jr.; Huston, J., 3rd; Riederer, S.J. Initial clinical experience in MR imaging of the brain with a fast fluid-attenuated inversion-recovery pulse sequence. Radiology 1994, 193, 173–180. [Google Scholar] [CrossRef]
- Lee, E.K.; Lee, E.J.; Kim, S.; Lee, Y.S. Importance of Contrast-Enhanced Fluid-Attenuated Inversion Recovery Magnetic Resonance Imaging in Various Intracranial Pathologic Conditions. Korean J. Radiol. 2016, 17, 127–141. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, I.D.; Griffiths, P.D.; Hoggard, N.; Cleveland, T.J.; Gaines, P.A.; Venables, G.S. Unilateral leptomeningeal enhancement after carotid stent insertion detected by magnetic resonance imaging. Stroke 2000, 31, 848–851. [Google Scholar] [CrossRef] [PubMed]
- Merino, J.G.; Latour, L.L.; Tso, A.; Lee, K.Y.; Kang, D.W.; Davis, L.A.; Lazar, R.M.; Horvath, K.A.; Corso, P.J.; Warach, S. Blood-brain barrier disruption after cardiac surgery. AJNR Am. J. Neuroradiol. 2013, 34, 518–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shlosberg, D.; Benifla, M.; Kaufer, D.; Friedman, A. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat. Rev. Neurol. 2010, 6, 393–403. [Google Scholar] [CrossRef] [Green Version]
- Oby, E.; Janigro, D. The blood-brain barrier and epilepsy. Epilepsia 2006, 47, 1761–1774. [Google Scholar] [CrossRef]
- Freeze, W.M.; van der Thiel, M.; de Bresser, J.; Klijn, C.J.M.; van Etten, E.S.; Jansen, J.F.A.; van der Weerd, L.; Jacobs, H.I.L.; Backes, W.H.; van Veluw, S.J. CSF enhancement on post-contrast fluid-attenuated inversion recovery images; A systematic review. NeuroImage Clin. 2020, 28, 102456. [Google Scholar] [CrossRef]
- Förster, A.; Ramos, A.; Wenz, H.; Böhme, J.; Groden, C.; Alonso, A. GLOS and HARM in patients with transient neurovascular symptoms with and without ischemic infarction. J. Neuroradiol. 2021. [Google Scholar] [CrossRef]
- Kohrmann, M.; Struffert, T.; Frenzel, T.; Schwab, S.; Doerfler, A. The hyperintense acute reperfusion marker on fluid-attenuated inversion recovery magnetic resonance imaging is caused by gadolinium in the cerebrospinal fluid. Stroke 2012, 43, 259–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warach, S.; Latour, L.L. Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood-brain barrier disruption. Stroke 2004, 35, 2659–2661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.M.; Kim, J.H.; Kim, E.; Choi, B.S.; Bae, Y.J.; Bae, H.J. Early Stage of Hyperintense Acute Reperfusion Marker on Contrast-Enhanced FLAIR Images in Patients With Acute Stroke. AJR Am. J. Roentgenol. 2016, 206, 1272–1275. [Google Scholar] [CrossRef] [PubMed]
- Smirniotopoulos, J.G.; Murphy, F.M.; Rushing, E.J.; Rees, J.H.; Schroeder, J.W. Patterns of contrast enhancement in the brain and meninges. Radiographics 2007, 27, 525–551. [Google Scholar] [CrossRef]
- González, R.G.; Schaefer, P.W.; Buonanno, F.S.; Schwamm, L.H.; Budzik, R.F.; Rordorf, G.; Wang, B.; Sorensen, A.G.; Koroshetz, W.J. Diffusion-weighted MR imaging: Diagnostic accuracy in patients imaged within 6 h of stroke symptom onset. Radiology 1999, 210, 155–162. [Google Scholar] [CrossRef]
- Oppenheim, C.; Stanescu, R.; Dormont, D.; Crozier, S.; Marro, B.; Samson, Y.; Rancurel, G.; Marsault, C. False-negative diffusion-weighted MR findings in acute ischemic stroke. AJNR Am. J. Neuroradiol. 2000, 21, 1434–1440. [Google Scholar]
- Ay, H.; Buonanno, F.S.; Schaefer, P.W.; Le, D.A.; Wang, B.; Gonzalez, R.G.; Koroshetz, W.J. Posterior leukoencephalopathy without severe hypertension: Utility of diffusion-weighted MRI. Neurology 1998, 51, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
- Lövblad, K.O.; Laubach, H.J.; Baird, A.E.; Curtin, F.; Schlaug, G.; Edelman, R.R.; Warach, S. Clinical experience with diffusion-weighted MR in patients with acute stroke. AJNR Am. J. Neuroradiol. 1998, 19, 1061–1066. [Google Scholar] [PubMed]
- Warach, S.; Dashe, J.F.; Edelman, R.R. Clinical outcome in ischemic stroke predicted by early diffusion-weighted and perfusion magnetic resonance imaging: A preliminary analysis. J. Cereb. Blood Flow Metab. 1996, 16, 53–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, D.C.; Yenari, M.A.; Albers, G.W.; O’Brien, M.; Marks, M.P.; Moseley, M.E. Correlation of perfusion- and diffusion-weighted MRI with NIHSS score in acute (<6.5 h) ischemic stroke. Neurology 1998, 50, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kim, B.J.; Huh, J.; Yang, S.K.; Yang, M.H.; Han, M.K.; Jung, C.; Choi, B.S.; Kim, J.H.; Bae, H.J. Delayed Lesions on Diffusion-Weighted Imaging in Initially Lesion-Negative Stroke Patients. J. Stroke 2021, 23, 69–81. [Google Scholar] [CrossRef]
- Sylaja, P.N.; Coutts, S.B.; Krol, A.; Hill, M.D.; Demchuk, A.M. When to expect negative diffusion-weighted images in stroke and transient ischemic attack. Stroke 2008, 39, 1898–1900. [Google Scholar] [CrossRef] [Green Version]
- Makin, S.D.; Doubal, F.N.; Dennis, M.S.; Wardlaw, J.M. Clinically Confirmed Stroke With Negative Diffusion-Weighted Imaging Magnetic Resonance Imaging: Longitudinal Study of Clinical Outcomes, Stroke Recurrence, and Systematic Review. Stroke 2015, 46, 3142–3148. [Google Scholar] [CrossRef]
- Newman-Toker, D.E.; Moy, E.; Valente, E.; Coffey, R.; Hines, A.L. Missed diagnosis of stroke in the emergency department: A cross-sectional analysis of a large population-based sample. Diagnosis 2014, 1, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Edlow, B.L.; Hurwitz, S.; Edlow, J.A. Diagnosis of DWI-negative acute ischemic stroke: A meta-analysis. Neurology 2017, 89, 256–262. [Google Scholar] [CrossRef]
- Nagaraja, N. Diffusion weighted imaging in acute ischemic stroke: A review of its interpretation pitfalls and advanced diffusion imaging application. J. Neurol. Sci. 2021, 425, 117435. [Google Scholar] [CrossRef]
- Bernhardt, J.; Hayward, K.S.; Kwakkel, G.; Ward, N.S.; Wolf, S.L.; Borschmann, K.; Krakauer, J.W.; Boyd, L.A.; Carmichael, S.T.; Corbett, D.; et al. Agreed definitions and a shared vision for new standards in stroke recovery research: The Stroke Recovery and Rehabilitation Roundtable taskforce. Int. J. Stroke 2017, 12, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Dobkin, B.H.; Carmichael, S.T. The Specific Requirements of Neural Repair Trials for Stroke. Neurorehabil. Neural Repair 2016, 30, 470–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, L.M.; Hasso, A.N.; Handwerker, J.; Farid, H. Sequence-specific MR imaging findings that are useful in dating ischemic stroke. Radiographics 2012, 32, 1285–1297. [Google Scholar] [CrossRef] [Green Version]
- Latour, L.L.; Kang, D.W.; Ezzeddine, M.A.; Chalela, J.A.; Warach, S. Early blood-brain barrier disruption in human focal brain ischemia. Ann. Neurol. 2004, 56, 468–477. [Google Scholar] [CrossRef]
- Wouters, A.; Scheldeman, L.; Dupont, P.; Cheng, B.; Ebinger, M.; Jensen, M.; Endres, M.; Gerloff, C.; Muir, K.W.; Nighoghossian, N.; et al. Hyperintense acute reperfusion marker associated with hemorrhagic transformation in the WAKE-UP trial. Eur. Stroke J. 2021, 6, 128–133. [Google Scholar] [CrossRef]
- Arba, F.; Rinaldi, C.; Caimano, D.; Vit, F.; Busto, G.; Fainardi, E. Blood-Brain Barrier Disruption and Hemorrhagic Transformation in Acute Ischemic Stroke: Systematic Review and Meta-Analysis. Front. Neurol. 2020, 11, 594613. [Google Scholar] [CrossRef] [PubMed]
- Rozanski, M.; Ebinger, M.; Schmidt, W.U.; Hotter, B.; Pittl, S.; Heuschmann, P.U.; Jungehuelsing, J.G.; Fiebach, J.B. Hyperintense acute reperfusion marker on FLAIR is not associated with early haemorrhagic transformation in the elderly. Eur. Radiol. 2010, 20, 2990–2996. [Google Scholar] [CrossRef]
- Hjort, N.; Wu, O.; Ashkanian, M.; Sølling, C.; Mouridsen, K.; Christensen, S.; Gyldensted, C.; Andersen, G.; Østergaard, L. MRI detection of early blood-brain barrier disruption: Parenchymal enhancement predicts focal hemorrhagic transformation after thrombolysis. Stroke 2008, 39, 1025–1028. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Sun, C.J.; Rochestie, D.; Owada, K.; Khaldi, A.; Johnson, A.K.; Horn, C.M. Presence of the hyperintense acute reperfusion marker on MRI after mechanical thrombectomy for large vessel occlusion is associated with worse early neurological recovery. J. Neuroint. Surg. 2017, 9, 641–643. [Google Scholar] [CrossRef]
- De Prey, J.; Yu, C.; Echevarria, F.D.; Barreto, I.; Rees, J.H.; DeJesus, R.O.; Simpkins, A.N. Iodinated Contrast Extravasation on Post-Revascularization Computed Tomography Mimics Magnetic Resonance Hyperintense Acute Reperfusion Marker: A Case Study. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 2020, 29, 105294. [Google Scholar] [CrossRef]
- Luby, M.; Hsia, A.W.; Nadareishvili, Z.; Cullison, K.; Pednekar, N.; Adil, M.M.; Latour, L.L. Frequency of Blood-Brain Barrier Disruption Post-Endovascular Therapy and Multiple Thrombectomy Passes in Acute Ischemic Stroke Patients. Stroke 2019, 50, 2241–2244. [Google Scholar] [CrossRef]
- Bernardo-Castro, S.; Sousa, J.A.; Brás, A.; Cecília, C.; Rodrigues, B.; Almendra, L.; Machado, C.; Santo, G.; Silva, F.; Ferreira, L.; et al. Pathophysiology of Blood-Brain Barrier Permeability Throughout the Different Stages of Ischemic Stroke and Its Implication on Hemorrhagic Transformation and Recovery. Front. Neurol. 2020, 11, 594672. [Google Scholar] [CrossRef]
- Förster, A.; Wenz, H.; Groden, C. Hyperintense Acute Reperfusion Marker on FLAIR in a Patient with Transient Ischemic Attack. Case Rep. Radiol. 2016, 2016, 9829823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.; Kwon, H.; Jung, C.K.; Bae, H.J.; Han, M.K.; Kim, B.J.; Jo, Y.H. Usefulness of hyperintense acute reperfusion marker sign in patients with transient neurologic symptom. Medicine (Baltimore) 2019, 98, e15494. [Google Scholar] [CrossRef]
- Lee, H.; Kim, E.; Lee, K.M.; Kim, J.H.; Bae, Y.J.; Choi, B.S.; Jung, C. Clinical Implications of Sulcal Enhancement on Postcontrast Fluid Attenuated Inversion Recovery Images in Patients with Acute Stroke Symptoms. Korean J. Radiol. 2015, 16, 906–913. [Google Scholar] [CrossRef]
- Choi, H.Y.; Lee, K.M.; Kim, H.G.; Kim, E.J.; Choi, W.S.; Kim, B.J.; Heo, S.H.; Chang, D.I. Role of Hyperintense Acute Reperfusion Marker for Classifying the Stroke Etiology. Front. Neurol. 2017, 8, 630. [Google Scholar] [CrossRef] [Green Version]
- Bryan, R.N.; Levy, L.M.; Whitlow, W.D.; Killian, J.M.; Preziosi, T.J.; Rosario, J.A. Diagnosis of acute cerebral infarction: Comparison of CT and MR imaging. AJNR Am. J. Neuroradiol. 1991, 12, 611–620. [Google Scholar] [PubMed]
- Unger, E.C.; Gado, M.H.; Fulling, K.F.; Littlefield, J.L. Acute cerebral infarction in monkeys: An experimental study using MR imaging. Radiology 1987, 162, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Simonsen, C.Z.; Leslie-Mazwi, T.M.; Thomalla, G. Which Imaging Approach Should Be Used for Stroke of Unknown Time of Onset? Stroke 2021, 52, 373–380. [Google Scholar] [CrossRef]
- Hjort, N.; Christensen, S.; Sølling, C.; Ashkanian, M.; Wu, O.; Røhl, L.; Gyldensted, C.; Andersen, G.; Østergaard, L. Ischemic injury detected by diffusion imaging 11 min after stroke. Ann. Neurol. 2005, 58, 462–465. [Google Scholar] [CrossRef] [PubMed]
- Moseley, M.E.; Kucharczyk, J.; Mintorovitch, J.; Cohen, Y.; Kurhanewicz, J.; Derugin, N.; Asgari, H.; Norman, D. Diffusion-weighted MR imaging of acute stroke: Correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR Am. J. Neuroradiol. 1990, 11, 423–429. [Google Scholar] [PubMed]
- Hossmann, K.A.; Sakaki, S.; Zimmerman, V. Cation activities in reversible ischemia of the cat brain. Stroke 1977, 8, 77–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomalla, G.; Rossbach, P.; Rosenkranz, M.; Siemonsen, S.; Krützelmann, A.; Fiehler, J.; Gerloff, C. Negative fluid-attenuated inversion recovery imaging identifies acute ischemic stroke at 3 h or less. Ann. Neurol. 2009, 65, 724–732. [Google Scholar] [CrossRef]
- Kanekar, S.G.; Zacharia, T.; Roller, R. Imaging of stroke: Part 2, Pathophysiology at the molecular and cellular levels and corresponding imaging changes. AJR Am. J. Roentgenol. 2012, 198, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Yamada, N.; Imakita, S.; Sakuma, T. Value of diffusion-weighted imaging and apparent diffusion coefficient in recent cerebral infarctions: A correlative study with contrast-enhanced T1-weighted imaging. AJNR Am. J. Neuroradiol. 1999, 20, 193–198. [Google Scholar]
- Augustin, M.; Bammer, R.; Simbrunner, J.; Stollberger, R.; Hartung, H.P.; Fazekas, F. Diffusion-weighted imaging of patients with subacute cerebral ischemia: Comparison with conventional and contrast-enhanced MR imaging. AJNR Am. J. Neuroradiol. 2000, 21, 1596–1602. [Google Scholar]
- Mathews, V.P.; Caldemeyer, K.S.; Ulmer, J.L.; Nguyen, H.; Yuh, W.T. Effects of contrast dose, delayed imaging, and magnetization transfer saturation on gadolinium-enhanced MR imaging of brain lesions. J. Magn. Reson. Imaging 1997, 7, 14–22. [Google Scholar] [CrossRef]
- Essig, M.; Knopp, M.V.; Schoenberg, S.O.; Hawighorst, H.; Wenz, F.; Debus, J.; van Kaick, G. Cerebral gliomas and metastases: Assessment with contrast-enhanced fast fluid-attenuated inversion-recovery MR imaging. Radiology 1999, 210, 551–557. [Google Scholar] [CrossRef]
- Enokizono, M.; Morikawa, M.; Matsuo, T.; Hayashi, T.; Horie, N.; Honda, S.; Ideguchi, R.; Nagata, I.; Uetani, M. The rim pattern of meningioma on 3D FLAIR imaging: Correlation with tumor-brain adhesion and histological grading. Magn. Reson. Med. Sci. 2014, 13, 251–260. [Google Scholar] [CrossRef] [Green Version]
Subacute Infarction | |
---|---|
Average age [y] | 66.55 ± 11.3 |
Gender | |
Male | 52 (55.3) |
Female | 42 (44.7) |
Hypertension | 69 (73.4) |
Diabetes mellitus | 43(45.7) |
Hyperlipidemia | 48 (51.0) |
History of CAD | 16 (17.0) |
Current smoker | 30 (31.9) |
Alcohol | 20 (21.3) |
Previous antiplatelet | |
none | 72 (76.6) |
SAPT | 13 (13.8) |
DAPT | 8 (8.5) |
Previous statin | 15 (16.0) |
BMI (kg/m2) | 24.28 ± 4.3 |
SBP (mmHg) | 148 ± 18.4 |
DBP (mmHg) | 88 ± 10.2 |
Initial NIHSS | 4.22 |
Infarction territory | |
MCA | 68 (72.3) |
ACA | 15 (16.0) |
PCA | 11 (11.7) |
Vessel conditions | |
Intracranial occlusion | 12 (12.8) |
Intracranial stenosis | 42 (44.7) |
Carotid occlusion | 10 (10.6) |
Carotid stenosis | 10 (10.6) |
No stenoocclusive | 20 (21.3) |
The mechanism of stroke | |
Large artery atherosclerosis | 62 (66.0) |
Cardiac embolism | 10 (10.6) |
Combined type | 15 (16.0) |
Undetermined type | 7 (7.4) |
Mass | |
---|---|
Average age [y] | 57.23 ± 12.1 |
Gender | |
Male | 34 (44.7) |
Female | 42 (55.3) |
No. of Metastasis | 66 (86.9) |
Origin of Metastasis | |
Lung | 42 |
Breast | 19 |
Melanoma | 2 |
Genitourinary | 1 |
Gastrointestinal | 1 |
Miscellaneous | 1 |
No. of Malignant glioma | 7 (9.2) |
No. of Lymphoma | 3 (3.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.Y.; Lee, K.M.; Kim, H.-G.; Woo, H.-G.; Lee, J.S.; Kim, E.J. The Clinical Significance of the Hyperintense Acute Reperfusion Marker Sign in Subacute Infarction Patients. Diagnostics 2021, 11, 2161. https://doi.org/10.3390/diagnostics11112161
Lee JY, Lee KM, Kim H-G, Woo H-G, Lee JS, Kim EJ. The Clinical Significance of the Hyperintense Acute Reperfusion Marker Sign in Subacute Infarction Patients. Diagnostics. 2021; 11(11):2161. https://doi.org/10.3390/diagnostics11112161
Chicago/Turabian StyleLee, Ji Young, Kyung Mi Lee, Hyug-Gi Kim, Ho-Geol Woo, Jin San Lee, and Eui Jong Kim. 2021. "The Clinical Significance of the Hyperintense Acute Reperfusion Marker Sign in Subacute Infarction Patients" Diagnostics 11, no. 11: 2161. https://doi.org/10.3390/diagnostics11112161
APA StyleLee, J. Y., Lee, K. M., Kim, H.-G., Woo, H.-G., Lee, J. S., & Kim, E. J. (2021). The Clinical Significance of the Hyperintense Acute Reperfusion Marker Sign in Subacute Infarction Patients. Diagnostics, 11(11), 2161. https://doi.org/10.3390/diagnostics11112161