# Combined Propulsion and Levitation Control for Maglev/Hyperloop Systems Utilizing Asymmetric Double-Sided Linear Induction Motors

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Proposed Motor Structure and Control Method

#### 2.1. Current Balancing Control in AC Mode of Operation and Its Limitations

#### 2.2. Compensating Current Balancing Limitations Using DC Mode of Operation

## 3. Analysis of ADSLIM Operation in AC Motoring Mode

## 4. Analysis of ADSLIM Operation in DC Mode

## 5. Case Study

**3**) of Figure 6 which yields the highest LDR among other configurations. Figure 10 shows the ADSLIM operating point in DC mode that can achieve the required lift force of 875.9 N and Table 3 summarizes the DC mode operating parameters.

## 6. Comparison with Passive Levitation

_{input}) of “DSLIM Inductrack I” and “DSLIM Inductrack II”, the following equations are used:

## 7. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Bilgin, B.; Magne, P.; Malysz, P.; Yang, Y.; Pantelic, V.; Preindl, M.; Korobkine, A.; Jiang, W.; Lawford, M.; Emadi, A. Making the Case for Electrified Transportation. IEEE Trans. Transp. Electrif.
**2015**, 1, 4–17. [Google Scholar] [CrossRef] - Lee, H.W.; Kim, K.C.; Lee, J. Review of maglev train technologies. IEEE Trans. Magn.
**2006**, 42, 1917–1925. [Google Scholar] [CrossRef] - Chopade, S.S. Magnetically levitated trains (Maglev). Int. J. Eng. Res. Technol.
**2014**, 4, 1274–1287. [Google Scholar] - Jufer, M.; Cassat, A. REPORT Collaboration with the Korean Railroad Research Institute (KRRI) Status Synthesis of the Swissmetro Project Swissmetro Maglev and KRRI Tube Train Developments. In KRRI-Report_2010.12.23; Korea Railroad Research Institute: Uiwang-si, Korea, 2010; pp. 1–86. [Google Scholar]
- Luguang, Y. Progress of the maglev transportation in China. IEEE Trans. Appl. Supercond.
**2006**, 16, 1138–1141. [Google Scholar] [CrossRef] - Powell, J.; Danby, G. Maglev—The New Mode of Transport for 21st Century 21ST Century, Summer 2003. Available online: https://21sci-tech.com/articles/Summer03/maglev2.html (accessed on 24 December 2021).
- Noland, J.K. Prospects and challenges of the hyperloop transportation system: A systematic technology review. IEEE Access
**2021**, 9, 28439–28458. [Google Scholar] [CrossRef] - Tudor, D.; Paolone, M. Optimal design of the propulsion system of a Hyperloop capsule. IEEE Trans. Transp. Electrif.
**2019**, 5, 1406–1418. [Google Scholar] [CrossRef] - Kratz, R.; Post, R. A null-current electro-dynamic levitation system. IEEE Trans. Appl. Supercond.
**2002**, 12, 930–932. [Google Scholar] [CrossRef] - Post, R.; Ryutov, D. The Inductrack: A simpler approach to magnetic levitation. IEEE Trans. Appl. Supercond.
**2000**, 10, 901–904. [Google Scholar] [CrossRef] - Post, R.F. Inductrack Magnet Configuration. U.S. Patent 6664880, 16 December 2003. [Google Scholar]
- Hoburg, J.F.; Post, R.F. A laminated track for the Inductrack system: Theory and experiment. In Proceedings of the 18th International Conference on Magnetically Levitated Systems and Linear Drives, Shanghai, China, 26–28 October 2004. [Google Scholar]
- Post, R. Inductrack III Configuration—A Maglev System for High Loads. U.S. Patent 8985030 B2, 24 March 2015. [Google Scholar]
- Kramer, M.J.; McCallum, R.W.; Anderson, I.A.; Constantinides, S. Prospects for non-rare earth permanent magnets for traction motors and generators. J. Miner. Met. Mater. Soc.
**2012**, 64, 752–763. [Google Scholar] [CrossRef] [Green Version] - Morizane, T.; Tsujikawa, K.; Kimura, N. Control of traction and levitation of linear induction motor driven by power source with frequency component synchronous with the motor speed. IEEE Trans. Magn.
**2011**, 47, 4302–4305. [Google Scholar] [CrossRef] - Ji, W.; Jeong, G.; Park, C.; Jo, I.; Lee, H. A Study of non-symmetric double-sided linear induction motor for Hyperloop all-in-one system (propulsion, levitation, and guidance). IEEE Trans. Magn.
**2018**, 54, 1–4. [Google Scholar] [CrossRef] - Cox, T.; Eastham, F.; Dickinson, M. Vehicular suspension and propulsion using double sided linear induction machines. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Hasirci, U.; Balikci, A.; Zabar, Z.; Birenbaum, L. Experimental performance investigation of a novel magnetic levitation system. IEEE Trans. Plasma Sci.
**2013**, 41, 1174–1181. [Google Scholar] [CrossRef] - Kuptsov, V.; Fajri, P.; Magdaleno-Adame, S.; Hadziristic, K. A new system of combined propulsion and levitation for Maglev transportation. In Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 15–19 March 2020; pp. 3508–3512. [Google Scholar] [CrossRef]
- Kuptsov, V.; Hadziristic, K. Method of Controlling Propulsion and Suspension of Linear Induction Motors. U.S. Patent
**2019**. [Google Scholar] - Lv, G.; Zhang, Z.; Liu, Y.; Zhou, T. Characteristics Analysis of Linear Synchronous Motor Integrated with Propulsion, Levitation, and Guidance in High-Speed Maglev System. IEEE Trans. Transp. Electrif.
**2021**, 7, 3185–3193. [Google Scholar] [CrossRef] - Kang, J.; Mu, S.; Ding, H. Long Stator Linear Doubly-Fed Motor for High-Speed Maglev Integrated Suspension, Propulsion and Contactless Power Supply. In Proceedings of the 2021 13th International Symposium on Linear Drives for Industry Applications (LDIA), Wuhan, China, 1–3 July 2021; pp. 1–5. [Google Scholar] [CrossRef]

**Figure 2.**Proposed principle of using DC excitation to increase the achievable ratio between thrust and lift forces in a two-ADSLIM system.

**Figure 3.**Lift force (

**a**) and thrust force (

**b**) of ADSLIM for different upper and lower primary currents, speed of 500 km/h and slip of 0.12.

**Figure 4.**Efficiency (

**a**) and lift to thrust ratio (

**b**) of ADSLIM for different upper and lower primary currents, speed of 500 km/h and slip of 0.12.

**Figure 6.**Three configurations of the magnetic field of ADSLIM in DC mode (

**a**) and their equivalent arrangements with Halbach array of PMs (

**b**): (

**1**) upper and lower magnetic field waves are synphase; (

**2**) without lower magnetic field; (

**3**) upper and lower magnetic field waves are antiphase.

**Figure 7.**Lift force (

**a**) and drag force (

**b**) of ADSLIM in DC mode for three configurations of the magnetic field shown in Figure 6.

**Figure 8.**Lift to drag ratio of ADSLIM in DC mode for three configurations of the magnetic field shown in Figure 6.

**Figure 11.**Operation diagram of the system for different thrust forces and constant lift force of 98.1 kN (vehicle weight 10,000 kg).

**Figure 12.**Operation diagram of the system for different thrust forces with a weight variation of ±20%: (

**a**) lift force of 78.5 kN (vehicle weight 8000 kg), (

**b**) lift force of 117.7 kN (vehicle weight 12,000 kg).

**Figure 13.**Power consumption comparison of the proposed ADSLIM-based system and equivalent passive PM-based maglev systems “DSLIM Inductrack I” and “DSLIM Inductrack II”; constant lift force of 98.1 kN is assumed in all cases.

**Table 1.**ADSLIM Specifications [19].

Motor Parameter | Value |
---|---|

Type of winding | Single Layer |

Slot number per pole per phase | 1 |

Number of turns per coil in top winding | 24 |

Number of turns per coil in bottom winding | 6 |

Top winding phase resistance $({R}_{\mathit{upper}}$) | 14.6 mΩ |

Top winding phase resistance $({R}_{\mathit{lower}}$) | 3.65 mΩ |

Number of poles | 8 |

Material of primary lamination | M-19 |

Material of secondary plate | Aluminum |

Rated current | 312.5 A |

Rated speed | 500 km/h |

Rated slip | 0.12 |

Rated supply frequency | 351 Hz |

Parameter | Value |
---|---|

Vehicle weight | 10,000 kg |

Rated (maximum) speed | 500 km/h |

Lift force | 98.1 kN |

Maximum thrust force | 60 kN |

Maximum output power | 8.33 MW |

Number of ADSLIM groups | 14 |

Number of ADSLIMs in a group | 8 |

Lift force per one ADSLIM | 875.9 N |

ADSLIM rated current | 312.5 A |

ADSLIM max. lift to thrust ratio in motoring mode | 2.7 |

Parameter | Value |
---|---|

Lift force (F_{lift}) | 875.9 N |

DC current (I_{DC}) | 265.98 A |

Drag force (F_{drag}) | 51.1 N |

Input electrical power (P_{input}) | 2582.2 W |

Lift to drag ratio (LDR) | 17.1 |

Propulsion and Levitation Type | Input Power (Zero Propulsion) | Input Power (Maximum Propulsion of 60 kN) |
---|---|---|

Proposed ADSLIM-based | 1.1889 MW | 10.4412 MW |

DSLIM and Inductrack I | 1.2479 MW | 11.5768 MW |

DSLIM and Inductrack II | 0.9861 MW | 11.3150 MW |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kuptsov, V.; Fajri, P.; Rasheduzzaman, M.; Magdaleno-Adame, S.; Hadziristic, K.
Combined Propulsion and Levitation Control for Maglev/Hyperloop Systems Utilizing Asymmetric Double-Sided Linear Induction Motors. *Machines* **2022**, *10*, 131.
https://doi.org/10.3390/machines10020131

**AMA Style**

Kuptsov V, Fajri P, Rasheduzzaman M, Magdaleno-Adame S, Hadziristic K.
Combined Propulsion and Levitation Control for Maglev/Hyperloop Systems Utilizing Asymmetric Double-Sided Linear Induction Motors. *Machines*. 2022; 10(2):131.
https://doi.org/10.3390/machines10020131

**Chicago/Turabian Style**

Kuptsov, Vladimir, Poria Fajri, Md. Rasheduzzaman, Salvador Magdaleno-Adame, and Konstantin Hadziristic.
2022. "Combined Propulsion and Levitation Control for Maglev/Hyperloop Systems Utilizing Asymmetric Double-Sided Linear Induction Motors" *Machines* 10, no. 2: 131.
https://doi.org/10.3390/machines10020131