Intergenic SNPs in Obstructive Sleep Apnea Syndrome: Revealing Metabolic, Oxidative Stress and Immune-Related Pathways
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. DNA Extraction and Genotyping
2.3. Statistical Analysis
2.4. BLAST Analyses of Pseudogene and SNP Alignment in Intergenic Regions
2.5. Determination of SNP Interactions, and the Associated Genes’ Biological Networks
3. Results
3.1. Demographics, Clinical, Biochemical and PSG Characteristics of the Cohort
3.2. SNP Variability and Multivariate Analyses of SNP-OSAHS Associations in the Clinical Cohort and Power Calculations
3.3. In Silico Analyses of Gene and Pathway Associations of Non-Invariant SNPs
3.3.1. BLAST Analyses
3.3.2. Identification of SNP Gene Targets and Transcription Factors via GeneCards and SNPSEA
4. Discussion
4.1. Adipocytokine Signaling in OSAHS
4.2. Cancer-Related Networks in OSAHS
4.3. Adipocytokines, Cancer and OSAHS
4.4. Limitations and Strengths
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farias Tempaku, P.; Leite Santoro, M.; Bittencourt, L.; D’Almeida, V.; Iole Belangero, S.; Tufik, S. Genome-wide association study reveals two novel risk alleles for incident obstructive sleep apnea in the EPISONO cohort. Sleep Med. 2020, 66, 24–32. [Google Scholar] [CrossRef]
- Vavougios, G.D.; George, D.G.; Pastaka, C.; Zarogiannis, S.G.; Gourgoulianis, K.I. Phenotypes of comorbidity in OSAS patients: Combining categorical principal component analysis with cluster analysis. J. Sleep Res. 2016, 25, 31–38. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Chen, R.; Wang, J.; Pan, W.; Sun, Y.; Han, F.; Wang, Q.; Liu, C. Neurocognitive impairment is correlated with oxidative stress in patients with moderate-to-severe obstructive sleep apnea hypopnea syndrome. Respir. Med. 2016, 120, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Dodds, S.; Williams, L.J.; Roguski, A.; Vennelle, M.; Douglas, N.J.; Kotoulas, S.C.; Riha, R.L. Mortality and morbidity in obstructive sleep apnoea-hypopnoea syndrome: Results from a 30-year prospective cohort study. ERJ Open Res. 2020, 6. [Google Scholar] [CrossRef]
- Marin, J.M.; Carrizo, S.J.; Vicente, E.; Agusti, A.G. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: An observational study. Lancet 2005, 365, 1046–1053. [Google Scholar] [CrossRef]
- Gottlieb, D.J.; Yenokyan, G.; Newman, A.B.; O’Connor, G.T.; Punjabi, N.M.; Quan, S.F.; Redline, S.; Resnick, H.E.; Tong, E.K.; Diener-West, M.; et al. Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure: The sleep heart health study. Circulation 2010, 122, 352–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kendzerska, T.; Gershon, A.S.; Hawker, G.; Tomlinson, G.; Leung, R.S. Obstructive sleep apnea and incident diabetes. A historical cohort study. Am. J. Respir. Crit. Care Med. 2014, 190, 218–225. [Google Scholar] [CrossRef] [Green Version]
- Cade, B.E.; Chen, H.; Stilp, A.M.; Gleason, K.J.; Sofer, T.; Ancoli-Israel, S.; Arens, R.; Bell, G.I.; Below, J.E.; Bjonnes, A.C.; et al. Genetic Associations with Obstructive Sleep Apnea Traits in Hispanic/Latino Americans. Am. J. Respir. Crit. Care Med. 2016, 194, 886–897. [Google Scholar] [CrossRef]
- Casale, M.; Pappacena, M.; Rinaldi, V.; Bressi, F.; Baptista, P.; Salvinelli, F. Obstructive sleep apnea syndrome: From phenotype to genetic basis. Curr. Genom. 2009, 10, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Innocenti, F. Moving away from candidate genes: A ‘genome-wise’ discovery of gemcitabine myelotoxicity. Pharmacogenomics 2012, 13, 1113–1114. [Google Scholar] [CrossRef] [Green Version]
- Liutkeviciene, R.; Vilkeviciute, A.; Morkunaite, G.; Glebauskiene, B.; Kriauciuniene, L. SIRT1 (rs3740051) role in pituitary adenoma development. BMC Med. Genet. 2019, 20, 185. [Google Scholar] [CrossRef] [Green Version]
- Buniello, A.; MacArthur, J.A.L.; Cerezo, M.; Harris, L.W.; Hayhurst, J.; Malangone, C.; McMahon, A.; Morales, J.; Mountjoy, E.; Sollis, E.; et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019, 47, D1005–D1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000, 7, 203–214. [Google Scholar] [CrossRef]
- Kumar, S.P.; Dalai, V.; Singh, N.K.; Sharma, T.R. Comparative analysis of the 100 kb region containing the Pi-k(h) locus between indica and japonica rice lines. Genom. Proteom. Bioinform. 2007, 5, 35–44. [Google Scholar] [CrossRef]
- Lanzer, M.; de Bruin, D.; Ravetch, J.V. Transcription mapping of a 100 kb locus of Plasmodium falciparum identifies an intergenic region in which transcription terminates and reinitiates. EMBO J. 1992, 11, 1949–1955. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1–30. [Google Scholar] [CrossRef]
- Pers, T.H.; Timshel, P.; Hirschhorn, J.N. SNPsnap: A Web-based tool for identification and annotation of matched SNPs. Bioinformatics 2015, 31, 418–420. [Google Scholar] [CrossRef]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Tian, W. Explaining the disease phenotype of intergenic SNP through predicted long range regulation. Nucleic Acids Res. 2016, 44, 8641–8654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gharib, S.A.; Hayes, A.L.; Rosen, M.J.; Patel, S.R. A pathway-based analysis on the effects of obstructive sleep apnea in modulating visceral fat transcriptome. Sleep 2013, 36, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Hosogai, N.; Fukuhara, A.; Oshima, K.; Miyata, Y.; Tanaka, S.; Segawa, K.; Furukawa, S.; Tochino, Y.; Komuro, R.; Matsuda, M.; et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 2007, 56, 901–911. [Google Scholar] [CrossRef] [Green Version]
- Sillah, A.; Watson, N.F.; Schwartz, S.M.; Gozal, D.; Phipps, A.I. Sleep apnea and subsequent cancer incidence. Cancer Causes Control 2018, 29, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Gozal, D.; Farré, R.; Nieto, F.J. Putative Links Between Sleep Apnea and Cancer: From Hypotheses to Evolving Evidence. Chest 2015, 148, 1140–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brzecka, A.; Sarul, K.; Dyła, T.; Avila-Rodriguez, M.; Cabezas-Perez, R.; Chubarev, V.N.; Minyaeva, N.N.; Klochkov, S.G.; Neganova, M.E.; Mikhaleva, L.M.; et al. The Association of Sleep Disorders, Obesity and Sleep-Related Hypoxia with Cancer. Curr. Genom. 2020, 21, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Hunyor, I.; Cook, K.M. Models of intermittent hypoxia and obstructive sleep apnea: Molecular pathways and their contribution to cancer. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R669–R687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fagny, M.; Platig, J.; Kuijjer, M.L.; Lin, X.; Quackenbush, J. Nongenic cancer-risk SNPs affect oncogenes, tumour-suppressor genes, and immune function. Br. J. Cancer 2020, 122, 569–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meszaros, M.; Tarnoki, A.D.; Tarnoki, D.L.; Kovacs, D.T.; Forgo, B.; Lee, J.; Sung, J.; Vestbo, J.; Müller, V.; Kunos, L.; et al. Obstructive sleep apnea and hypertriglyceridaemia share common genetic background: Results of a twin study. J. Sleep Res. 2020, 29, e12979. [Google Scholar] [CrossRef] [Green Version]
- Diao, S.; Wu, X.; Zhang, X.; Hao, Y.; Xu, B.; Li, X.; Tian, L.; Miao, Y.; Zhao, X.; Ye, F.; et al. Obesity-related proteins score as a potential marker of breast cancer risk. Sci. Rep. 2021, 11, 8230. [Google Scholar] [CrossRef]
- Divella, R.; De Luca, R.; Abbate, I.; Naglieri, E.; Daniele, A. Obesity and cancer: The role of adipose tissue and adipo-cytokines-induced chronic inflammation. J. Cancer 2016, 7, 2346–2359. [Google Scholar] [CrossRef] [Green Version]
OSAHS (n = 102) | Controls (n = 50) | |
---|---|---|
Age | 56.99 ± 13.1 | 53.5 ± 9.6 |
Male/Female | 74 (72.5%)/28 (27.5%) | 19 (38%)/31 (62%) |
BMI | 32.83 ± 7.16 | 26.56 ± 3.6 |
AHI | 42.57 ± 24.38 | 38.30 ± 25.43 |
Smokers | 41 (40.2%) | 10 (20%) |
Diabetes | 11 (10.8%) | 0 (0%) |
Hyperlipidemia | 52 (51%) | 9 (18%) |
Hypertension | 61 (59.8%) | 9 (18%) |
Coronary heart disease | 17 (16.7%) | 1 (2%) |
Controls (n = 50) | OSAHS (n = 102) | p-Value | |
---|---|---|---|
Glucose | 93.08 ± 10.41 | 10.42 ± 18.82 | 0.531 |
Cholesterol | 168.56 ± 61.80 | 171.84 ± 35.03 | 0.728 |
Triglyceride | 140.0000 ± 85.41 | 142.4608 ± 54.74 | 0.830 |
HDL | 51.5000 ± 10.22 | 46.2529 ± 8.44 | 0.001 |
LDL | 119.1240 ± 33.86 | 113.7039 ± 35.40 | 0.370 |
CRP | 0.26 ± 0.24 | 0.87 ± 0.92 | <0.001 |
AHI | 3.48 ± 0.63 | 38.30 ± 25.43 | <0.001 |
ODI | 2.80 ± 1.17 | 40.89 ± 30.71 | <0.001 |
TST | 7.44 ± 1.50 | 7.21 ± 1.15 | 0.334 |
TST90% | 0.61 ± 0.76 | 29.67 ± 44.49 | <0.001 |
AI | 0.67 ± 0.53 | 15.78 ± 20.26 | <0.001 |
B | S.E. | Wald | df | Sig. | Exp(B) | 95% C.I. for EXP(B) | ||
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Sex | −1.019 | 0.521 | 3.826 | 1 | 0.050 | 0.361 | 0.130 | 1.002 |
Age | 0.027 | 0.021 | 1.615 | 1 | 0.204 | 1.027 | 0.986 | 1.070 |
BMI | 0.001 | 0.042 | 0.001 | 1 | 0.978 | 1.001 | 0.922 | 1.087 |
OSAHS Group | 3.091 | 3 | 0.378 | |||||
Control | 0.310 | 0.710 | 0.191 | 1 | 0.662 | 1.364 | 0.339 | 5.485 |
Mild to Moderate OSAHS | 1.011 | 0.974 | 1.077 | 1 | 0.299 | 2.747 | 0.407 | 18.526 |
Severe OSAHS | 1.261 | 0.784 | 2.588 | 1 | 0.108 | 3.530 | 0.759 | 16.413 |
Glucose | 0.040 | 0.017 | 5.352 | 1 | 0.021 | 1.041 | 1.006 | 1.077 |
Cholesterol | −0.004 | 0.007 | 0.288 | 1 | 0.592 | 0.996 | 0.983 | 1.010 |
Triglyceride | 0.002 | 0.004 | 0.193 | 1 | 0.660 | 1.002 | 0.994 | 1.010 |
HDL | 0.008 | 0.029 | 0.074 | 1 | 0.785 | 1.008 | 0.952 | 1.068 |
LDL | 0.007 | 0.009 | 0.654 | 1 | 0.419 | 1.007 | 0.990 | 1.024 |
CRP | −0.196 | 0.351 | 0.311 | 1 | 0.577 | 0.822 | 0.413 | 1.636 |
Constant | −3.280 | 2.752 | 1.421 | 1 | 0.233 | 0.038 |
SNP (RSID) | Pseudogene Accession | GH Type | BLAST % Identity | Gene Targets | TFBS | GH Score |
---|---|---|---|---|---|---|
rs116133558 | AC114402.1 | enhancer | 100% | ENSG00000227417, LOC100420338, SNRPE, LAX1, ZBED6, ZC3H11A, ENSG00000223505 | CEBPB, FOS, JUND, RAD21 | 0.6 |
rs999944 | AC007880.2 | promoter, enhancer | 100% | lnc-SLC1A4-5, VPS54, SERTAD2, RN7SL211P, LINC02576, SLC1A4, RAB1A, LINC01800, ACTR2, AFTPH, ENSG00000199964 | 256 TFs | 1.8 |
Index | Pathway | p-Value | Adj.p-Value |
---|---|---|---|
1 | prion disease pathway WP3995 | 3.815 × 10−18 | 1.026 × 10−15 |
2 | androgen receptor signaling pathway WP138 | 4.897 × 10−15 | 6.587 × 10−13 |
3 | adipogenesis WP236 | 2.142 × 10−13 | 1.887 × 10−11 |
4 | TGF-beta signaling pathway WP366 | 2.806 × 10−13 | 1.887 × 10−11 |
5 | sudden infant death syndrome (SIDS) susceptibility pathways WP706 | 6.118 × 10−13 | 3.292 × 10−11 |
6 | The effect of progerin on the involved genes in Hutchinson–Gilford progeria syndrome WP4320 | 1.628 × 10−12 | 7.299 × 10−11 |
7 | circadian rhythm related genes WP3594 | 5.297 × 10−12 | 2.036 × 10−10 |
8 | integrated breast Cancer pathway WP1984 | 3.026 × 10−11 | 1.017 × 10−9 |
9 | nuclear receptors WP170 | 6.664 × 10−11 | 1.992 × 10−9 |
10 | hematopoietic stem cell gene regulation by GABP alpha/beta complex WP3657 | 1.224 × 10−10 | 3.292 × 10−9 |
Index | Pathway | p-Value | Adj.p-Value |
---|---|---|---|
1 | transcriptional misregulation in cancer | 6.270 × 10−19 | 8.652 × 10−17 |
2 | pathways in cancer | 1.167 × 10−9 | 8.053 × 10−8 |
3 | osteoclast differentiation | 2.292 × 10−9 | 1.054 × 10−7 |
4 | human T-cell leukemia virus 1 infection | 9.866 × 10−9 | 3.404 × 10−7 |
5 | viral carcinogenesis | 1.898 × 10−8 | 5.237 × 10−7 |
6 | acutemyeloid leukemia | 2.789 × 10−7 | 5.499 × 10−6 |
7 | Th17 cell differentiation | 2.530 × 10−7 | 5.499 × 10−6 |
8 | thyroidcancer | 6.078 × 10−7 | 1.048 × 10−5 |
9 | hepatocellular carcinoma | 3.648 × 10−6 | 5.594 × 10−5 |
10 | thyroid hormone signaling pathway | 4.501 × 10−6 | 5.647 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raptis, D.G.; Vavougios, G.D.; Siachpazidou, D.I.; Pastaka, C.; Xiromerisiou, G.; Gourgoulianis, K.I.; Malli, F. Intergenic SNPs in Obstructive Sleep Apnea Syndrome: Revealing Metabolic, Oxidative Stress and Immune-Related Pathways. Diagnostics 2021, 11, 1753. https://doi.org/10.3390/diagnostics11101753
Raptis DG, Vavougios GD, Siachpazidou DI, Pastaka C, Xiromerisiou G, Gourgoulianis KI, Malli F. Intergenic SNPs in Obstructive Sleep Apnea Syndrome: Revealing Metabolic, Oxidative Stress and Immune-Related Pathways. Diagnostics. 2021; 11(10):1753. https://doi.org/10.3390/diagnostics11101753
Chicago/Turabian StyleRaptis, Dimitrios G., George D. Vavougios, Dimitra I. Siachpazidou, Chaido Pastaka, Georgia Xiromerisiou, Konstantinos I. Gourgoulianis, and Foteini Malli. 2021. "Intergenic SNPs in Obstructive Sleep Apnea Syndrome: Revealing Metabolic, Oxidative Stress and Immune-Related Pathways" Diagnostics 11, no. 10: 1753. https://doi.org/10.3390/diagnostics11101753
APA StyleRaptis, D. G., Vavougios, G. D., Siachpazidou, D. I., Pastaka, C., Xiromerisiou, G., Gourgoulianis, K. I., & Malli, F. (2021). Intergenic SNPs in Obstructive Sleep Apnea Syndrome: Revealing Metabolic, Oxidative Stress and Immune-Related Pathways. Diagnostics, 11(10), 1753. https://doi.org/10.3390/diagnostics11101753