An Equilibrium Decision-Making Approach for Cutting Parameters of a Novel Five-Axis Hybrid Kinematic Machining Unit
Abstract
:1. Introduction
2. Equilibrium Decision-Making Approach
- (1)
- Firstly, the design objectives and cutting parameters of an HKMU are determined on the basis of the design criteria of the specified initial machining task.
- (2)
- Secondly, DoE is carried out to collect cutting responses. Based on this, the RSM technique [32] is adopted to establish a surrogate model in an accurate yet efficient manner. The surrogate model will be assessed in terms of regression accuracy, indicating whether it is acceptable for the following optimization.
- (3)
- Then, the acceptable surrogate model, as well as design constraints and boundary conditions, are employed in the multi-objective optimization design. By simultaneously optimizing the multiple objective functions, a cluster of solutions called the Pareto frontier is obtained for cutting parameters.
- (4)
- Finally, by combining the TOPSIS technique [41] and engineering decision preferences, a set of decision-making procedures is proposed to designate the best-compromised solution from the Pareto solutions.
2.1. Objectives of Cutting Process
- (1)
- Machining duration Te
- (2)
- Cutting force Fc
- (3)
- Surface roughness Ra
2.2. RSM-Based Surrogate Model
- (1)
- According to the dimensions of objectives and variables, select an experimental strategy that has as much information yet implementation convenience.
- (2)
- With the help of commercial software such as Design Expert or Isight, collect and manage the multiple responses to the design objectives of the cutting process.
- (3)
- On the basis of the statistical features obtained from experimental data, estimate the regression coefficients to fit the response surface of data.
2.3. Multi-Objective Optimization Model
2.4. Decision-Making Procedures
- (1)
- Determine the Pareto frontier of feasible solutions, in which none of the objectives of a solution can be further improved without worsening other objectives. Taking a minimization problem as an example, the Pareto frontier can be described as:
- (2)
- Perform the dimensionless processing on the j-th dimensional objective yij (i = 1,2,…Pn; j =1,2,…m) of Pareto points. Herein, the weighting factors are taken to weigh the design objectives. Thus, the weighted dimensionless response zij can be expressed as:
- (3)
- Define the ideal points of the Pareto frontier. For clarity, the coordinates of the ideal points are discussed in two situations as follows.
- (1)
- If the design objective is desired to be minimum, it leads to:
- (2)
- If the design objective is desired to be maximum, it leads to:
- (4)
- Calculate the Euclidean distances between the Pareto points and the ideal points. Mathematically, the distances of a Pareto point to the ideal points can be estimated by:And:
- (5)
- Adopt a comprehensive index to assess the relative distances of Pareto points to ideal points. According to the TOPSIS technique [43], the relative distance index is formulated as the following:
3. Illustrative Example
3.1. Prototype Description
3.2. Design of Experiments
3.3. Multi-Objectives Optimization
3.4. Correlation Analysis
3.5. Equilibrium Decisions
4. Conclusions and Outlook
- (1)
- An equilibrium decision-making approach for cutting parameters of an HKMU is proposed with both multi-objective technological considerations and end users’ engineering decision preferences.
- (2)
- A total of 142 sets of compromised Pareto solutions and corresponding cutting parameters are determined for the typical face milling of the exemplary five-axis HKMU.
- (3)
- The correlation analysis reveals that machining duration is in a contradictory relationship with surface roughness while cutting force and surface roughness are in a collaborative relationship.
- (4)
- Three customized machining schemes with different engineering decision preferences are analyzed to respectively designate the best-compromised solution on cutting parameters.
- (5)
- Compared to the scheme without engineering decision preferences, the three schemes reduce the machining duration, the cutting force, and the surface roughness by 44%, 43%, and 9%, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uriarte, L.; Zatarain, M.; Axinte, D.; Yagüe-Fabra, J.; Ihlenfeldt, S.; Eguia, J.; Olarra, A. Machine tools for large parts. CIRP Ann. 2013, 62, 731–750. [Google Scholar] [CrossRef]
- Zhao, H.; Yu, X.; Li, X.; Ding, H. Weighted sum of vector norms based contouring control method for five-axis CNC machine tools. Precis. Eng. 2019, 60, 93–103. [Google Scholar] [CrossRef]
- Laryushkin, P.; Antonov, A.; Fomin, A.; Essomba, T. Velocity and Singularity Analysis of a 5-DOF (3T2R) Parallel-Serial (Hybrid) Manipulator. Machines 2022, 10, 276. [Google Scholar] [CrossRef]
- Zhao, Y.; Mei, J.; Jin, Y.; Niu, W. A new hierarchical approach for the optimal design of a 5-dof hybrid serial-parallel kinematic machine. Mech. Mach. Theory 2020, 156, 104160. [Google Scholar] [CrossRef]
- Lai, Y.-L.; Liao, C.-C.; Chao, Z.-G. Inverse kinematics for a novel hybrid parallel–serial five-axis machine tool. Robot. Comput. Manuf. 2018, 50, 63–79. [Google Scholar] [CrossRef]
- Qin, X.; Shi, M.; Hou, Z.; Li, S.; Li, H.; Liu, H. Analysis of 3-DOF Cutting Stability of Titanium Alloy Helical Milling Based on PKM and Machining Quality Optimization. Machines 2022, 10, 404. [Google Scholar] [CrossRef]
- Xu, P.; Cheung, C.; Wang, C.; Zhao, C. Novel hybrid robot and its processes for precision polishing of freeform surfaces. Precis. Eng. 2020, 64, 53–62. [Google Scholar] [CrossRef]
- Li, Q.; Wu, W.; Xiang, J.; Li, H.; Wu, C. A hybrid robot for friction stir welding. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2014, 229, 2639–2650. [Google Scholar] [CrossRef]
- Oba, Y.; Kakinuma, Y. Simultaneous tool posture and polishing force control of unknown curved surface using serial-parallel mechanism polishing machine. Precis. Eng. 2017, 49, 24–32. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, Y.; Yao, J.; Zhao, Y. Design of a novel 5-DOF hybrid serial-parallel manipulator and theoretical analysis of its parallel part. Robot. Comput. Manuf. 2018, 53, 228–239. [Google Scholar] [CrossRef]
- Olazagoitia, J.L.; Wyatt, S. New PKM Tricept T9000 and Its Application to Flexible Manufacturing at Aerospace Industry; SAE Technical Paper 07ATC-94; SAE: Warrendale, PA, USA, 2007. [Google Scholar] [CrossRef]
- Hennes, N. Ecospeed—An innovative machinery concept for high performance 5 axis machining of large structural components in aircraft engineering. In Proceedings of the 3rd Chemnitz Parallel Kinematics Seminar, Chemnitz, Germany, 23–25 April 2002; pp. 763–774. [Google Scholar]
- Bi, Z.M. Kinetostatic modeling of Exechon parallel kinematic machine for stiffness analysis. Int. J. Adv. Manuf. Technol. 2014, 71, 325–335. [Google Scholar] [CrossRef]
- Jiang, S.; Chi, C.; Fang, H.; Tang, T.; Zhang, J. A minimal-error-model based two-step kinematic calibration methodology for redundantly actuated parallel manipulators: An application to a 3-DOF spindle head. Mech. Mach. Theory 2021, 167, 104532. [Google Scholar] [CrossRef]
- Tang, T.; Fang, H.; Zhang, J. Hierarchical design, laboratory prototype fabrication and machining tests of a novel 5-axis hybrid serial-parallel kinematic machine tool. Robot. Comput. Manuf. 2020, 64, 101944. [Google Scholar] [CrossRef]
- Fang, H.; Tang, T.; Zhang, J. Kinematic analysis and comparison of a 2R1T redundantly actuated parallel manipulator and its non-redundantly actuated forms. Mech. Mach. Theory 2019, 142, 103587. [Google Scholar] [CrossRef]
- Xu, X. Machine Tool 4.0 for the new era of manufacturing. Int. J. Adv. Manuf. Technol. 2017, 92, 1893–1900. [Google Scholar] [CrossRef]
- Calleja, A.; Bo, P.; González, H.; Bartoň, M.; de Lacalle, L.N.L. Highly accurate 5-axis flank CNC machining with conical tools. Int. J. Adv. Manuf. Technol. 2018, 97, 1605–1615. [Google Scholar] [CrossRef]
- Srivastava, V.S.; Gupta, T.K.; Srivastava, A.K.; Chauhan, S.; Chauhan, P.K. Effects of cutting parameters on aluminium alloys-A review. Mater. Today Proc. 2021, 47, 3823–3827. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, Y.; Tang, J.; Tang, K.; Li, Z. Digital tooth contact analysis of face gear drives with an accurate measurement model of face gear tooth surface inspected by CMMs. Mech. Mach. Theory 2022, 167, 104498. [Google Scholar] [CrossRef]
- Zhou, Y.-S.; Tang, Z.-W.; Shi, X.-L.; Tang, J.-Y.; Li, Z.-M. Efficient and accurate worm grinding of spur face gears according to an advanced geometrical analysis and a closed-loop manufacturing process. J. Central South Univ. 2022, 29, 1–13. [Google Scholar] [CrossRef]
- Ghosh, G.; Mandal, P.; Mondal, S.C. Modeling and optimization of surface roughness in keyway milling using ANN, genetic algorithm, and particle swarm optimization. Int. J. Adv. Manuf. Technol. 2019, 100, 1223–1242. [Google Scholar] [CrossRef]
- Meral, G.; Sarıkaya, M.; Mia, M.; Dilipak, H.; Şeker, U.; Gupta, M.K. Multi-objective optimization of surface roughness, thrust force, and torque produced by novel drill geometries using Taguchi-based GRA. Int. J. Adv. Manuf. Technol. 2018, 101, 1595–1610. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, B.; Bao, H.; Huang, H. Optimization of Cutting Parameters for Minimizing Environmental Impact: Considering Energy Efficiency, Noise Emission and Economic Dimension. Int. J. Precis. Eng. Manuf. 2018, 19, 613–624. [Google Scholar] [CrossRef]
- Sofuoğlu, M.A.; Arapoğlu, R.A.; Orak, S. Multi objective optimization of turning operation using hybrid decision making analysis. Anadolu Univ. J. Sci. Technol. Appl. Sci. Eng. 2017, 18, 595–610. [Google Scholar] [CrossRef]
- Sofuoglu, A. A Novel Hybrid Multi Criteria Decision Making Model: Application to Turning Operations. Int. J. Intell. Syst. Appl. Eng. 2017, 5, 124–131. [Google Scholar] [CrossRef]
- Utsumi, K.; Shichiri, S.; Sasahara, H. Determining the effect of tool posture on cutting force in a turn milling process using an analytical prediction model. Int. J. Mach. Tools Manuf. 2020, 150, 103511. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, B.; Jiang, Y.; Zhao, W. Cutting force modeling for non-uniform helix tools based on compensated chip thickness in five-axis flank milling process. Precis. Eng. 2018, 51, 659–681. [Google Scholar] [CrossRef]
- Zerti, A.; Yallese, M.A.; Meddour, I.; Belhadi, S.; Haddad, A.; Mabrouki, T. Modeling and multi-objective optimization for minimizing surface roughness, cutting force, and power, and maximizing productivity for tempered stainless steel AISI 420 in turning operations. Int. J. Adv. Manuf. Technol. 2018, 102, 135–157. [Google Scholar] [CrossRef]
- Balaji, M.; Rao, K.V.; Rao, N.M.; Murthy, B. Optimization of drilling parameters for drilling of TI-6Al-4V based on surface roughness, flank wear and drill vibration. Measurement 2018, 114, 332–339. [Google Scholar] [CrossRef]
- He, C.L.; Zong, W.J.; Zhang, J.J. Influencing factors and theoretical modeling methods of surface roughness in turning process: State-of-the-art. Int. J. Mach. Tools Manuf. 2018, 129, 15–26. [Google Scholar] [CrossRef]
- Zerti, A.; Yallese, M.A.; Zerti, O.; Nouioua, M.; Khettabi, R. Prediction of machining performance using RSM and ANN models in hard turning of martensitic stainless steel AISI 420. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 4439–4462. [Google Scholar] [CrossRef]
- Li, C.; Xiao, Q.; Tang, Y.; Li, L. A method integrating Taguchi, RSM and MOPSO to CNC machining parameters optimization for energy saving. J. Clean. Prod. 2016, 135, 263–275. [Google Scholar] [CrossRef]
- Li, B.; Tian, X.; Zhang, M. Modeling and multi-objective optimization of cutting parameters in the high-speed milling using RSM and improved TLBO algorithm. Int. J. Adv. Manuf. Technol. 2020, 111, 2323–2335. [Google Scholar] [CrossRef]
- Yan, J.; Li, L. Multi-objective optimization of milling parameters—The trade-offs between energy, production rate and cutting quality. J. Clean. Prod. 2013, 52, 462–471. [Google Scholar] [CrossRef]
- Li, L.; Deng, X.; Zhao, J.; Zhao, F.; Sutherland, J. Multi-objective optimization of tool path considering efficiency, energy-saving and carbon-emission for free-form surface milling. J. Clean. Prod. 2018, 172, 3311–3322. [Google Scholar] [CrossRef]
- De Oliveira, L.G.; de Oliveira, C.H.; de Brito, T.G.; de Paiva, E.J.; de Paiva, A.P.; Ferreira, J.R. Nonlinear optimization strategy based on multivariate prediction capability ratios: Analytical schemes and model validation for duplex stainless steel end milling. Precis. Eng. 2020, 66, 229–254. [Google Scholar] [CrossRef]
- Zhang, C.; Li, W.; Jiang, P.; Gu, P. Experimental investigation and multi-objective optimization approach for low-carbon milling operation of aluminum. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2017, 231, 2753–2772. [Google Scholar] [CrossRef]
- De Oliveira, L.G.; de Paiva, A.P.; Campos, P.H.D.S.; de Paiva, E.J.; Balestrassi, P.P. Prediction capability of Pareto optimal solutions: A multi-criteria optimization strategy based on model capability ratios. Precis. Eng. 2019, 59, 185–210. [Google Scholar] [CrossRef]
- Kumar, R.; Bilga, P.S.; Singh, S. Multi objective optimization using different methods of assigning weights to energy consumption responses, surface roughness and material removal rate during rough turning operation. J. Clean. Prod. 2017, 164, 45–57. [Google Scholar] [CrossRef]
- Jiang, Z.; Gao, D.; Lu, Y.; Liu, X. Optimization of Cutting Parameters for Trade-off Among Carbon Emissions, Surface Roughness, and Processing Time. Chin. J. Mech. Eng. 2019, 32, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kubler, S.; Robert, J.; Derigent, W.; Voisin, A.; Le Traon, Y. A state-of the-art survey & testbed of fuzzy AHP (FAHP) applications. Expert Syst. Appl. 2016, 65, 398–422. [Google Scholar] [CrossRef]
- Behzadian, M.; Otaghsara, S.K.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Teti, R.; Mourtzis, D.; D’Addona, D.; Caggiano, A. Process monitoring of machining. CIRP Ann. 2022, 71, 529–552. [Google Scholar] [CrossRef]
Factors | Levels | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
A: Spindle speed ns/rpm | 9000 | 11,000 | 13,000 | 15,000 |
B: Tool radius dt/mm | 3 | 4 | 5 | 6 |
C: Depth of cut ap/mm | 0.15 | 0.30 | 0.45 | 0.60 |
D: Width of cut ae/% | 20 | 40 | 60 | 80 |
E: Feed rate vf/mm·s−1 | 2 | 4 | 6 | 8 |
Exp. No. | Spindle Speed ns/rpm | Tool Radius dt/mm | Depth of Cut ap/mm | Width of Cut ae/% | Feed Rate vf/mm·s−1 |
---|---|---|---|---|---|
1 | 9000 | 3 | 0.15 | 20 (0.6 mm) | 2 |
2 | 9000 | 4 | 0.30 | 40 (1.6 mm) | 4 |
3 | 9000 | 5 | 0.45 | 60 (3.0 mm) | 6 |
4 | 9000 | 6 | 0.60 | 80 (4.8 mm) | 8 |
5 | 11,000 | 3 | 0.30 | 60 (1.8 mm) | 8 |
6 | 11,000 | 4 | 0.15 | 80 (3.2 mm) | 6 |
7 | 11,000 | 5 | 0.60 | 20 (1.0 mm) | 4 |
8 | 11,000 | 6 | 0.45 | 40 (2.4 mm) | 2 |
9 | 13,000 | 3 | 0.45 | 80 (2.4 mm) | 4 |
10 | 13,000 | 4 | 0.60 | 60 (2.4 mm) | 2 |
11 | 13,000 | 5 | 0.15 | 40 (2.0 mm) | 8 |
12 | 13,000 | 6 | 0.30 | 20 (1.2 mm) | 6 |
13 | 15,000 | 3 | 0.60 | 40 (1.2 mm) | 6 |
14 | 15,000 | 4 | 0.45 | 20 (0.8 mm) | 8 |
15 | 15,000 | 5 | 0.30 | 80 (4.0 mm) | 2 |
16 | 15,000 | 6 | 0.15 | 60 (3.6 mm) | 4 |
Exp. No. | Machining Duration Te/s | Cutting Force Fc/N | Surface Roughness Ra/μm |
---|---|---|---|
1 | 14,856 | 3.278 | 0.172 |
2 | 1440 | 13.475 | 0.213 |
3 | 380 | 17.061 | 0.532 |
4 | 159 | 23.315 | 0.180 |
5 | 738 | 11.661 | 0.219 |
6 | 1140 | 17.451 | 0.168 |
7 | 1020 | 8.204 | 0.149 |
8 | 1264 | 6.368 | 0.104 |
9 | 804 | 19.601 | 0.162 |
10 | 1071 | 17.285 | 0.231 |
11 | 1320 | 4.203 | 0.430 |
12 | 1128 | 4.312 | 0.126 |
13 | 684 | 22.585 | 0.160 |
14 | 888 | 12.410 | 0.298 |
15 | 1404 | 8.880 | 0.102 |
16 | 1428 | 3.958 | 0.118 |
Value | Minimum/ Upper Bound | Maximum/ Lower Bound | Value | Minimum/ Upper Bound | Maximum/ Lower Bound |
---|---|---|---|---|---|
ns/rpm | 9000 | 15,000 | dt/mm | 3 | 6 |
ap/mm | 0.15 | 0.60 | ae/% | 20 | 80 |
vf/mm·s−1 | 2 | 8 | Te/s | 159 | 14,856 |
Fc/N | 0.12 | 24 | Ra/μm | 0.101 | 3.2 |
Assessment metrics | R2 | RAAE | RMAE | |
---|---|---|---|---|
Machining duration Te/s | Linear | 0.6572 | 0.505119284 | 1.7662867 |
Quadratic | 0.9636 | 0.086900217 | 0.5213963 | |
Cubic | 1 | 0.000170538 | 0.000244 | |
Quartic | 1 | 0.0000503 | 0.000108 | |
Cutting force Fc/N | Linear | 0.8571 | 0.310067858 | 0.9704946 |
Quadratic | 0.9939 | 0.035263284 | 0.2109161 | |
Cubic | 1 | 0.00011867 | 0.0013264 | |
Quartic | 1 | 0.000117809 | 0.0013162 | |
Surface roughness Ra/μm | Linear | 0.2727 | 1.213001375 | 4.4719211 |
Quadratic | 0.7879 | 0.23523771 | 1.3923391 | |
Cubic | 1 | 0.00308598 | 0.0188888 | |
Quartic | 1 | 0.003055539 | 0.0191743 |
Point No. | Pareto Solutions | Cutting Parameters | ||||||
---|---|---|---|---|---|---|---|---|
Te/s | Fc/N | Ra/μm | ns/rpm | dt/mm | ap/mm | ae/% | vf/mm·s−1 | |
#1 | 1614 | 0.812 | 0.266 | 9000 | 6 | 0.55 | 20 | 3.00 |
#2 | 197 | 17.460 | 0.450 | 9000 | 6 | 0.55 | 65 | 6.50 |
… | … | … | … | … | … | … | … | … |
#50 | 326 | 12.637 | 0.410 | 11,500 | 5 | 0.55 | 6 | 5.00 |
#51 | 974 | 10.169 | 0.103 | 11,500 | 5 | 0.60 | 35 | 3.00 |
… | … | … | … | … | … | … | … | … |
#100 | 269 | 2.707 | 0.511 | 13,750 | 6 | 0.60 | 75 | 3.50 |
#101 | 407 | 18.099 | 0.106 | 14,000 | 3 | 0.50 | 45 | 6.50 |
… | … | … | … | … | … | … | … | … |
#141 | 363 | 2.025 | 0.347 | 15,000 | 6 | 0.25 | 40 | 7.50 |
#142 | 753 | 1.715 | 0.358 | 15,000 | 6 | 0.25 | 45 | 7.00 |
Correlation Coefficients | ns | dt | ap | ae | vf | Te | Fc | Ra |
---|---|---|---|---|---|---|---|---|
ns | 1 | 0 | 0 | 0 | 0 | −0.307 | −0.111 | −0.230 |
dt | 0 | 1 | 0 | 0 | 0 | −0.329 | −0.337 | −0.063 |
ap | 0 | 0 | 1 | 0 | 0 | −0.404 | 0.611 | −0.017 |
ae | 0 | 0 | 0 | 1 | 0 | −0.366 | 0.534 | −0.049 |
vf | 0 | 0 | 0 | 0 | 1 | −0.396 | 0.268 | 0.461 |
Te | −0.307 | −0.329 | −0.404 | −0.366 | −0.396 | 1 | −0.414 | −0.120 |
Fc | −0.111 | −0.337 | 0.611 | 0.534 | 0.268 | −0.414 | 1 | 0.123 |
Ra | −0.230 | −0.063 | −0.017 | −0.049 | 0.461 | −0.120 | 0.123 | 1 |
Schemes | Decision Maker’s Preferences | Weighting Factors | Engineering Decision Preferences | ||
---|---|---|---|---|---|
w10 (Te) | w20 (Fc) | w30 (Ra) | |||
P1 | 0.5 | 0.1 | 0.1 | [0.714:0.143:0.143] | [Te] |
P2 | 0.1 | 0.5 | 0.1 | [0.143:0.714:0.143] | [Fc] |
P3 | 0.1 | 0.5 | 0.5 | [0.091:0.454:0.454] | [Fc, Ra] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, T.; Luo, H.; Tang, W.; Zhang, J. An Equilibrium Decision-Making Approach for Cutting Parameters of a Novel Five-Axis Hybrid Kinematic Machining Unit. Machines 2022, 10, 824. https://doi.org/10.3390/machines10090824
Tang T, Luo H, Tang W, Zhang J. An Equilibrium Decision-Making Approach for Cutting Parameters of a Novel Five-Axis Hybrid Kinematic Machining Unit. Machines. 2022; 10(9):824. https://doi.org/10.3390/machines10090824
Chicago/Turabian StyleTang, Tengfei, Haiwei Luo, Weimin Tang, and Jun Zhang. 2022. "An Equilibrium Decision-Making Approach for Cutting Parameters of a Novel Five-Axis Hybrid Kinematic Machining Unit" Machines 10, no. 9: 824. https://doi.org/10.3390/machines10090824
APA StyleTang, T., Luo, H., Tang, W., & Zhang, J. (2022). An Equilibrium Decision-Making Approach for Cutting Parameters of a Novel Five-Axis Hybrid Kinematic Machining Unit. Machines, 10(9), 824. https://doi.org/10.3390/machines10090824