Next Article in Journal
Optimization of Friction Behavior Characteristics by Coating with Solid Lubricants
Previous Article in Journal
Dynamic Performance of a Squeeze Film Damper with a Cylindrical Roller Bearing under a Large Static Radial Loading Range
Article Menu

Export Article

Open AccessArticle

The Yawing Behavior of Horizontal-Axis Wind Turbines: A Numerical and Experimental Analysis

Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Machines 2019, 7(1), 15; https://doi.org/10.3390/machines7010015
Received: 21 December 2018 / Revised: 1 February 2019 / Accepted: 4 February 2019 / Published: 8 February 2019
  |  
PDF [6400 KB, uploaded 28 February 2019]
  |  

Abstract

The yawing of horizontal-axis wind turbines (HAWT) is a major topic in the comprehension of the dynamical behavior of these kinds of devices. It is important for the study of mechanical loads to which wind turbines are subjected and it is important for the optimization of wind farms because the yaw active control can steer the wakes between nearby wind turbines. On these grounds, this work is devoted to the numerical and experimental analysis of the yawing behavior of a HAWT. The experimental tests have been performed at the wind tunnel of the University of Perugia on a three-bladed small HAWT prototype, having two meters of rotor diameter. Two numerical set ups have been selected: a proprietary code based on the Blade Element Momentum theory (BEM) and the aeroelastic simulation software FAST, developed at the National Renewable Energy Laboratory (NREL) in Golden, CO, USA. The behavior of the test wind turbine up to ± 45 of yaw offset is studied. The performances (power coefficient C P ) and the mechanical behavior (thrust coefficient C T ) are studied and the predictions of the numerical models are compared against the wind tunnel measurements. The results for C T inspire a subsequent study: its behavior as a function of the azimuth angle is studied and the periodic component equal to the blade passing frequency 3P is observed. The fluctuation intensity decreases with the yaw angle because the distance between tower and blade increases. Consequently, the tower interference is studied through the comparison of measurements and simulations as regards the fore-aft vibration spectrum and the force on top of the tower. View Full-Text
Keywords: wind energy; wind turbines; blade element momentum theory; aeroelasticity; control and optimization; vibration wind energy; wind turbines; blade element momentum theory; aeroelasticity; control and optimization; vibration
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Castellani, F.; Astolfi, D.; Natili, F.; Mari, F. The Yawing Behavior of Horizontal-Axis Wind Turbines: A Numerical and Experimental Analysis. Machines 2019, 7, 15.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Machines EISSN 2075-1702 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top