Development of a Worker-Following Robot System: Worker Position Estimation and Motion Control under Measurement Uncertainty
Abstract
:1. Introduction
- -
- A Kalman filter was designed to improve the human position estimation by integrating the human walking model and the error model according to the distance measured using the ArUco marker.
- -
- A human-following controller for a mobile platform was designed by assuming a virtual spring damper model between a human and a robot.
2. A Worker-Following Robot System
3. Human Walking Model
3.1. Analysis of ArUco Marker Position Estimation
3.2. Human Gait Model Movement Analysis
4. Kalman Filter-Based Pose Estimation
5. Motion Control of Mecanum Wheel Robot
6. Simulation Results
6.1. Straight-Line Walking Scenario
6.2. Smart Factory Assembly Line Scenario
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
- Segment I (
- Segment II (
- Segment III
References
- Skilton, M.; Hovsepian, F. The 4th Industrial Revolution; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Oyekanlu, E.A.; Smith, A.C.; Thomas, W.P.; Mulroy, G.; Hitesh, D.; Ramsey, M.; Kuhn, D.J.; Mcghinnis, J.D.; Buonavita, S.C.; Looper, N.A. A review of recent advances in automated guided vehicle technologies: Integration challenges and research areas for 5G-based smart manufacturing applications. IEEE Access 2020, 8, 202312–202353. [Google Scholar] [CrossRef]
- Khamis, A.; Meng, J.; Wang, J.; Azar, A.T.; Prestes, E.; Takács, Á.; Rudas, I.J.; Haidegger, T. Robotics and intelligent systems against a pandemic. Acta Polytech. Hung. 2021, 18, 13–35. [Google Scholar] [CrossRef]
- Sung, Y.; Chung, W. Human tracking of a mobile robot with an onboard LRF (Laser Range Finder) using human walking motion analysis. In Proceedings of the 2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Incheon, Republic of Korea, 23–26 November 2011. [Google Scholar]
- Chung, W.; Kim, H.; Yoo, Y.; Moon, C.-B.; Park, J. The detection and following of human legs through inductive approaches for a mobile robot with a single laser range finder. IEEE Trans. Ind. Electron. 2011, 59, 3156–3166. [Google Scholar] [CrossRef]
- Jung, E.-J.; Lee, J.H.; Yi, B.-J.; Park, J.; Noh, S.-T. Development of a laser-range-finder-based human tracking and control algorithm for a marathoner service robot. IEEE/ASME Trans. Mechatron. 2013, 19, 1963–1976. [Google Scholar] [CrossRef]
- Guerrero-Higueras, Á.M.; Álvarez-Aparicio, C.; Calvo Olivera, M.C.; Rodríguez-Lera, F.J.; Fernández-Llamas, C.; Rico, F.M.; Matellán, V. Tracking people in a mobile robot from 2d lidar scans using full convolutional neural networks for security in cluttered environments. Front. Neurorobot. 2019, 12, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez-Aparicio, C.; Guerrero-Higueras, Á.M.; Rodríguez-Lera, F.J.; Ginés Clavero, J.; Martín Rico, F.; Matellán, V. People detection and tracking using LIDAR sensors. Robotics 2019, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- Bodor, R.; Jackson, B.; Papanikolopoulos, N. Vision-based human tracking and activity recognition. In Proceedings of the 11th Mediterranean Confernece on Control and Automation, Corfu, Greece, 22–25 June 2003. [Google Scholar]
- Jin, T.-S.; Lee, J.-M.; Hashimoto, H. Position control of mobile robot for human-following in intelligent space with distributed sensors. Int. J. Control Autom. Syst. 2006, 4, 204–216. [Google Scholar]
- Ye, W.; Li, Z.; Yang, C.; Sun, J.; Su, C.-Y.; Lu, R. Vision-based human tracking control of a wheeled inverted pendulum robot. IEEE Trans. Cybern. 2015, 46, 2423–2434. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Kumar, S.; Behera, L.; Subramanian, V.K. A novel vision-based tracking algorithm for a human-following mobile robot. IEEE Trans. Syst. Man Cybern. Syst. 2016, 47, 1415–1427. [Google Scholar] [CrossRef]
- Tsai, T.H.; Yao, C.H. A robust tracking algorithm for a human-following mobile robot. IET Image Process. 2021, 15, 786–796. [Google Scholar] [CrossRef]
- Hoshino, F.; Morioka, K. Human following robot based on control of particle distribution with integrated range sensors. In Proceedings of the 2011 IEEE/SICE International Symposium on System Integration (SII), Kyoto, Japan, 20–22 December 2011. [Google Scholar]
- Kobilarov, M.; Sukhatme, G.; Hyams, J.; Batavia, P. People tracking and following with mobile robot using an omnidirectional camera and a laser. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006. [Google Scholar]
- Luo, R.C.; Chang, N.-W.; Lin, S.-C.; Wu, S.-C. Human tracking and following using sensor fusion approach for mobile assistive companion robot. In Proceedings of the 2009 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, 3–5 November 2009. [Google Scholar]
- Zender, H.; Jensfelt, P.; Kruijff, G.-J.M. Human-and situation-aware people following. In Proceedings of the RO-MAN 2007-The 16th IEEE International Symposium on Robot and Human Interactive Communication, Jeju Island, Republic of Korea, 26–29 August 2007. [Google Scholar]
- Susperregi, L.; Martínez-Otzeta, J.M.; Ansuategui, A.; Ibarguren, A.; Sierra, B. RGB-D, laser and thermal sensor fusion for people following in a mobile robot. Int. J. Adv. Robot. Syst. 2013, 10, 271. [Google Scholar] [CrossRef]
- Shashank, M.S.; Saikrishna, P.; Acharya, G.P.; Reddy, S.; Lavanya, P. Design and Development of Human Following Autonomous Airport Baggage Transportation System. In Proceedings of the 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 28–29 January 2022. [Google Scholar]
- Shan, M.; Zou, Y.; Guan, M.; Wen, C.; Ng, C.-L. A leader-following approach based on probabilistic trajectory estimation and virtual train model. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017. [Google Scholar]
- Tsun, M.T.K.; Lau, B.T.; Jo, H.S. Exploring the performance of a sensor-fusion-based navigation system for human following companion robots. Int. J. Mech. Eng. Robot. Res. 2018, 7, 590–598. [Google Scholar] [CrossRef]
- Che, Y.; Culbertson, H.; Tang, C.-W.; Aich, S.; Okamura, A.M. Facilitating human-mobile robot communication via haptic feedback and gesture teleoperation. ACM Trans. Hum. Robot. Interact. (THRI) 2018, 7, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Kyzer, T. Instrumentation and Experimentation Development for Robotic Systems. Ph.D. Thesis, University of South Carolina, Columbia, SC, USA, 2021. [Google Scholar]
- Filus, K.; Sobczak, Ł.; Domańska, J.; Domański, A.; Cupek, R. Real-time testing of vision-based systems for AGVs with ArUco markers. In Proceedings of the 2022 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 17–20 December 2022. [Google Scholar]
- Doroftei, I.; Grosu, V.; Spinu, V. Omnidirectional Mobile Robot-Design and Implementation; INTECH Open Access Publisher: London, UK, 2007. [Google Scholar]
- Maulana, E.; Muslim, M.A.; Hendrayawan, V. Inverse kinematic implementation of four-wheels mecanum drive mobile robot using stepper motors. In Proceedings of the 2015 international seminar on intelligent technology and its applications (ISITIA), Surabaya, Indonesia, 20–21 May 2015. [Google Scholar]
- Taheri, H.; Qiao, B.; Ghaeminezhad, N. Kinematic model of a four mecanum wheeled mobile robot. Int. J. Comput. Appl. 2015, 113, 6–9. [Google Scholar] [CrossRef]
- Li, Y.; Dai, S.; Zheng, Y.; Tian, F.; Yan, X. Modeling and kinematics simulation of a Mecanum wheel platform in RecurDyn. J. Robot. 2018, 2018, 9373580. [Google Scholar] [CrossRef]
- Schreiber, C.; Moissenet, F. A multimodal dataset of human gait at different walking speeds established on injury-free adult participants. Sci. Data 2019, 6, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalaitzakis, M.; Carroll, S.; Ambrosi, A.; Whitehead, C.; Vitzilaios, N. Experimental comparison of fiducial markers for pose estimation. In Proceedings of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 1–4 September 2020. [Google Scholar]
- Welch, G.; Bishop, G. An introduction to the kalman filter. Proc. SIGGRAPH Course 2001, 8, 41. [Google Scholar]
- Siegwart, R.; Nourbakhsh, I.R.; Scaramuzza, D. Introduction to Autonomous Mobile Robots; MIT Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Choi, K. ADLINK and Intel Release Robot Controller ‘Roscube-I’ for Innovative ‘Edge AI Robot’. Available online: https://www.aitimes.kr/news/articleView.html?idxno=16652 (accessed on 24 January 2023).
- Rodd, M.G. Introduction to robotics: Mechanics and control. In Pergamon; PEARSON Prentice Hall: Hoboken, NJ, USA, 1987. [Google Scholar]
- Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. Motion Planning. In Robotics: Modelling, Planning and Control; MIT Press: Cambridge, MA, USA, 2009; pp. 523–559. [Google Scholar]
Distance (cm) | Without Shadow | With Shadow | ||||
---|---|---|---|---|---|---|
Mean (%) | Standard Deviation | Success Rate (%) | Mean (%) | Standard Deviation | Success Rate (%) | |
75 | 2.067 | 0.021 | 97.07 | 2.034 | 0.027 | 95.98 |
100 | 2.204 | 0.028 | 95.94 | 2.184 | 0.028 | 96.03 |
150 | 2.242 | 0.112 | 96.18 | 2.443 | 0.315 | 96.07 |
175 | 2.315 | 0.229 | 96.10 | 2.620 | 0.197 | 95.99 |
200 | 3.050 | 0.315 | 96.08 | 3.615 | 0.200 | 96.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, H.; Kim, D.; Sohn, J.; Lee, K.; Kim, C. Development of a Worker-Following Robot System: Worker Position Estimation and Motion Control under Measurement Uncertainty. Machines 2023, 11, 366. https://doi.org/10.3390/machines11030366
Yoo H, Kim D, Sohn J, Lee K, Kim C. Development of a Worker-Following Robot System: Worker Position Estimation and Motion Control under Measurement Uncertainty. Machines. 2023; 11(3):366. https://doi.org/10.3390/machines11030366
Chicago/Turabian StyleYoo, Hyeongrok, Dohyun Kim, Jeonghyun Sohn, Kyungchang Lee, and Changwon Kim. 2023. "Development of a Worker-Following Robot System: Worker Position Estimation and Motion Control under Measurement Uncertainty" Machines 11, no. 3: 366. https://doi.org/10.3390/machines11030366
APA StyleYoo, H., Kim, D., Sohn, J., Lee, K., & Kim, C. (2023). Development of a Worker-Following Robot System: Worker Position Estimation and Motion Control under Measurement Uncertainty. Machines, 11(3), 366. https://doi.org/10.3390/machines11030366