Regional Variation in Dengue Virus Serotypes in Sri Lanka and Its Clinical and Epidemiological Relevance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Clinical Data
2.2. Dengue Virus Serotyping
2.3. Dengue Virus Genotyping
2.4. Statistical Methods
3. Results
3.1. DENV Serotypes in 2018 and 2019
3.2. Age and Gender in Relation to Individual Serotypes and Total Number of Serotyped Dengue Cases in Jaffna
3.3. DENV Genotypes Identified in Jaffna in 2018
3.4. Clinical Manifestations and Laboratory Findings in Relation to DENV Serotypes in Jaffna
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Dengue Fact Sheet. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 25 May 2020).
- World Health Organization. Dengue and Severe Dengue. Available online: https://www.who.int/health-topics/dengue-and-severe-dengue#tab=tab_3 (accessed on 10 June 2021).
- Rico-Hesse, R. Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology 1990, 174, 479–493. [Google Scholar] [CrossRef]
- Weaver, S.C.; Vasilakis, N. Molecular evolution of dengue viruses: Contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. Infect. Genet. Evol. 2009, 9, 523–540. [Google Scholar] [CrossRef] [Green Version]
- Malavige, G.N.; Jeewandara, C.; Ghouse, A.; Somathilake, G.; Tissera, H. Changing epidemiology of dengue in Sri Lanka—Challenges for the future. PLoS Negl. Trop. Dis. 2021, 15, e0009624. [Google Scholar] [CrossRef] [PubMed]
- Sirisena, P.; Noordeen, F. Evolution of dengue in Sri Lanka—changes in the virus, vector, and climate. Int. J. Infect. Dis. 2014, 19, 6–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surendran, S.N.; Jayadas, T.T.P.; Thiruchenthooran, V.; Raveendran, S.; Tharsan, A.; Sandrasegaram, S.; Sivabalakrishnan, K.; Karunakaran, S.; Ponnaiah, B.; Gomes, L.; et al. Aedes larval bionomics and implications for dengue control in the paradigmatic Jaffna peninsula in northern Sri Lanka. Parasites Vector 2021, 14, 162. [Google Scholar] [CrossRef]
- Surendran, S.N.; Veluppillai, T.; Eswaramohan, T.; Sivabalakrishnan, K.; Noordeen, F.; Ramasamy, R. Salinity tolerant Aedes aegypti and Aedes albopictus—infection with dengue virus and contribution to dengue transmission in a coastal peninsula. J. Vector Borne Dis. 2018, 55, 26–33. [Google Scholar] [CrossRef]
- Murugananthan, K.; Murugananthan, A.; Careem, F.; Noordeen, F. Epidemiology of dengue / dengue hemorrhagic fever in the northern Sri Lanka from 2009 to 2012. Int. J. Infect. Dis. 2016, 45, 449. [Google Scholar] [CrossRef] [Green Version]
- Epidemiology Unit. Disease Surveillance. 2017. Available online: https://www.epid.gov.lk/web/index.php?option=com_casesanddeaths&Itemid=448&lang=en# (accessed on 10 June 2021).
- Ramasamy, R.; Surendran, S.N. Global climate change and its potential impact on disease transmission by salinity-tolerant mosquito vectors in coastal zones. Front. Physiol. 2012, 3, 198. [Google Scholar] [CrossRef] [Green Version]
- Surendran, S.N.; Senthilnanthanan, M.; Jayadas, T.T.P.; Karunaratne, S.H.P.P.; Ramasamy, R. Impact of increasing salinization and pollution on the adaptation of mosquito vectors in Jaffna Peninsula, Sri Lanka. Cey J. Sci. 2020, 49, 135–150. [Google Scholar] [CrossRef]
- Ramasamy, R.; Surendran, S.N. Possible impact of rising sea level on vector-borne infectious diseases. BMC Infect. Dis. 2011, 11, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramasamy, R.; Jude, P.J.; Veluppillai, T.; Eswaramohan, T.; Surendran, S.N. Biological Differences between Brackish and fresh water-derived Aedes aegypti from two locations in the Jaffna peninsula of Sri Lanka and the implications for arboviral disease transmission. PLoS ONE 2014, 9, e104977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surendran, S.N.; Jude, P.J.; Thabothiny, V.; Raveendran, S.; Ramasamy, R. Preimaginal development of Aedes aegypti in brackish and fresh water urban domestic wells in Sri Lanka. J. Vector Ecol. 2012, 37, 471–473. [Google Scholar] [CrossRef]
- Jude, P.J.; Tharmasegaram, T.; Sivasubramaniyam, G.; Senthilnanthanan, M.; Kannathasan, S.; Raveendran, S.; Ramasamy, R.; Surendran, S.N. Salinity-tolerant larvae of mosquito vectors in the tropical coast of Jaffna, Sri Lanka and the effect of salinity on the toxicity of Bacillus thuringiensis to Aedes aegypti larvae. Parasites Vectors 2012, 5, 269. [Google Scholar] [CrossRef] [Green Version]
- Ramasamy, R.; Surendran, S.N.; Jude, P.J.; Dharshini, S.; Vinobaba, M. Larval development of Aedes aegypti and Aedes albopictus in peri-urban brackish water and its implications for transmission of arboviral diseases. PLoS Negl. Trop. Dis. 2011, 5, e1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramasamy, R.; Surendran, S.N. Mosquito vectors developing in atypical anthropogenic habitats—global overview of recent observations, mechanisms and impact on disease transmission. J. Vector Borne Dis. 2016, 53, 91–98. [Google Scholar] [PubMed]
- Surendran, S.N.; Jayadas, T.T.P.; Sivabalakrishnan, K.; Santhirasegaram, S.; Karvannan, K.; Weerarathne, T.C.; Karunaratne, S.H.P.P.; Ramasamy, R. Development of the major arboviral vector Aedes aegypti in urban drain-water and associated pyrethroid insecticide resistance is a potential global health challenge. Parasites Vectors 2019, 12, 337. [Google Scholar] [CrossRef] [PubMed]
- Idris, F.; Usman, A.; Surendran, S.N.; Ramasamy, R. Detection of Aedes albopictus pre-imaginal stages in brackish water habitats in Brunei Darussalam. J. Vector Ecol. 2013, 38, 197–199. [Google Scholar] [CrossRef]
- Yee, D.A.; Himel, E.; Reiskind, M.H.; Vamosi, S.M. Implications of saline concentrations for the performance and competitive interactions of the mosquito Aedes aegypti (Stegomyia aegypti) and Aedes albopictus (Stegomyia albopictus). Med. Vet. Entomol. 2014, 28, 60–69. [Google Scholar] [CrossRef]
- Arduino, M.B.; Mucci, L.F.; Serpa, L.L.N.; Rodrigues, M.M. Effect of salinity on the behaviour of Aedes aegypti populations from the coast and plateau of southeastern Brazil. J. Vector Borne Dis. 2015, 52, 79–87. [Google Scholar]
- Galavíz-Parada, J.D.; Vega-Villasante, F.; Marquetti, M.C.; Guerrero-Galván, S.; Chong-Carrillo, O.; Navarrete Heredia, J.L.; Cupul-Magaña, F.G. Effect of temperature and salinity on the eclosion and survival of Aedes aegypti (L) (Diptera: Culicidae) from Western Mexico. Rev. Cubana Med. Trop. 2019, 71, 2. [Google Scholar]
- Ramasamy, R.; Surendran, S.N. Global Environment Changes and Salinity Adaptation in Mosquito Vectors; Lambert Academic Publishing: Saarbrucken, Germany, 2013; pp. 1–100. [Google Scholar]
- Ramasamy, R. Adaptation of fresh water mosquito vectors to salinity increases arboviral disease transmission risk in the context of anthropogenic environmental changes. In Global Virology—Identifying and Investigating Viral Diseases; Shapshak, P., Sinnott, J.T., Chiappelli, F., Eds.; Springer International Publishing AG: Cham, Switzerland, 2015; pp. 45–54. [Google Scholar]
- Ramasamy, R.; Surendran, S.N.; Jude, P.J.; Dharshini, S.; Vinobaba, M. Adaptation of mosquito vectors to salinity and its impact on mosquito-borne disease transmission in the South and Southeast Asian tropics. In Environmental Changes and Infectious Diseases in Asia; Morand, M., Dujardin, J.-P., Lefait-Robin, R., Apiwathnasorn, C., Eds.; Springer: Singapore, 2015; pp. 107–122. [Google Scholar]
- Ramasamy, R.; Thiruchenthooran, V.; Jayadas, T.; Eswaramohan, T.; Santhirasegaram, S.; Sivabalakrishnan, K.; Naguleswaran, A.; Uzest, M.; Cayrol, B.; Voisin, S.N.; et al. Transcriptomic, proteomic and ultrastructural studies on salinity-tolerant Aedes aegypti in the context of rising sea levels and arboviral disease epidemiology. BMC Genom. 2021, 22, 253. [Google Scholar] [CrossRef] [PubMed]
- Surendran, S.N.; Sivapalakrishnan, K.; Jayadas, T.T.P.; Santhirasegaram, S.; Laheetharan, A.; Senthilnanthanan, M.; Ramasamy, R. Anal papillae changes in brackish water Aedes aegypti. J. Vector Borne Dis. 2018, 55, 235–238. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Comprehensive Guidelines for Prevention and Control of Dengue and Dengue Haemorrhagic Fever; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Epidemiology Unit, Ministry of Health, Sri Lanka. Guidelines on Management of Dengue Fever and Dengue Haemorrhagic Fever in Adults. National Guidelines. Revised and Expanded Edition 2012. Ministry of Health, Sri Lanka. Available online: http://www.epid.gov.lk/web/images/pdf/Publication/guidelines_for_the_management_of_df_and_dhf_in_adults.pdf (accessed on 2 November 2021).
- Santiago, G.; Vergne, E.; Quiles, Y.; Cosme, J.; Vazquez, J.; Medina, J.; Medina, F.; Colón, C.; Margolis, H.; Muñoz-Jordán, J. Analytical and clinical performance of the CDC real time RT-PCR assay for detection and typing of dengue virus. PLoS Negl. Trop. Dis. 2013, 7, e2311. [Google Scholar] [CrossRef]
- Jayathilaka, D.; Gomes, L.; Jeewandara, C.; Jayarathna, G.; Herath, D.; Perera, P.; Fernando, S.; Wijewickrama, A.; Hardman, C.S.; Ogg, G.S.; et al. Role of NS1 antibodies in the pathogenesis of acute secondary dengue infection. Nat. Commun. 2018, 9, 5242–5257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickett, B.E.; Sadat, E.L.; Zhang, Y.; Noronha, J.M.; Squires, R.B.; Hunt, V.; Liu, M.; Kumar, S.; Zaremba, S.; Gu, Z.; et al. ViPR: An open bioinformatics database and analysis resource for virology research. Nucleic Acids Res. 2012, 40, D593–D598. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition. Geneva. 2009. Available online: https://www.who.int/tdr/publications/documents/dengue-diagnosis.pdf (accessed on 25 October 2021).
- Muller, D.; Young, P. The flavivirus NS1 protein: Molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral. Res. 2013, 98, 192–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libraty, D.; Young, P.; Pickering, D.; Endy, T.; Kalayanarooj, S.; Green, S.; Vaughn, D.; Nisalak, A.; Ennis, F.; Rothman, A. High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J. Infect. Dis. 2002, 186, 1165–1168. [Google Scholar] [CrossRef]
- Racherla, R.G.; Pamireddy, M.L.; Mohan, A.; Mudhigeti, N.; Mahalakshmi, P.A.; Nallapireddy, U.; Kalawat, U. Co-circulation of four dengue serotypes at South Eastern Andhra Pradesh, India: A prospective study. Indian J. Med. Microbiol. 2018, 36, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Thu, H.M.; Lowry, K.; Myint, T.T.; Shwe, T.N.; Han, A.M.; Khin, K.K.; Thant, K.Z.; Soe Thein, S.; Aaskov, J. Myanmar dengue outbreak associated with displacement of serotypes 2, 3, and 4 by dengue 1. Emerg. Infect. Dis. 2004, 10, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Barr, K.L.; Anderson, B.D.; Heil, G.L.; Friary, J.A.; Focks, D.A. Dengue serotypes 1-4 exhibit unique host specificity in vitro. Virus Adapt. Treat. 2012, 4, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Tissera, H.; Jayamanne, B.; Raut, R.; Janaki, S.; Tozan, Y.; Samaraweera, P.; Liyanage, P.; Ghouse, A.; Rodrigo, C.; de Silva, A.; et al. Severe Dengue Epidemic, Sri Lanka, 2017. Emerg. Infect. Dis. 2020, 26, 682–691. [Google Scholar] [CrossRef] [PubMed]
- Rajarethinam, J.; Ang, L.; Ong, J.; Ycasas, J.; Hapuarachchi, H.; Yap, G.; Chong, C.; Lai, Y.; Cutter, J.; Ho, D.; et al. Dengue in Singapore from 2004 to 2016: Cyclical epidemic patterns dominated by serotypes 1 and 2. Am. J. Tropl. Med. Hyg. 2018, 99, 204–210. [Google Scholar] [CrossRef]
- Kanakaratne, N.; Wahala, W.; Messer, W.; Tissera, H.; Shahani, A.; Abeysinghe, N.; de Silva, A.; Gunasekera, M. Severe dengue epidemics in Sri Lanka, 2003–2006. Emerg. Infect. Dis. 2009, 15, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Messer, W.; Vitarana, U.; Elvtigala, J.; Sivananthan, K.; Preethimala, L.; Ramesh, R.; Gubler, D.; Withana, N.; De Silva, A. Epidemiology of dengue in Sri Lanka before and after the emergence of epidemic dengue hemorrhagic fever. Am. J. Trop. Med. Hyg. 2002, 66, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-J.; Chen, C.S.; Tien, C.-J.; Lu, M.-R. Epidemiological, clinical and climatic characteristics of dengue fever in Kaohsiung City, Taiwan with implication for prevention and control. PLoS ONE 2018, 13, e0190637. [Google Scholar] [CrossRef] [Green Version]
- Yew, Y.W.; Ye, T.; Ang, L.W.; Ng, L.C.; Yap, G.; James, L.; Chew, S.K.; Goh, K.T. Seroepidemiology of dengue; virus infection among adults in Singapore. Ann. Acad. Med. Singap. 2009, 38, 667–675. [Google Scholar]
- Anker, M.; Arima, Y. Male-female differences in the number of reported incident dengue fever cases in six Asian countries. Western Pac. Surveill. Response J. 2011, 30, 17–23. [Google Scholar] [CrossRef]
- Tsai, J.J.; Chan, K.S.; Chang, J.S.; Chang, K.; Lin, C.C.; Huang, J.H.; Lin, W.R.; Chen, T.C.; Hsieh, H.C.; Lin, S.H.; et al. Effect of serotypes on clinical manifestations of dengue fever in adults. J. Microbiol. Immunol. Infect. 2009, 42, 471–478. [Google Scholar]
- Khan, E.; Prakoso, D.; Imtiaz, K.; Malik, F.; Farooqi, J.Q.; Long, M.T.; Barr, K.L. The clinical features of co-circulating dengue viruses and the absence of dengue hemorrhagic fever in Pakistan. Front. Public Health 2020, 8, 287. [Google Scholar] [CrossRef]
- Samanta, J.; Sharma, V. Dengue and its effects on liver. World J. Clin. Cases 2015, 3, 125. [Google Scholar] [CrossRef]
- Fernando, S.; Wijewickrama, A.; Gomes, L.; Punchihewa, C.; Madusanka, S.; Dissanayake, H.; Jeewandara, C.; Peiris, H.; Ogg, G.; Malavige, G. Patterns and causes of liver involvement in acute dengue infection. BMC Infect. Dis. 2016, 16, 319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, I.; Kisseleva, T.; Brenner, D. Aging and liver disease. Curr. Opin. Gastroenterol. 2015, 31, 184–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekwudu, O.; Marquart, L.; Webb, L.; Lowry, K.S.; Devine, G.J.; Hugo, L.E.; Frentiu, F.D. Effect of serotype and strain diversity on dengue virus replication in Australian mosquito vectors. Pathogens 2020, 9, 668. [Google Scholar] [CrossRef]
- Amoa-Bosompem, M.; Kobayashi, D.; Itokawa, K.; Murota, K.; Faizah, A.N.; Azerigyik, F.A.; Hayashi, T.; Ohashi, M.; Bonney, J.; Dadzie, S.; et al. Determining vector competence of Aedes aegypti from Ghana in transmitting dengue virus serotypes 1 and 2. Parasites Vectors 2021, 14, 228. [Google Scholar] [CrossRef] [PubMed]
- Stoddard, S.T.; Forshey, B.M.; Morrison, A.C.; Paz-Soldan, V.A.; Vazquez-Prokopec, G.M.; Astete, H.; Reiner, R.C., Jr.; Vilcarromero, S.; Elder, J.P.; Halsey, E.S.; et al. House-to-house human movement drives dengue virus transmission. Proc. Natl. Acad. Sci. USA 2013, 110, 994–999. [Google Scholar] [CrossRef] [Green Version]
- Falcón-Lezama, J.A.; Martínez-Vega, R.A.; Kuri-Morales, P.A.; Ramos-Castañeda, J.; Adams, B. Day-to-day population movement and the management of dengue epidemics. Bull. Math. Biol. 2016, 78, 2011–2033. [Google Scholar] [CrossRef] [Green Version]
- Surendran, S.N.; Nagulan, R.; Sivabalakrishnan, K.; Arthiyan, S.; Tharshan, A.; Jeyadas, T.T.P.; Raveendran, S.; Kumanan, T.; Ramasamy, R. Reduced dengue incidence during COVID-19 restrictions in Sri Lanka from March 2020 to April 2021. Preprint. [CrossRef]
- Halstead, S.B.; Chow, J.S.; Marchette, N.J. Immunological enhancement of dengue virus replication. Nat. New Biol. 1973, 243, 24–26. [Google Scholar]
- Guzman, M.G.; Vazquez, S. The complexity of antibody-dependent enhancement of dengue virus infection. Viruses 2010, 2, 2649–2662. [Google Scholar] [CrossRef] [Green Version]
- St John, A.L.; Abraham, S.N.; Gubler, D.J. Barriers to preclinical investigations of anti-dengue immunity and dengue pathogenesis. Nat. Rev. Microbiol. 2013, 11, 420–426. [Google Scholar] [CrossRef]
- Sharp, T.M.; Anderson, K.B.; Katzelnick, L.C.; Clapham, H.; Johansson, M.A.; Morrison, A.C.; Harris, E.; Paz-Bailey, G.; Waterman, S.H. Knowledge Gaps in the Epidemiology of Severe Dengue Impede Vaccine Evaluation. Lancet Infect. Dis. 2021, S1473-3099(20)30871-30879. [Google Scholar] [CrossRef]
- Halstead, S.B. Vaccine-associated enhanced viral disease: Implications for viral vaccine development. Bio. Drugs 2021, 35, 505–515. [Google Scholar]
Category | DENV Serotype | Total | |||
---|---|---|---|---|---|
DENV1 (%) | DENV2 (%) | DENV3 (%) | DENV4 (%) | ||
Year | |||||
2018 | 26 (24) | 60 (56) | 15 (14) | 6 (6) | 107 |
2019 | 60 (53) | 48 (43) | 2 (2) | 2 (2) | 112 |
Total | 86 | 108 | 17 | 8 | 219 |
Age group | |||||
14–20 | 29 (41) | 34 (48) | 5 (7) | 3 (4) | 71 |
21–60 | 53 (40) | 64 (48) | 11 (8) | 5 (4) | 133 |
≥61 | 4 (27) | 10 (67) | 1 (6) | 0 (0) | 15 |
Gender | |||||
Male | 45 (36) | 64 (51) | 9 (7) | 8 (6) | 126 |
Female | 41 (44) | 44 (47) | 8 (9) | 0 (0) | 93 |
Total | 86 | 108 | 17 | 8 | 219 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayadas, T.T.P.; Kumanan, T.; Gomes, L.; Jeewandara, C.; Malavige, G.N.; Ranasinghe, D.; Jadi, R.S.; Ramasamy, R.; Surendran, S.N. Regional Variation in Dengue Virus Serotypes in Sri Lanka and Its Clinical and Epidemiological Relevance. Diagnostics 2021, 11, 2084. https://doi.org/10.3390/diagnostics11112084
Jayadas TTP, Kumanan T, Gomes L, Jeewandara C, Malavige GN, Ranasinghe D, Jadi RS, Ramasamy R, Surendran SN. Regional Variation in Dengue Virus Serotypes in Sri Lanka and Its Clinical and Epidemiological Relevance. Diagnostics. 2021; 11(11):2084. https://doi.org/10.3390/diagnostics11112084
Chicago/Turabian StyleJayadas, Tibutius T. P., Thirunavukarasu Kumanan, Laksiri Gomes, Chandima Jeewandara, Gathsaurie N. Malavige, Diyanath Ranasinghe, Ramesh S. Jadi, Ranjan Ramasamy, and Sinnathamby N. Surendran. 2021. "Regional Variation in Dengue Virus Serotypes in Sri Lanka and Its Clinical and Epidemiological Relevance" Diagnostics 11, no. 11: 2084. https://doi.org/10.3390/diagnostics11112084
APA StyleJayadas, T. T. P., Kumanan, T., Gomes, L., Jeewandara, C., Malavige, G. N., Ranasinghe, D., Jadi, R. S., Ramasamy, R., & Surendran, S. N. (2021). Regional Variation in Dengue Virus Serotypes in Sri Lanka and Its Clinical and Epidemiological Relevance. Diagnostics, 11(11), 2084. https://doi.org/10.3390/diagnostics11112084