High-Risk Screening for Fabry Disease: A Nationwide Study in Japan and Literature Review
Abstract
:1. Introduction
2. Targets for High-Risk Screening of FD
3. Methods for High-Risk Screening
4. GLA Polymorphisms
5. Algorithms for Screening and Diagnosis
6. High-Risk Screening in Japan
7. High-Risk Screening Programs for FD
7.1. High-Risk Screening for FD in Individuals with Renal Manifestations
7.2. High-Risk Screening for FD in Individuals with Cardiac Manifestations
7.3. High-Risk Screening for FD in Individuals with Central Neurological Manifestations
8. High-Risk Screening to Detect Undiagnosed Patients with FD
8.1. High-Risk Screening in Children and Adolescents
8.2. High-Risk Screening during Adolescence and in Older People
8.3. GLA Sequencing and Genetic Counseling for Families of Patients with FD
9. Next-Generation Screening Method
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desnick, R.J.; Ioannou, Y.A.; Eng, C.M. Alpha-galactosidase A Deficiency: Fabry Disease. In The Metabolic and Molecular Bases of Inherited Disease; Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, D., Eds.; McGraw-Hill: New York, NY, USA, 2001; pp. 3733–3774. [Google Scholar]
- Sanchez-Nino, M.D.; Sanz, A.B.; Carrasco, S.; Saleem, M.A.; Mathieson, P.W.; Valdivielso, J.M.; Ruiz-Ortega, M.; Egido, J.; Ortiz, A. Globotriaosylsphingosine actions on human glomerular podocytes: Implications for Fabry nephropathy. Nephrol. Dial. Transplant. 2011, 26, 1797–1802. [Google Scholar] [CrossRef] [Green Version]
- Echevarria, L.; Benistan, K.; Toussaint, A.; Dubourg, O.; Hagege, A.A.; Eladari, D.; Jabbour, F.; Beldjord, C.; De Mazancourt, P.; Germain, D.P. X-chromosome inactivation in female patients with Fabry disease. Clin. Genet. 2016, 89, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Beck, M.; Hughes, D.; Kampmann, C.; Larroque, S.; Mehta, A.; Pintos-Morell, G.; Ramaswami, U.; West, M.; Wijatyk, A.; Giugliani, R. Long-term effectiveness of agalsidase alfa enzyme replacement in Fabry disease: A Fabry Outcome Survey analysis. Mol. Genet. Metab. Rep. 2015, 3, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Veen, S.J.; Hollak, C.E.M.; Kuilenburg, A.B.P.; Langeveld, M. Developments in the treatment of Fabry disease. J. Inherit. Metab. Dis. 2020, 43, 908–921. [Google Scholar] [CrossRef] [Green Version]
- Liguori, L.; Monticelli, M.; Allocca, M.; Hay Mele, B.; Lukas, J.; Cubellis, M.V.; Andreotti, G. Pharmacological Chaperones: A Therapeutic Approach for Diseases Caused by Destabilizing Missense Mutations. Int. J. Mol. Sci. 2020, 21, 489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ringe, D.; Petsko, G.A. What are pharmacological chaperones and why are they interesting? J. Biol. 2009, 8, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCafferty, E.H.; Scott, L.J. Migalastat: A Review in Fabry Disease. Drugs 2019, 79, 543–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cammisa, M.; Correra, A.; Andreotti, G.; Cubellis, M.V. Fabry_CEP: A tool to identify Fabry mutations responsive to pharmacological chaperones. Orphanet J. Rare Dis. 2013, 8, 111. [Google Scholar] [CrossRef] [Green Version]
- Citro, V.; Cammisa, M.; Liguori, L.; Cimmaruta, C.; Lukas, J.; Cubellis, M.; Andreotti, G. The Large Phenotypic Spectrum of Fabry Disease Requires Graduated Diagnosis and Personalized Therapy: A Meta-Analysis Can Help to Differentiate Missense Mutations. Int. J. Mol. Sci. 2016, 17, 2010. [Google Scholar] [CrossRef] [Green Version]
- Ferri, L.; Malesci, D.; Fioravanti, A.; Bagordo, G.; Filippini, A.; Ficcadenti, A.; Manna, R.; Antuzzi, D.; Verrecchia, E.; Donati, I.; et al. Functional and pharmacological evaluation of novel GLA variants in Fabry disease identifies six (two de novo ) causative mutations and two amenable variants to the chaperone DGJ. Clin. Chim. Acta 2018, 481, 25–33. [Google Scholar] [CrossRef]
- Marchesoni, C.L.; Roa, N.; Pardal, A.M.; Neumann, P.; Cáceres, G.; Martínez, P.; Kisinovsky, I.; Bianchi, S.; Tarabuso, A.L.; Reisin, R.C. Misdiagnosis in Fabry disease. J. Pediatr. 2010, 156, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Kido, J.; Sawada, T.; Momosaki, K.; Sugawara, K.; Matsumoto, S.; Endo, F.; Nakamura, K. Fabry disease screening in high-risk populations in Japan: A nationwide study. Orphanet J. Rare Dis. 2020, 15, 220. [Google Scholar] [CrossRef] [PubMed]
- Sawada, T.; Kido, J.; Yoshida, S.; Sugawara, K.; Momosaki, K.; Inoue, T.; Tajima, G.; Sawada, H.; Mastumoto, S.; Endo, F.; et al. Newborn screening for Fabry disease in the western region of Japan. Mol. Genet. Metab. Rep. 2020, 22, 100562. [Google Scholar] [CrossRef] [PubMed]
- Spada, M.; Pagliardini, S.; Yasuda, M.; Tukel, T.; Thiagarajan, G.; Sakuraba, H.; Ponzone, A.; Desnick, R.J. High Incidence of Later-Onset Fabry Disease Revealed by Newborn Screening*. Am. J. Hum. Genet. 2006, 79, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.-C.; Chiang, C.-C.; Niu, D.-M.; Wang, C.-H.; Kao, S.-M.; Tsai, F.-J.; Huang, Y.-H.; Liu, H.-C.; Huang, C.-K.; Gao, H.-J.; et al. Detecting multiple lysosomal storage diseases by tandem mass spectrometry—A national newborn screening program in Taiwan. Clin. Chim. Acta 2014, 431, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-Y.; Chong, K.-W.; Hsu, J.-H.; Yu, H.-C.; Shih, C.-C.; Huang, C.-H.; Lin, S.-J.; Chen, C.-H.; Chiang, C.-C.; Ho, H.-J.; et al. High Incidence of the Cardiac Variant of Fabry Disease Revealed by Newborn Screening in the Taiwan Chinese Population. Circ. Cardiovasc. Genet. 2009, 2, 450–456. [Google Scholar] [CrossRef] [Green Version]
- Wasserstein, M.P.; Caggana, M.; Bailey, S.M.; Desnick, R.J.; Edelmann, L.; Estrella, L.; Holzman, I.; Kelly, N.R.; Kornreich, R.; Kupchik, S.G.; et al. The New York pilot newborn screening program for lysosomal storage diseases: Report of the First 65,000 Infants. Genet. Med. 2019, 21, 631–640. [Google Scholar] [CrossRef]
- Felis, A.; Whitlow, M.; Kraus, A.; Warnock, D.G.; Wallace, E. Current and Investigational Therapeutics for Fabry Disease. Kidney Int. Rep. 2020, 5, 407–413. [Google Scholar] [CrossRef]
- Mehta, A.; Ricci, R.; Widmer, U.; Dehout, F.; Garcia de Lorenzo, A.; Kampmann, C.; Linhart, A.; Sunder-Plassmann, G.; Ries, M.; Beck, M. Fabry disease defined: Baseline clinical manifestations of 366 patients in the Fabry Outcome Survey. Eur. J. Clin. Investig. 2004, 34, 236–242. [Google Scholar] [CrossRef]
- Ganendiran, S.; Kramer, D.; Üçeyler, N.; Ganendiran, S.; Kramer, D.; Sommer, C. Characterization of Pain in Fabry Disease. Clin. J. Pain 2014, 30, 915–920. [Google Scholar]
- Arends, M.; Wanner, C.; Hughes, D.; Mehta, A.; Oder, D.; Watkinson, O.T.; Elliott, P.M.; Linthorst, G.E.; Wijburg, F.A.; Biegstraaten, M.; et al. Characterization of Classical and Nonclassical Fabry Disease: A Multicenter Study. J. Am. Soc. Nephrol. 2017, 28, 1631–1641. [Google Scholar] [CrossRef] [Green Version]
- Stiles, A.R.; Zhang, H.; Dai, J.; McCaw, P.; Beasley, J.; Rehder, C.; Koeberl, D.D.; McDonald, M.; Bali, D.S.; Young, S.P. A comprehensive testing algorithm for the diagnosis of Fabry disease in males and females. Mol. Genet. Metab. 2020, 130, 209–214. [Google Scholar] [CrossRef]
- Linthorst, G.E.; Vedder, A.C.; Aerts, J.M.F.G.; Hollak, C.E.M. Screening for Fabry disease using whole blood spots fails to identify one-third of female carriers. Clin. Chim. Acta 2005, 353, 201–203. [Google Scholar] [CrossRef]
- Moura, A.P.; Hammerschmidt, T.; Deon, M.; Giugliani, R.; Vargas, C.R. Investigation of correlation of urinary globotriaosylceramide (Gb3) levels with markers of renal function in patients with Fabry disease. Clin. Chim. Acta 2018, 478, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Üçeyler, N.; Böttger, J.; Henkel, L.; Langjahr, M.; Mayer, C.; Nordbeck, P.; Wanner, C.; Sommer, C. Detection of blood Gb3 deposits as a new tool for diagnosis and therapy monitoring in patients with classic Fabry disease. J. Intern. Med. 2018, 284, 427–438. [Google Scholar] [CrossRef]
- Aerts, J.M.; Groener, J.E.; Kuiper, S.; Donker-Koopman, W.E.; Strijland, A.; Ottenhoff, R.; van Roomen, C.; Mirzaian, M.; Wijburg, F.A.; Linthorst, G.E.; et al. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc. Natl. Acad. Sci. USA 2008, 105, 2812–2817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smid, B.E.; van der Tol, L.; Biegstraaten, M.; Linthorst, G.E.; Hollak, C.E.M.; Poorthuis, B.J.H.M. Plasma globotriaosylsphingosine in relation to phenotypes of Fabry disease. J. Med. Genet. 2015, 52, 262–268. [Google Scholar] [CrossRef]
- Ishii, S.; Nakao, S.; Minamikawa-Tachino, R.; Desnick, R.J.; Fan, J.Q. Alternative splicing in the α-galactosidase A gene: Increased exon inclusion results in the Fabry cardiac phenotype. Am. J. Hum. Genet. 2002, 70, 994–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenders, M.; Weidemann, F.; Kurschat, C.; Canaan-Kühl, S.; Duning, T.; Stypmann, J.; Schmitz, B.; Reiermann, S.; Krämer, J.; Blaschke, D.; et al. Alpha-Galactosidase A p.A143T, a non-Fabry disease-causing variant. Orphanet J. Rare Dis. 2016, 11, 54. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, S.; Ortiz, A.; Germain, D.P.; Viana-Baptista, M.; Caldeira-Gomes, A.; Camprecios, M.; Fenollar-Cortés, M.; Gallegos-Villalobos, Á.; Garcia, D.; García-Robles, J.A.; et al. The alpha-galactosidase A p.Arg118Cys variant does not cause a Fabry disease phenotype: Data from individual patients and family studies. Mol. Genet. Metab. 2015, 114, 248–258. [Google Scholar] [CrossRef] [Green Version]
- Niemann, M.; Rolfs, A.; Giese, A.; Mascher, H.; Breunig, F.; Ertl, G.; Wanner, C.; Weidemann, F. Lyso-Gb3 Indicates that the Alpha-Galactosidase A Mutation D313Y is not Clinically Relevant for Fabry Disease. JIMD Rep. 2012, 7, 99–102. [Google Scholar]
- Lukas, J.; Giese, A.-K.; Markoff, A.; Grittner, U.; Kolodny, E.; Mascher, H.; Lackner, K.J.; Meyer, W.; Wree, P.; Saviouk, V.; et al. Functional Characterisation of Alpha-Galactosidase A Mutations as a Basis for a New Classification System in Fabry Disease. PLoS Genet. 2013, 9, e1003632. [Google Scholar] [CrossRef] [Green Version]
- Togawa, T.; Tsukimura, T.; Kodama, T.; Tanaka, T.; Kawashima, I.; Saito, S.; Ohno, K.; Fukushige, T.; Kanekura, T.; Satomura, A.; et al. Fabry disease: Biochemical, pathological and structural studies of the α-galactosidase A with E66Q amino acid substitution. Mol. Genet. Metab. 2012, 105, 615–620. [Google Scholar] [CrossRef]
- Peng, H.; Xu, X.; Zhang, L.; Zhang, X.; Peng, H.; Zheng, Y.; Luo, S.; Guo, H.; Xia, K.; Li, J.; et al. GLA variation p.E66Q identified as the genetic etiology of Fabry disease using exome sequencing. Gene 2016, 575, 363–367. [Google Scholar] [CrossRef]
- Du Moulin, M.; Muschol, N. p.D313Y is more than just a polymorphism in Fabry disease. Clin. Genet. 2018, 93, 1258. [Google Scholar] [CrossRef]
- Talbot, A.; Nicholls, K. Elevated Lyso-Gb3 Suggests the R118C GLA Mutation Is a Pathological Fabry Variant. JIMD Rep. 2019, 45, 95. [Google Scholar]
- Burton, B.K.; Charrow, J.; Hoganson, G.E.; Waggoner, D.; Tinkle, B.; Braddock, S.R.; Schneider, M.; Grange, D.K.; Nash, C.; Shryock, H.; et al. Newborn Screening for Lysosomal Storage Disorders in Illinois: The Initial 15-Month Experience. J. Pediatr. 2017, 190, 130–135. [Google Scholar] [CrossRef]
- Scott, C.R.; Elliott, S.; Buroker, N.; Thomas, L.I.; Keutzer, J.; Glass, M.; Gelb, M.H.; Turecek, F. Identification of Infants at Risk for Developing Fabry, Pompe, or Mucopolysaccharidosis-I from Newborn Blood Spots by Tandem Mass Spectrometry. J. Pediatr. 2013, 163, 498–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakao, S.; Takenaka, T.; Maeda, M.; Kodama, C.; Tanaka, A.; Tahara, M.; Yoshida, A.; Kuriyama, M.; Hayashibe, H.; Sakuraba, H.; et al. An Atypical Variant of Fabry’s Disease in Men with Left Ventricular Hypertrophy. N. Engl. J. Med. 1995, 333, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Mitobe, S.; Togawa, T.; Tsukimura, T.; Kodama, T.; Tanaka, T.; Doi, K.; Noiri, E.; Akai, Y.; Saito, Y.; Yoshino, M.; et al. Mutant α-galactosidase A with M296I does not cause elevation of the plasma globotriaosylsphingosine level. Mol. Genet. Metab. 2012, 107, 623–626. [Google Scholar] [CrossRef] [PubMed]
- Germain, D.P.; Shabbeer, J.; Cotigny, S.; Desnick, R.J. Fabry Disease: Twenty Novel α-Galactosidase A Mutations and Genotype-Phenotype Correlations in Classical and Variant Phenotypes. Mol. Med. 2002, 8, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Sakuraba, H.; Tsukimura, T.; Togawa, T.; Tanaka, T.; Ohtsuka, T.; Sato, A.; Shiga, T.; Saito, S.; Ohno, K. Fabry disease in a Japanese population-molecular and biochemical characteristics. Mol. Genet. Metab. Rep. 2018, 17, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Sawada, T.; Kido, J.; Sugawara, K.; Matsumoto, S.; Takada, F.; Tsuboi, K.; Ohtake, A.; Endo, F.; Nakamura, K. Detection of novel Fabry disease-associated pathogenic variants in Japanese patients by newborn and high-risk screening. Mol. Genet. Genom. Med. 2020, 8, e1502. [Google Scholar] [CrossRef]
- Yamamoto, S.; Nagasawa, T.; Sugimura, K.; Kanno, A.; Tatebe, S.; Aoki, T.; Sato, H.; Kozu, K.; Konno, R.; Nochioka, K.; et al. Clinical Diversity in Patients with Anderson-fabry Disease with the R301Q Mutation. Intern. Med. 2019, 58, 603–607. [Google Scholar] [CrossRef] [Green Version]
- Utsumi, K.; Kase, R.; Takata, T.; Sakuraba, H.; Matsui, N.; Saito, H.; Nakamura, T.; Kawabe, M.; Iino, Y.; Katayama, Y. Fabry disease in patients receiving maintenance dialysis. Clin. Exp. Nephrol. 2000, 4, 49–51. [Google Scholar] [CrossRef]
- Nakao, S.; Kodama, C.; Takenaka, T.; Tanaka, A.; Yasumoto, Y.; Yoshida, A.; Kanzaki, T.; Enriquez, A.L.D.; Eng, C.M.; Tanaka, H.; et al. Fabry disease: Detection of undiagnosed hemodialysis patients and identification of a “renal variant” phenotype1. Kidney Int. 2003, 64, 801–807. [Google Scholar] [CrossRef] [Green Version]
- Veloso, V.S.P.; Ataides, T.L.; Canziani, M.E.F.; Veloso, M.P.; da Silva, N.A.; Barreto, D.V.; Pereira, E.R.S.; de Moura, L.A.R.; Barreto, F.C. A Novel Missense GLA Mutation (p.G35V) Detected in Hemodialysis Screening Leads to Severe Systemic Manifestations of Fabry Disease in Men and Women. Nephron 2018, 138, 147–156. [Google Scholar] [CrossRef]
- Zizzo, C.; Testa, A.; Colomba, P.; Postorino, M.; Natale, G.; Pini, A.; Francofonte, D.; Cammarata, G.; Scalia, S.; Sciarrino, S.; et al. Systematic DNA Study for Fabry Disease in the End Stage Renal Disease Patients from a Southern Italy Area. Kidney Blood Press. Res. 2018, 43, 1344–1351. [Google Scholar] [CrossRef]
- Kotanko, P. Results of a Nationwide Screening for Anderson-Fabry Disease among Dialysis Patients. J. Am. Soc. Nephrol. 2004, 15, 1323–1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frabasil, J.; Durand, C.; Sokn, S.; Gaggioli, D.; Carozza, P.; Carabajal, R.; Politei, J.; Schenone, A.B. Prevalence of Fabry disease in male dialysis patients: Argentinean screening study. JIMD Rep. 2019, 48, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Moiseev, S.; Fomin, V.; Savostyanov, K.; Pushkov, A.; Moiseev, A.; Svistunov, A.; Namazova-Baranova, L. The Prevalence and Clinical Features of Fabry Disease in Hemodialysis Patients: Russian Nationwide Fabry Dialysis Screening Program. Nephron 2019, 141, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Yalın, S.F.; Eren, N.; Sinangil, A.; Yilmaz, V.T.; Tatar, E.; Ucar, A.R.; Sevinc, M.; Can, Ö.; Gurkan, A.; Arik, N.; et al. Fabry Disease Prevalence in Renal Replacement Therapy in Turkey. Nephron 2019, 142, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Jahan, S.; Sarathchandran, S.; Akhter, S.; Goldblatt, J.; Stark, S.; Crawford, D.; Mallett, A.; Thomas, M. Prevalence of Fabry disease in dialysis patients: Western Australia Fabry disease screening study—The FoRWARD study. Orphanet J. Rare Dis. 2020, 15, 10. [Google Scholar] [CrossRef] [Green Version]
- Veroux, M.; Monte, I.; Rodolico, M.; Corona, D.; Bella, R.; Basile, A.; Palmucci, S.; Pistorio, M.; Lanza, G.; De Pasquale, C.; et al. Screening for Fabry Disease in Kidney Transplant Recipients: Experience of a Multidisciplinary Team. Biomedicines 2020, 8, 396. [Google Scholar] [CrossRef]
- Erdogmus, S.; Kutlay, S.; Kumru, G.; Ors Sendogan, D.; Erturk, S.; Keven, K.; Ceylaner, G.; Sengul, S. Fabry Disease Screening in Patients With Kidney Transplant: A Single-Center Study in Turkey. Exp. Clin. Transplant. 2020, 18, 444–449. [Google Scholar] [CrossRef]
- Alhemyadi, S.A.; Elawad, M.; Fourtounas, K.; Abdrabbou, Z.; Alaraki, B.; Younis, S.; Nawaz, Z.; Alqurashi, S.; Mohamed, S. Screening for Fabry disease among 619 hemodialysis patients in Saudi Arabia. Saudi Med. J. 2020, 41, 813–818. [Google Scholar] [CrossRef]
- Okur, I.; Ezgu, F.; Biberoglu, G.; Tumer, L.; Erten, Y.; Isitman, M.; Eminoglu, F.T.; Hasanoglu, A. Screening for Fabry disease in patients undergoing dialysis for chronic renal failure in Turkey: Identification of new case with novel mutation. Gene 2013, 527, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Vigneau, C.; Germain, D.P.; Larmet, D.; Jabbour, F.; Hourmant, M. Screening for Fabry disease in male patients with end-stage renal disease in western France. Néphrologie Thérapeutique 2021, 17, 180–184. [Google Scholar] [CrossRef]
- Ichinose, M.; Nakayama, M.; Ohashi, T.; Utsunomiya, Y.; Kobayashi, M.; Eto, Y. Significance of screening for Fabry disease among male dialysis patients. Clin. Exp. Nephrol. 2005, 9, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Merta, M.; Reiterova, J.; Ledvinova, J.; Poupětová, H.; Dobrovolný, R.; Ryšavá, R.; Maixnerová, D.; Bultas, J.; Motáň, J.; Slivkova, J.; et al. A nationwide blood spot screening study for Fabry disease in the Czech Republic haemodialysis patient population. Nephrol. Dial. Transplant. 2007, 22, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Terryn, W.; Poppe, B.; Wuyts, B.; Claes, K.; Maes, B.; Verbeelen, D.; Vanholder, R.; De Boeck, K.; Lameire, N.; De Paepe, A.; et al. Two-tier approach for the detection of alpha-galactosidase A deficiency in a predominantly female haemodialysis population. Nephrol. Dial. Transplant. 2007, 23, 294–300. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-Y.; Hyun, Y.-Y.; Lee, J.-E.; Yoon, H.-R.; Kim, G.-H.; Yoo, H.-W.; Cho, S.-T.; Chun, N.-W.; Jeoung, B.-C.; Kim, H.-J.; et al. Serum Globotriaosylceramide Assay as a Screening Test for Fabry Disease in Patients with ESRD on Maintenance Dialysis in Korea. Korean J. Intern. Med. 2010, 25, 415. [Google Scholar] [CrossRef]
- Gaspar, P.; Herrera, J.; Rodrigues, D.; Cerezo, S.; Delgado, R.; Andrade, C.F.; Forascepi, R.; Macias, J.; del Pino, M.D.; Prados, M.D.; et al. Frequency of Fabry disease in male and female haemodialysis patients in Spain. BMC Med. Genet. 2010, 11, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishino, T.; Obata, Y.; Furusu, A.; Hirose, M.; Shinzato, K.; Hattori, K.; Nakamura, K.; Matsumoto, T.; Endo, F.; Kohno, S. Identification of a Novel Mutation and Prevalence Study for Fabry Disease in Japanese Dialysis Patients. Ren. Fail. 2012, 34, 566–570. [Google Scholar] [CrossRef] [PubMed]
- Doi, K.; Noiri, E.; Ishizu, T.; Negishi, K.; Suzuki, Y.; Hamasaki, Y.; Honda, K.; Fujita, T.; Tsukimura, T.; Togawa, T.; et al. High-throughput screening identified disease-causing mutants and functional variants of α-galactosidase A gene in Japanese male hemodialysis patients. J. Hum. Genet. 2012, 57, 575–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruyama, H.; Takata, T.; Tsubata, Y.; Tazawa, R.; Goto, K.; Tohyama, J.; Narita, I.; Yoshioka, H.; Ishii, S. Screening of Male Dialysis Patients for Fabry Disease by Plasma Globotriaosylsphingosine. Clin. J. Am. Soc. Nephrol. 2013, 8, 629–636. [Google Scholar] [CrossRef] [Green Version]
- Rozenfeld, P.A.; Ceci, R.; Roa, N.; Kisinovsky, I. The Continuous Challenge of Diagnosing patients with Fabry disease in Argentina. J. Inborn Errors Metab. Screen. 2015, 3, 232640981561380. [Google Scholar] [CrossRef] [Green Version]
- Saito, O.; Kusano, E.; Akimoto, T.; Asano, Y.; Kitagawa, T.; Suzuki, K.; Ishige, N.; Akiba, T.; Saito, A.; Ishimura, E.; et al. Prevalence of Fabry disease in dialysis patients: Japan Fabry disease screening study (J-FAST). Clin. Exp. Nephrol. 2016, 20, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Sayilar, E.I.; Ayar, Y.; Yavuz, M. Prevalence of Fabry disease among Turkish dialysis patients: Data from hemodialysis centers in Bursa province. Clin. Nephrol. 2016, 85, 165–172. [Google Scholar] [CrossRef]
- Silva, C.A.B.; Barreto, F.C.; dos Reis, M.A.; Moura Junior, J.A.; Cruz, C.M.S. Targeted Screening of Fabry Disease in Male Hemodialysis Patients in Brazil Highlights Importance of Family Screening. Nephron 2016, 134, 221–230. [Google Scholar] [CrossRef]
- Trachoo, O.; Jittorntam, P.; Pibalyart, S.; Kajanachumphol, S.; Suvachittanont, N.; Patputthipong, S.; Chuengsaman, P.; Nongnuch, A. Screening of Fabry disease in patients with end-stage renal disease of unknown etiology: The first Thailand study. J. Biomed. Res. 2017, 31, 17–24. [Google Scholar]
- Yılmaz, M.; Uçar, S.K.; Aşçı, G.; Canda, E.; Tan, F.A.; Hoşcoşkun, C.; Çoker, M.; Töz, H. Preliminary Screening Results of Fabry Disease in Kidney Transplantation Patients: A Single-Center Study. Transplant. Proc. 2017, 49, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.; Waters, P.J.; Singh, R.S.; Levin, A.; Toh, B.-C.; Vallance, H.D.; Sirrs, S. Screening for Fabry Disease in Patients with Chronic Kidney Disease: Limitations of Plasma α-Galactosidase Assay as a Screening Test. Clin. J. Am. Soc. Nephrol. 2008, 3, 139–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turkmen, K.; Guclu, A.; Sahin, G.; Kocyigit, I.; Demirtas, L.; Erdur, F.M.; Sengül, E.; Ozkan, O.; Emre, H.; Turgut, F.; et al. The Prevalence of Fabry Disease in Patients with Chronic Kidney Disease in Turkey: The TURKFAB Study. Kidney Blood Press. Res. 2016, 41, 1016–1024. [Google Scholar] [CrossRef]
- Yeniçerioğlu, Y.; Akdam, H.; Dursun, B.; Alp, A.; Sağlam Eyiler, F.; Akın, D.; Gün, Y.; Hüddam, B.; Batmazoğlu, M.; Gibyeli Genek, D.; et al. Screening Fabry’s disease in chronic kidney disease patients not on dialysis: A multicenter study. Ren. Fail. 2017, 39, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-J.; Chien, Y.-H.; Lai, T.-S.; Shih, H.-M.; Chen, Y.-C.; Pan, C.-F.; Chen, H.-H.; Hwu, W.-L.; Wu, C.-J. Results of Fabry Disease Screening in Male Pre-End Stage Renal Disease Patients with Unknown Etiology Found Through the Platform of a Chronic Kidney Disease Education Program in a Northern Taiwan Medical Center. Kidney Blood Press. Res. 2018, 43, 1636–1645. [Google Scholar] [CrossRef]
- Auray-Blais, C.; Lavoie, P.; Abaoui, M.; Côté, A.-M.; Boutin, M.; Akbari, A.; Levin, A.; Mac-Way, F.; TR Clarke, J. High-risk screening for Fabry disease in a Canadian cohort of chronic kidney disease patients. Clin. Chim. Acta 2020, 501, 234–240. [Google Scholar] [CrossRef]
- Reynolds, T.M.; Tylee, K.L.; Booth, K.L.; Wierzbicki, A.S. Identification of patients with Fabry disease using routine pathology results: PATHFINDER (eGFR) study. Int. J. Clin. Pract. 2021, 75. [Google Scholar]
- Sachdev, B.; Takenaka, T.; Teraguchi, H.; Tei, C.; Lee, P.; McKenna, W.J.; Elliott, P.M. Prevalence of Anderson-Fabry Disease in Male Patients With Late Onset Hypertrophic Cardiomyopathy. Circulation 2002, 105, 1407–1411. [Google Scholar] [CrossRef] [Green Version]
- Fuller, M.; Perry, R.; Saiedi, M.; Fletcher, J.M.; Selvanayagam, J.B. Mono-symptomatic Fabry disease in a population with mild-to-moderate left ventricular hypertrophy. Mol. Genet. Metab. Rep. 2020, 25, 100697. [Google Scholar] [CrossRef]
- Fan, Y.; Chan, T.-N.; Chow, J.T.Y.; Kam, K.K.H.; Chi, W.-K.; Chan, J.Y.S.; Fung, E.; Tong, M.M.P.; Wong, J.K.T.; Choi, P.C.L.; et al. High Prevalence of Late-Onset Fabry Cardiomyopathy in a Cohort of 499 Non-Selective Patients with Left Ventricular Hypertrophy: The Asian Fabry Cardiomyopathy High-Risk Screening Study (ASIAN-FAME). J. Clin. Med. 2021, 10, 2160. [Google Scholar] [CrossRef] [PubMed]
- Monserrat, L.; Gimeno-Blanes, J.R.; Marín, F.; Hermida-Prieto, M.; García-Honrubia, A.; Pérez, I.; Fernández, X.; de Nicolas, R.; de la Morena, G.; Payá, E.; et al. Prevalence of Fabry Disease in a Cohort of 508 Unrelated Patients With Hypertrophic Cardiomyopathy. J. Am. Coll. Cardiol. 2007, 50, 2399–2403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagege, A.A.; Caudron, E.; Damy, T.; Roudaut, R.; Millaire, A.; Etchecopar-Chevreuil, C.; Tran, T.-C.; Jabbour, F.; Boucly, C.; Prognon, P.; et al. Screening patients with hypertrophic cardiomyopathy for Fabry disease using a filter-paper test: The FOCUS study. Heart 2011, 97, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Mawatari, K.; Yasukawa, H.; Oba, T.; Nagata, T.; Togawa, T.; Tsukimura, T.; Kyogoku, S.; Ohshima, H.; Minami, T.; Sugi, Y.; et al. Screening for Fabry disease in patients with left ventricular hypertrophy. Int. J. Cardiol. 2013, 167, 1059–1061. [Google Scholar] [CrossRef] [PubMed]
- Terryn, W.; Deschoenmakere, G.; De Keyser, J.; Meersseman, W.; Van Biesen, W.; Wuyts, B.; Hemelsoet, D.; Pascale, H.; De Backer, J.; De Paepe, A.; et al. Prevalence of Fabry disease in a predominantly hypertensive population with left ventricular hypertrophy. Int. J. Cardiol. 2013, 167, 2555–2560. [Google Scholar] [CrossRef]
- Palecek, T.; Honzikova, J.; Poupetova, H.; Vlaskova, H.; Kuchynka, P.; Golan, L.; Magage, S.; Linhart, A. Prevalence of Fabry disease in male patients with unexplained left ventricular hypertrophy in primary cardiology practice: Prospective Fabry cardiomyopathy screening study (FACSS). J. Inherit. Metab. Dis. 2014, 37, 455–460. [Google Scholar] [CrossRef]
- Baptista, A.; Magalhães, P.; Leão, S.; Carvalho, S.; Mateus, P.; Moreira, I. Screening for Fabry Disease in Left Ventricular Hypertrophy: Documentation of a Novel Mutation. Arq. Bras. Cardiol. 2015, 105, 139–144. [Google Scholar] [CrossRef]
- Gaggl, M.; Lajic, N.; Heinze, G.; Voigtländer, T.; Sunder-Plassmann, R.; Paschke, E.; Fauler, G.; Sunder-Plassmann, G.; Mundigler, G. Screening for Fabry Disease by Urinary Globotriaosylceramide Isoforms Measurement in Patients with Left Ventricular Hypertrophy. Int. J. Med. Sci. 2016, 13, 340–346. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.; Kim, M.; Hong, G.-R.; Kim, D.-S.; Son, J.-W.; Cho, I.J.; Shim, C.Y.; Chang, H.-J.; Ha, J.-W.; Chung, N. Fabry disease in patients with hypertrophic cardiomyopathy: A practical approach to diagnosis. J. Hum. Genet. 2016, 61, 775–780. [Google Scholar] [CrossRef]
- Elliott, P.; Baker, R.; Pasquale, F.; Quarta, G.; Ebrahim, H.; Mehta, A.B.; Hughes, D.A. Prevalence of Anderson-Fabry disease in patients with hypertrophic cardiomyopathy: The European Anderson-Fabry Disease Survey. Heart 2011, 97, 1957–1960. [Google Scholar] [CrossRef]
- Kubo, T.; Ochi, Y.; Baba, Y.; Hirota, T.; Tanioka, K.; Yamasaki, N.; Yoshimitsu, M.; Higuchi, K.; Takenaka, T.; Nakajima, K.; et al. Prevalence and clinical features of Fabry disease in Japanese male patients with diagnosis of hypertrophic cardiomyopathy. J. Cardiol. 2017, 69, 302–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maron, M.S.; Xin, W.; Sims, K.B.; Butler, R.; Haas, T.S.; Rowin, E.J.; Desnick, R.J.; Maron, B.J. Identification of Fabry Disease in a Tertiary Referral Cohort of Patients with Hypertrophic Cardiomyopathy. Am. J. Med. 2018, 131, 200.e1–200.e8. [Google Scholar] [CrossRef]
- Kim, W.-S.; Kim, H.S.; Shin, J.; Park, J.C.; Yoo, H.-W.; Takenaka, T.; Tei, C. Prevalence of Fabry Disease in Korean Men with Left Ventricular Hypertrophy. J. Korean Med. Sci. 2019, 34, e63. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, S.; Saotome, M.; Satoh, H.; Kajihara, J.; Mochizuki, Y.; Mizuno, K.; Nobuhara, M.; Miyajima, K.; Kumazawa, A.; Tominaga, H.; et al. Plasma Globotriaosylsphingosine Level as a Primary Screening Target for Fabry Disease in Patients With Left Ventricular Hypertrophy. Circ. J. 2019, 83, 1901–1907. [Google Scholar] [CrossRef] [Green Version]
- Barman, H.A.; Ikitimur, B.; Avci, B.K.; Durmaz, E.; Atici, A.; Aslan, S.; Ceylaner, S.; Karpuz, H. The Prevalence of Fabry Disease Among Turkish Patients with Non-obstructive Hypertrophic Cardiomyopathy: Insights from a Screening Study. Balk. Med. J. 2019, 36, 354. [Google Scholar] [CrossRef] [PubMed]
- Sadasivan, C.; Chow, J.T.Y.; Sheng, B.; Chan, D.K.H.; Fan, Y.; Choi, P.C.L.; Wong, J.K.T.; Tong, M.M.B.; Chan, T.-N.; Fung, E.; et al. Screening for Fabry Disease in patients with unexplained left ventricular hypertrophy. PLoS ONE 2020, 15, e0239675. [Google Scholar] [CrossRef] [PubMed]
- Barman, H.A. Ratio of Fabry Disease in patients with idiopathic Left Ventricular Hypertrophy: A single center study from Turkey. Anatol. J. Cardiol. 2019, 23, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Schiffmann, R.; Swift, C.; McNeill, N.; Benjamin, E.R.; Castelli, J.P.; Barth, J.; Sweetman, L.; Wang, X.; Wu, X. Low frequency of Fabry disease in patients with common heart disease. Genet. Med. 2018, 20, 754–759. [Google Scholar] [CrossRef] [Green Version]
- López-Sainz, Á.; Climent, V.; Ripoll-Vera, T.; Espinosa, M.A.; Barriales-Villa, R.; Navarro, M.; Limeres, J.; Domingo, D.; Kasper, D.C.; Garcia-Pavia, P. Negative screening of Fabry disease in patients with conduction disorders requiring a pacemaker. Orphanet J. Rare Dis. 2019, 14, 170. [Google Scholar] [CrossRef]
- Azevedo, O.; Marques, N.; Craveiro, N.; Pereira, A.R.; Antunes, H.; Reis, L.; Guerreiro, R.A.; Pontes dos Santos, R.; Miltenberger-Miltenyi, G.; Sousa, N.; et al. Screening for Fabry disease in patients with left ventricular noncompaction. Rev. Port. Cardiol. 2019, 38, 709–716. [Google Scholar] [CrossRef]
- Germain, D.P.; Brand, E.; Burlina, A.; Cecchi, F.; Garman, S.C.; Kempf, J.; Laney, D.A.; Linhart, A.; Maródi, L.; Nicholls, K.; et al. Phenotypic characteristics of the p.Asn215Ser (p.N215S) GLA mutation in male and female patients with Fabry disease: A multicenter Fabry Registry study. Mol. Genet. Genom. Med. 2018, 6, 492–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouns, R.; Sheorajpanday, R.; Braxel, E.; Eyskens, F.; Baker, R.; Hughes, D.; Mehta, A.; Timmerman, T.; Vincent, M.-F.; De Deyn, P.P. Middelheim Fabry Study (MiFaS): A retrospective Belgian study on the prevalence of Fabry disease in young patients with cryptogenic stroke. Clin. Neurol. Neurosurg. 2007, 109, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, M.A.; Kittner, S.J.; Tuhrim, S.; Cole, J.W.; Stern, B.; Dobbins, M.; Grace, M.E.; Nazarenko, I.; Dobrovolny, R.; McDade, E.; et al. Frequency of Unrecognized Fabry Disease Among Young European-American and African-American Men With First Ischemic Stroke. Stroke 2010, 41, 78–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinoshita, N.; Hosomi, N.; Matsushima, H.; Nakamori, M.; Yagita, Y.; Yamawaki, T.; Torii, T.; Kitamura, T.; Sueda, Y.; Shimomura, R.; et al. Screening for Fabry Disease in Japanese Patients with Young-Onset Stroke by Measuring α-Galactosidase A and Globotriaosylsphingosine. J. Stroke Cerebrovasc. Dis. 2018, 27, 3563–3569. [Google Scholar] [CrossRef] [PubMed]
- Sarikaya, H.; Yilmaz, M.; Michael, N.; Miserez, A.R.; Steinmann, B.; Baumgartner, R.W. Zurich Fabry study—Prevalence of Fabry disease in young patients with first cryptogenic ischaemic stroke or TIA. Eur. J. Neurol. 2012, 19, 1421–1426. [Google Scholar] [CrossRef] [PubMed]
- Nagamatsu, K.; Sekijima, Y.; Nakamura, K.; Nakamura, K.; Hattori, K.; Ota, M.; Shimizu, Y.; Endo, F.; Ikeda, S. Prevalence of Fabry disease and GLA c.196G>C variant in Japanese stroke patients. J. Hum. Genet. 2017, 62, 665–670. [Google Scholar] [CrossRef] [Green Version]
- Gündoğdu, A.A.; Kotan, D.; Alemdar, M. The Frequency of Fabry Disease among Young Cryptogenic Stroke Patients in the City of Sakarya. J. Stroke Cerebrovasc. Dis. 2017, 26, 1334–1340. [Google Scholar] [CrossRef]
- Malavera, A.; Cadilhac, D.A.; Thijs, V.; Lim, J.Y.; Grabsch, B.; Breen, S.; Jan, S.; Anderson, C.S. Screening for Fabry Disease in Young Strokes in the Australian Stroke Clinical Registry (AuSCR). Front. Neurol. 2020, 11, 596420. [Google Scholar] [CrossRef]
- Brouns, R.; Thijs, V.; Eyskens, F.; Van den Broeck, M.; Belachew, S.; Van Broeckhoven, C.; Redondo, P.; Hemelsoet, D.; Fumal, A.; Jeangette, S.; et al. Belgian Fabry study: Prevalence of Fabry disease in a cohort of 1000 young patients with cerebrovascular disease. Stroke 2010, 41, 863–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romani, I.; Borsini, W.; Nencini, P.; Morrone, A.; Ferri, L.; Frusconi, S.; Donadio, V.A.; Liguori, R.; Donati, M.A.; Falconi, S.; et al. De novo Diagnosis of Fabry Disease among Italian Adults with Acute Ischemic Stroke or Transient Ischemic Attack. J. Stroke Cerebrovasc. Dis. 2015, 24, 2588–2595. [Google Scholar] [CrossRef] [PubMed]
- Reisin, R.C.; Mazziotti, J.; Cejas, L.L.; Zinnerman, A.; Bonardo, P.; Pardal, M.F.; Martínez, A.; Riccio, P.; Ameriso, S.; Bendersky, E.; et al. Prevalence of Fabry Disease in Young Patients with Stroke in Argentina. J. Stroke Cerebrovasc. Dis. 2018, 27, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Afanasiev, S.; Telman, G.; Hadad, R.; Altarescu, G. Fabry Disease in Young Ischemic Stroke Patients in Northern Israel. J. Stroke Cerebrovasc. Dis. 2020, 29, 105398. [Google Scholar] [CrossRef]
- Baptista, M.V.; Ferreira, S.; Pinho-e-Melo, T.; Carvalho, M.; Cruz, V.T.; Carmona, C.; Silva, F.A.; Tuna, A.; Rodrigues, M.; Ferreira, C.; et al. Mutations of the GLA Gene in Young Patients With Stroke. Stroke 2010, 41, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Marquardt, L.; Baker, R.; Segal, H.; Burgess, A.I.; Poole, D.; Hughes, D.A.; Rothwell, P.M. Fabry disease in unselected patients with TIA or stroke: Population-based study. Eur. J. Neurol. 2012, 19, 1427–1432. [Google Scholar] [CrossRef]
- Rolfs, A.; Fazekas, F.; Grittner, U.; Dichgans, M.; Martus, P.; Holzhausen, M.; Böttcher, T.; Heuschmann, P.U.; Tatlisumak, T.; Tanislav, C.; et al. Acute Cerebrovascular Disease in the Young. Stroke 2013, 44, 340–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fancellu, L.; Borsini, W.; Romani, I.; Pirisi, A.; Deiana, G.A.; Sechi, E.; Doneddu, P.E.; Rassu, A.L.; Demurtas, R.; Scarabotto, A.; et al. Exploratory screening for Fabry’s disease in young adults with cerebrovascular disorders in northern Sardinia. BMC Neurol. 2015, 15, 256. [Google Scholar] [CrossRef] [Green Version]
- Kilarski, L.L.; Rutten-Jacobs, L.C.A.; Bevan, S.; Baker, R.; Hassan, A.; Hughes, D.A.; Markus, H.S. Prevalence of CADASIL and Fabry Disease in a Cohort of MRI Defined Younger Onset Lacunar Stroke. PLoS ONE 2015, 10, e0136352. [Google Scholar] [CrossRef] [Green Version]
- Lanthier, S.; Saposnik, G.; Lebovic, G.; Pope, K.; Selchen, D.; Moore, D.F.; Selchen, D.; Boulanger, J.-M.; Buck, B.; Butcher, K.; et al. Prevalence of Fabry Disease and Outcomes in Young Canadian Patients With Cryptogenic Ischemic Cerebrovascular Events. Stroke 2017, 48, 1766–1772. [Google Scholar] [CrossRef]
- Lee, T.-H.; Yang, J.-T.; Lee, J.-D.; Chang, K.-C.; Peng, T.-I.; Chang, T.-Y.; Huang, K.-L.; Liu, C.-H.; Ryu, S.-J.; Burlina, A.P. Genomic screening of Fabry disease in young stroke patients: The Taiwan experience and a review of the literature. Eur. J. Neurol. 2019, 26, 553–555. [Google Scholar] [CrossRef]
- Dubuc, V.; Moore, D.F.; Gioia, L.C.; Saposnik, G.; Selchen, D.; Lanthier, S. Prevalence of Fabry Disease in Young Patients with Cryptogenic Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2013, 22, 1288–1292. [Google Scholar] [CrossRef]
- Germain, D.P.; Elliott, P.M.; Falissard, B.; Fomin, V.V.; Hilz, M.J.; Jovanovic, A.; Kantola, I.; Linhart, A.; Mignani, R.; Namdar, M.; et al. The effect of enzyme replacement therapy on clinical outcomes in male patients with Fabry disease: A systematic literature review by a European panel of experts. Mol. Genet. Metab. Rep. 2019, 19, 100454. [Google Scholar] [CrossRef] [PubMed]
- Germain, D.P.; Arad, M.; Burlina, A.; Elliott, P.M.; Falissard, B.; Feldt-Rasmussen, U.; Hilz, M.J.; Hughes, D.A.; Ortiz, A.; Wanner, C.; et al. The effect of enzyme replacement therapy on clinical outcomes in female patients with Fabry disease—A systematic literature review by a European panel of experts. Mol. Genet. Metab. 2019, 126, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Germain, D.P.; Moiseev, S.; Suárez-Obando, F.; Al Ismaili, F.; Al Khawaja, H.; Altarescu, G.; Barreto, F.C.; Haddoum, F.; Hadipour, F.; Maksimova, I.; et al. The benefits and challenges of family genetic testing in rare genetic diseases—lessons from Fabry disease. Mol. Genet. Genomic Med. 2021, 9, 1666. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Ohashi, T.; Sakuma, M.; Ida, H.; Eto, Y. Clinical manifestations and natural history of Japanese heterozygous females with Fabry disease. J. Inherit. Metab. Dis. 2008, 31, 483–487. [Google Scholar] [CrossRef]
- Rombach, S.M.; Aerts, J.M.F.G.; Poorthuis, B.J.H.M.; Groener, J.E.M.; Donker-Koopman, W.; Hendriks, E.; Mirzaian, M.; Kuiper, S.; Wijburg, F.A.; Hollak, C.E.M.; et al. Long-Term Effect of Antibodies against Infused Alpha-Galactosidase A in Fabry Disease on Plasma and Urinary (lyso)Gb3 Reduction and Treatment Outcome. PLoS ONE 2012, 7, e47805. [Google Scholar] [CrossRef]
- Xiao, K.; Lu, D.; Hoepfner, J.; Santer, L.; Gupta, S.; Pfanne, A.; Thum, S.; Lenders, M.; Brand, E.; Nordbeck, P.; et al. Circulating microRNAs in Fabry Disease. Sci. Rep. 2019, 9, 15277. [Google Scholar] [CrossRef] [Green Version]
- Cammarata, G.; Scalia, S.; Colomba, P.; Zizzo, C.; Pisani, A.; Riccio, E.; Montalbano, M.; Alessandro, R.; Giordano, A.; Duro, G. A pilot study of circulating microRNAs as potential biomarkers of Fabry disease. Oncotarget 2018, 9, 27333–27345. [Google Scholar] [CrossRef]
Criteria [Patients Screened (M|F), n] | Age Range | Primary Screening Test | Patients with Variants (M|F), n [Prevalence (M|F), %]† | Detected Variants (n) | Reference, Year, Country |
---|---|---|---|---|---|
Dialysis patients [722 (440|282)] | unknown | Plasma α-Gal A | 2 (2|0) [0.3 (0.5|0)] | p.Q357* (1) | Utsumi [46], 2000, Japan |
Dialysis patients [514 (514|-)] | 20–90 | Plasma α-Gal A | 5 (5|-) [1.0 (1.0|-)] | p.M296I (3), p.A97V (1), p.G373D (1), p.E66Q (1)# | Nakao [47], 2003, Japan |
Dialysis patients [2480 (1516|964)] | 61.8 (mean) | DBS α-Gal A | 4 (4|0) [0.2 (0.3|0)] | p.A121P(1), p.W162R (1), p.I239T (1), p.R112H (1) | Kotanko [50], 2004, Austria |
Dialysis patients [450 (450|-)] | 26–89 | Plasma α-Gal A | 1 (1|-) [0.2 (0.2|-)] | g.10252_10254del3 (1) | Ichinose [60], 2005, Japan |
Dialysis patients [3370 (1521|1849)] | unknown | DBS α-Gal A | 4 (3|1) [0.1 (0.2|0.1)] | p.G360S (1), p.R112H (1), p.I317T (1), p.Q280K (1), p.A143T (1)# | Merta [61], 2007, Czech Republic |
Dialysis patients [922 (180|742)] | 18–80 (males), >16 (females) | DBS α-Gal A | 1 (1|0) [0.1 (0.6|0)] | p.W236R (1), p.A143T (2)# | Terryn [62], 2007, Belgium |
CKD patients involving dialysis and transplant patients [499 (499|-)] | 63 (mean) | Plasma α-Gal A | 0 (0|-) [0 (0|-)] | Andrade [74], 2008, Canada | |
Dialysis patients [480 (311|169)] | >40 (male), >50 (female) | Serum Gb3 | 0 (0|0) [0 (0|0)] | Kim [63], 2010, Korea | |
Dialysis patients [911 (543|368)] | 20–91 | DBS α-Gal A | 2 (1|1) [0.2 (0.2|0.3)] | c.595_596insG (1), c.1037delG (1), p.R118C (3)#, p.D313Y (2)# | Gaspar [64], 2010, Spain |
Dialysis patients [933 (557|376)] | unknown | DBS α-Gal A | 1 (0|1) [0.1 (0|0.3)] | p.A73E (1), p.E66Q (2)# | Nishino, et al. [65], 2012, Japan |
Dialysis patients [1080 (1080|-)] | 63.4 (mean) | Plasma α-Gal A | 2 (2|-) [0.2 (0.2|-)] | p.G195V (1), p.M296I (1), p.E66Q (8)# | Doi [66], 2012, Japan |
Dialysis patients [1136 (615|521)] | 18–90 | DBS α-Gal A | 2 (2|0) [0.2 (0.3|0)] | p.L275F (1), p.P214S (1) | Okur [58], 2013, Turkey |
Dialysis patients [1453 (1453|-)] | 25–95 | Plasma α-Gal A, Plasma Lyso-Gb3 | 1 (1|-) [0.1 (0.1|-)] | p.Y173* (1), p.E66Q (9)# | Maruyama [67], 2013, Japan |
Dialysis patients [1401 (1401|-)] | unknown | DBS α-Gal A | 2 (2|-) [0.1 (0.1|-)] | p.R363H (1), p.R112H (1) | Rozenfeld [68], 2015, Argentina |
CKD stage1-5 [313 (167|146)] | 18–70 | DBS α-Gal A | 3 (3|0) [1.0 (1.8|0)] | p.N34H (1), c.1072_1074del(p.358delE) (1), p.F229V (1) | Turkmen [75], 2016, Turkey |
Dialysis patients [8547 (5408|3139)] | 5–98 | Plasma α-Gal A | 2 (2|0) [0.02 (0.04|0)] | p.R112C (2), p.E66Q (11)# | Saito [69], 2016, Japan |
Dialysis patients [1527 (847|680)] | 60.2 (mean) | DBS α-Gal A | 4 (4|0) [0.3 (0.5|0)] | p.M296V (1), p.R112H (1), p.S65N (1), c.1212_1214delAAG (1), p.D313Y (1)# | Sayilar [70], 2016, Turkey |
Dialysis patients [2.583 (2583|-)] | 18–91 | DBS α-Gal A | 3 (3|-) [0.1 (0.1|-)] | p.W204* (1), p.A368T (1), p.C52F (1) | Silva [71], 2016, Brazil |
Dialysis patients [142 (81|61)] | 20–60 | DBS α-Gal A | 0 (0|0) [0 (0|0)] | Trachoo [72], 2017, Thailand | |
CKD not on dialysis [1453 (783|656)] | 59.3 (mean) | DBS α-Gal A | 0 (0|0) [0 (0|0)] | p.D313Y (2)#, p.A143T (1)# | Yeniçerioğlu [76], 2017, Turkey |
Kidney transplant recipients [1095 (648|447)] | unknown | DBS α-Gal A (male), GLA sequencing (female) | 1 (1|0) [0.1 (0.2|0)] | p.Q330R (1), p.D313Y (2)#, p.S126G (1)# | Yılmaz [73], 2017, Turkey |
Dialysis patients [108 (108|-)] | unknown | DBS α-Gal A | 1 (1|-) [0.9 (0.9|-)] | p.G35V (1) | Veloso [48], 2018, Brazil |
Dialysis patients [227 (148|79)] | 65 (mean) | GLA sequencing | 1 (1|0) [0.4 (0.7|0)] | p.I91T (1), p.D313Y (1)# | Zizzo [49], 2018, Italy |
Pre-end stage renal disease [1012 (1012|-)] | 20–85 | DBS α-Gal A | 6 (6|-) [0.6 (0.6|-)] | p.T410A (1), p.G318E (1), IVS4+919G>A (3), p.P210S | Lin [77], 2018, Taiwan |
Dialysis patients [9604 (9604|-)] | 18–100 | DBS α-Gal A | 24 (24|-) [0.2 (0.2|-)] | p.C56S (1), p.L415P (4), c.640-1G>C (1), p.R363H (3), p.G85D (1), c.886_887delAT (1), Deletion exons 3-4 (2), c.1235_1236delCT(p.T412fs) (1), p.D109G (2), p.W81* (1), p.P205S (1), p.P409S (1), p.A156_A160del (1), c.902_905insTGTC (1), p.D55G (1), p.G80D (1) | Frabasil [51], 2019, Argentina |
Dialysis patients [5572 (3551|2021)] | 18–59 | DBS α-Gal A | 20 (19|1) [0.4 (0.5|0.05)] | p.F273S (1), p.L54P (3), p.N215S (1), p.Y134D (1), p.W262* (1), p.R220* (2), p.R342Q (1), p.D170Y (1), p.W399* (1), p.R227* (1), p.W204C (1), p.E7* (1), p.G183S (1), p.A37S (1), p.C56S (1), p.L68P (1), p.G328R (1) | Moiseev [52], 2019, Russia |
Dialysis patients and patients with transplant [5657 (3442| 2215) ] | 48 (mean) | DBS α-Gal A (male), GLA sequencing (female) | 13 (9|4) [0.2 (0.3|0.2)] | p.R227Q (1), p.Q330R (1), p.V199M (1), p.P205T (1), p.E59V (1), IVS6-10G>A (1), p.L54F (1), p.358delE (1), p.S364C (1), p.T39S (1), p.L8Q (1), p.P205S (1), p.C223* (1), p.S126G (4)#, p.D313Y (19)# | Yalın [53], 2019, Turkey |
Dialysis patients [526 (325|201)] | unknown | DBS α-Gal A | 0 (0|0) [0 (0|0)] | Jahan [54], 2020, Australia | |
Kidney transplant recipients [265 (175|90)] | 53.6 (mean) | GLA sequencing, DBS α-Gal A, DBS Lyso- Gb3 | 3 (1|2) [1.1 (0.6|2.2)] | p.F113L (1), p.D615H (1), p.R220* (1), p.D313Y (2)#, p.S126G (2)# | Veroux [55], 2020, Italy |
Kidney transplant recipients [301 (180|120)] | 43 (mean) | GLA sequencing | 1 (1|0) [0.3 (0.6|0)] | c.1093_1101dup (1), p.D313Y (1)#, p.A143T (1)# | Erdogmus [56], 2020, Turkey |
CKD stage3-5 [397 (279|118)] | 32–75 | Dried urine spots Gb3 | 0 (0|0) [0 (0|0)] | Auray-Blais [78], 2020, Canada | |
Dialysis patients [619 (unknown)] | >18 | DBS α-Gal A | 3 (0|3) [0.5 (unknown)] | p.A352G (3) | Alhemyadi [57], 2020, Saudi Arabia |
Reduced estimated glomerular filtration rate [1084 (505|579)] | 20–70 | DBS α-Gal A (male), DBS α-Gal A and GLA sequencing (female) | 1 (0|1) [0.1 (0|0.2)] | p.L300F (1) | Reynolds [79], 2021, UK |
Dialysis patients and patients with transplant [819 (819|-)] | 18–70 | DBS α-Gal A | 1 (1|-) [0.1 (0.1|-)] | p.F113L (1) | Vigneau [59], 2021, France |
Criteria [Patients Screened (M|F), n] | Age Range | Primary Screening Test | Patients with Variants (M|F), n [Prevalence (M|F), %]† | Detected Variants (n) | Reference, Year, Country |
---|---|---|---|---|---|
LVH [230 (230|-)] | 16–87 | Plasma α-Gal A | 7 (7|-) [3.0 (3.0|-)] | p.M296I (1), p.A20P (1) | Nakao [40], 1995, Japan |
HCM [153 (153|-)] | 8–71 | Plasma α-Gal A | 5 (5|-) [3.3 (3.3|-)] | p.N215S (3), p.I317T (1), c.1223del (1), p.D313Y (1)# | Sachdev [80], 2002, UK |
HCM [508 (328|108)] | 58 (mean) | Plasma α-Gal A | 4 (3, 1) [0.8 (0.9|0.9)] | p.L89P (1), p.E358del (1), p.S238N (2), p.A143T (1)# | Monserrat [83], 2007, Spain |
HCM [392 (278|114)] | 18–79 | DBS α-Gal A | 4 (4, -) [1.0 (1.4|0)] | p.T162C (1), p.F113L (2), p.N215S (1) | Hagege [84], 2011, France |
HCM [1386 (885|501)] | 58 (mean) | GLA sequencing | 4 (2|2) [0.3 (0.2|0.4)] | p.N215S (2), p.D244N (1), p.T410A (1), p.R118C (1)#, p.A143T (2)# | Elliott [91], 2011, 13 European countries |
LVH [738 (738|-)] | unknown | Serum α-Gal A | 0 (0|-) [0 (0|-)] | p.E66Q (3)# | Mawatari [85], 2013, Japan |
LVH [540 (362|178)] | 19–93 | DBS α-Gal A (male), GLA sequencing (female) | 1 (1|0) [0.2 (0.3|0)] | p.A5E (1), p.A143T (4)# | Terryn [86], 2013, Belgium |
LVH [100 (100|-)] | 33–83 | DBS α-Gal A | 4 (4|-) [4.0 (4.0|-)] | intronic splice variants (2), p.N215S (1), p.Y152H (1) | Palecek [87], 2014, Czech Republic |
LVH [47 (23|24)] | 25–90 | DBS α-Gal A | 1 (0|1) [2.1 (0|4.2)] | p.W262L (1) | Baptista [88], 2015, Portugal |
LVH [2596 (1689|907)] | 64 (mean) | Urinary Gb3 | 0 (0|0) [0 (0|0)] | Gaggl [89], 2016, Austria | |
HCM [273 (169|104)] | 58 (mean) | DBS α-Gal A | 3 (1|2) [1.1 (0.6|1.9)] | p.W226* (1), p.N224S (1), c.547+3A>G (1) | Seo [90], 2016, Korea |
HCM [177 (unknown)] | 15–87 | Plasma α-Gal A | 2 (unknown) [1.1 (unknown)] | p.R112L (1), IVS4+919G>A (1) | Kubo [92], 2017, Japan |
Coronary artery disease, conduction or rhythm abnormalities, non-ishemic cardiomyopathy, and valvular dysfunction [2256 (1404|852)] | 19–95 | Urinary Gb3, DBS α-Gal A, GLA sequencing | 1 (0|1) [0 (0|0.1)] | p.D83N (1), p.D313Y (7)#, p.R118C (2)# | Schiffmann [99], 2018, USA |
HCM [585 (413|172)] | 50 (mean: male), 57 (mean: female) | DBS α-Gal A (male), GLA sequencing (female) | 2 (1|1) [0.3 (0.2|0.6)] | p.N215S (2) | Maron [93], 2018, USA |
LVH [986 (986|-)] | unknown | Plasma α-Gal A | 3 (3|-) [0.3 (0.3|-)] | p.G328R (1), p.R301Q (1), p.H46R (1), p.E66Q (2)# | Kim [94], 2019, Korea |
LVH [277 (215|62)] | 25–79 | Plasma α-Gal A, Plasma Lyso-Gb3 | 2 (1|1) [0.7 (0.5|1.6)] | intronic splice variants (1), p.R112H (1), p.E66Q (2)# | Yamashita [95], 2019, Japan |
Conduction disordaers requiring a pacemaker [188 (124|64)] | 63 (mean) | α-Gal A (male), GLA sequencing (female) | 0 (0|0) [0 (0|0)] | p.D313Y (1)# | Lopez-Sainz [100], 2019, Spain |
HCM [80 (53|27)] | 18–65 | GLA sequencing | 2 (2|0) [2.5 (3.8|0)] | p.R112C (1), p.R301Q (1) | Barman [96], 2019, Turkey |
LVNC [78 (49|29)] | 47 (mean) | DBS α-Gal A (male), GLA sequencing (female) | 0 (0|0) [0 (0|0)] | Azevedo [101], 2019, Portugal | |
LVH [190 (119|71)] | 47.2 (mean) | GLA sequencing | 0 (0|0) [0 (0|0)] | p.A143T (1)#, p.D313Y (1)# | Barman [98], 2019, Turkey |
LVH [266 (167|99)] | 27–98 | DBS α-Gal A | 5 (5|0) [1.9 (3.0|0)] | IVS4+919G>A (5) | Sadasivan [97], 2020, Canada and Hong Kong |
LVH [511 (332|179)] | 18–75 | DBS α-Gal A | 1 (1|0) [0.2 (0.3|0)] | p.N215S (1), p.A143T (1)# | Fuller [81], 2020, Australia |
LVH [499 (336|163)] | 66.4 (mean) | DBS α-Gal A | 8 (8|0) [1.6 (2.4|0)] | IVS4+919G>A (8) | Fan [82], 2021, Hong Kong |
Criteria [Patients Screened (M|F), n] | Age Range | Primary Screening Test | Patients with Variants (M|F), n [Prevalence (M|F), %]† | Detected Variants (n) | Reference, Year, Country |
---|---|---|---|---|---|
Cryptogenic stroke [103 (64|39)] | 16–60 | DBS α-Gal A | 0 (0|0) [0 (0|0)] | Brouns [103], 2007, Belgium | |
First ischemic stroke [558 (558|-)] | 15–49 | Plasma α-Gal A | 0 (0|-) [0 (0|-)] | p.143T (1)#, p.D313Y (1)# | Wozniak [104], 2010, USA |
Stroke, unexplained white matter lesions, or vertebrobasilar dolichoectasia [1000 (547|453)] | 18–60 | DBS α-Gal A (male), GLA sequencing (female) | 0 (0|0) [0 (0|0)] | p.A143T (2)#, p.S126G (1)#, p.D313Y (5)# | Brouns [110], 2010, Belgium |
First stroke [493 (300|193)] | 18–55 | GLA sequencing | 0 (0|0) [0 (0|0)] | p.R118C (6)#, p.D313Y (6)# | Baptista [114], 2010, Portugal |
Stroke or transient ischemic attack [1046 (502|544)] | 24–103 | GLA sequencing | 0 (0|0) [0 (0|0)] | p.D313Y (5)# | Marquardt [115], 2012, UK |
Stroke or transient ischemic attack [150 (102|48)] | 18–55 | Serum α-Gal A | 0 (0|0) [0 (0|0)] | Sarikaya [106], 2012, Switzerland | |
Stroke or transient ischemic attack [5023 (2962|2061)] | 18–55 | GLA sequencing | unknown [unknown] | p.V315I (1), p.D83N (1), p.L415F (1), p.S102L (1), p.E418G (1),p.R118C (1)#, p.S126G (3)#, p.A143T (4)#, p.D313Y (4)# | Rolfs [116], 2013, 15 European countries |
Cryptogenic ischemic stroke [100 (55|45)] | 16–55 | GLA sequencing, Plasma Lyso-Gb3 | 1 (1|0) [1.0 (1.8|0)] | intronic splice variants (1) | Dubuc [121], 2013, Canada |
Stroke, transient ischemic attack, white matter lesions, or cerebral venous thrombosis [178 (73|105)] | 18–55 | GLA sequencing | 1 (1|0) [0.6 (1.4|0)] | p.R227Q (1), p.D313Y (1)# | Fancellu [117], 2015, Italy |
Lacunar stroke [994 (706|288)] | 56.7 (mean) | GLA sequencing | 0 (0|0) [0 (0|0)] | p.R118C (1)# | Kilarski [118], 2015, UK |
Acute ischemic stroke or transient ischemic attack [108 (66|42)] | 18–60 | Leukocyte α-Gal A (male), GLA sequencing (female) | 3 (1|2) [2.7 (1.5|4.8)] | p.R301G (1), p.L415R (1), c.548-3_553del (1) | Romani [111], 2015, Italy |
Stroke [588 (363|225)] | 74.1 (mean) | DBS α-Gal A | 1 (0|1) [0.2 (0|0.4)] | p.M1T (1), p.E66Q (7)# | Nagamatsu [107], 2017 |
Cryptogenic stroke [54 (30|24)] | 24–55 | DBS α-Gal A | 2 (2|0) [3.7 (6.7|0)] | p.R227Q (2) | Gündoğdu [108], 2017, Yurkey |
Cryptogenic ischemic stroke or transient ischemic attack [397 (218|179)] | 18–55 | GLA sequencing | 0 (0|0) [0 (0|0)] | p.R118C (1)#, p.D313Y (1)# | Lanthier [119], 2017, Canada |
Stroke or transient ischemic attack [311 (168|143)] | 18–55 | DBS α-Gal A (male), GLA sequencing (female) | 1 (0|1) [0.3 (0|0.7)] | p.M296I (1), p.S126G (1)#, p.D313Y (2)# | Reisin [112], 2018, Argentina |
Ischemic stroke or intracerebral hemorrhage [516 (396|120)] | 21–60 | Plasma α-Gal A, Plasma Lyso-Gb3 | 0 (0|0) [0 (0|0)] | p.E66Q (2)# | Kinoshita [105], 2018, Japan |
Ischemic stroke or intracerebral hemorrhage [1000 (750|250)] | 18–55 | GLA sequencing (26 variants) | 2 (2|0) [0.2 (0.3|0)] | IVS4+919G>A (2) | Lee [120], 2019, Taiwan |
Cryotogenic stroke [50 (27|23)] | 48–56 | DBS α-Gal A | 0 (0|0) [0 (0|0)] | p.R118C (1)# | Malavera [109], 2020, Australia |
Cryptogenic stroke [114 (75|39)] | 18–50 | DBS α-Gal A (male), GLA sequencing (female) | 3 (2|1) [2.6 (2.7|2.6)] | p. F113I (1), intronic splice variants (2) | Afanasiev [113], 2020, Israel |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawada, T.; Kido, J.; Sugawara, K.; Nakamura, K. High-Risk Screening for Fabry Disease: A Nationwide Study in Japan and Literature Review. Diagnostics 2021, 11, 1779. https://doi.org/10.3390/diagnostics11101779
Sawada T, Kido J, Sugawara K, Nakamura K. High-Risk Screening for Fabry Disease: A Nationwide Study in Japan and Literature Review. Diagnostics. 2021; 11(10):1779. https://doi.org/10.3390/diagnostics11101779
Chicago/Turabian StyleSawada, Takaaki, Jun Kido, Keishin Sugawara, and Kimitoshi Nakamura. 2021. "High-Risk Screening for Fabry Disease: A Nationwide Study in Japan and Literature Review" Diagnostics 11, no. 10: 1779. https://doi.org/10.3390/diagnostics11101779
APA StyleSawada, T., Kido, J., Sugawara, K., & Nakamura, K. (2021). High-Risk Screening for Fabry Disease: A Nationwide Study in Japan and Literature Review. Diagnostics, 11(10), 1779. https://doi.org/10.3390/diagnostics11101779