Next Article in Journal
Low-Rate Characterization of a Mechanical Inerter
Previous Article in Journal
Design and Demonstration of a Low-Cost Small-Scale Fatigue Testing Machine for Multi-Purpose Testing of Materials, Sensors and Structures
Article Menu

Export Article

Open AccessArticle
Machines 2018, 6(3), 31; https://doi.org/10.3390/machines6030031

Experimental Study of the Shaft Penetration Factor on the Torsional Dynamic Response of a Drive Train

1
Department of Mechanical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
2
Department of Mechanical Engineering, Technology Campus De Nayer, KU Leuven, Jan De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
*
Author to whom correspondence should be addressed.
Received: 2 June 2018 / Revised: 12 July 2018 / Accepted: 16 July 2018 / Published: 17 July 2018
Full-Text   |   PDF [3053 KB, uploaded 17 July 2018]   |  

Abstract

Typical rotating machinery drive trains are prone to torsional vibrations. Especially those drive trains that comprise one or more couplings which connect the multiple shafts. Since these vibrations rarely produce noise or vibration of the stationary frame, their presence is hardly noticeable. Moreover, unless an expensive torsional-related problem has become obvious, such drive trains are not instrumented with torsional vibration measurement equipment. Excessive levels can easily cause damage or even complete failure of the machine. So, when designing or retrofitting a machine, a comprehensive and detailed numerical torsional vibration analysis is crucial to avoid such problems. However, to accurately calculate the torsional modes, one has to account for the penetration effect of the shaft in the coupling hub, indicated by the shaft penetration factor, on the torsional stiffness calculation. Many guidelines and assumptions have been published for the stiffness calculation, however, its effect on the damping and the dynamic amplification factor are less known. In this paper, the effect of the shaft penetration factor, and hence coupling hub-to-shaft connection, on the dynamic torsional response of the system is determined by an experimental study. More specifically, the damping is of major interest. Accordingly, a novel academic test setup is developed in which several configurations, with each a different shaft penetration factor, are considered. Besides, different amplitude levels, along with both a sweep up and down excitation, are used to identify their effect on the torsional response. The measurement results show a significant influence of the shaft penetration factor on the system’s first torsional mode. By increasing the shaft penetration factor, and thus decreasing the hub-to-shaft interference, a clear eigenfrequency drop along with an equally noticeable damping increase, is witnessed. On the contrary, the influence of the sweep up versus down excitation is less pronounced. View Full-Text
Keywords: rotating machinery; torsional vibrations; shaft penetration factor; coupling hub-to-shaft connection rotating machinery; torsional vibrations; shaft penetration factor; coupling hub-to-shaft connection
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Meeus, H.; Verrelst, B.; Moens, D.; Guillaume, P.; Lefeber, D. Experimental Study of the Shaft Penetration Factor on the Torsional Dynamic Response of a Drive Train. Machines 2018, 6, 31.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Machines EISSN 2075-1702 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top