# The Tubby Torus as a Quotient Group

^{1}

^{2}

## Abstract

**:**

## 1. Introduction and Preliminaries

**Problem**

**1.**

**Problem**

**2.**

**Question**

**1.**

**Theorem**

**1.**

**Theorem**

**2.**

**Corollary**

**1.**

**Theorem**

**3.**

**Theorem**

**4.**

**Theorem**

**5.**

**Corollary**

**2.**

**Theorem**

**6.**

**Theorem**

**7.**

**Problem**

**3.**

## 2. The Main Result

**Definition**

**1.**

**Theorem**

**8.**

**Proposition**

**1.**

**Theorem**

**9.**

**Proof.**

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Ferrando, J.C.; Kąkol, J.; López-Pellicer, M.; Śliwa, W. On the separable quotient problem for Banach spaces. Functiones et Approximato Commentarii Mathematici
**2018**, 59, 153–173. [Google Scholar] [CrossRef][Green Version] - Morris, S.A.; Yost, D.T. An observation on the separable quotient problem for Banach spaces. Axioms
**2020**, 9, 7. [Google Scholar] [CrossRef][Green Version] - Leiderman, A.G.; Morris, S.A.; Tkachenko, M.G. The separable quotient problem for topological groups. Isr. J. Math.
**2019**, 234, 331–369. [Google Scholar] [CrossRef][Green Version] - Toruńczyk, H. Characterizing Hilbert space topology. Fundam. Math.
**1981**, 111, 247–262. [Google Scholar] [CrossRef][Green Version] - Gabriyelyan, S.S.; Morris, S.A. A topological group observation on the Banach–Mazur separable quotient problem. Topol. Appl.
**2019**, 259, 283–286. [Google Scholar] [CrossRef][Green Version] - Eidelheit, M. Zur Theorie der Systeme linearer Gleichungen. Studia Math.
**1936**, 6, 130–148. [Google Scholar] [CrossRef][Green Version] - Morris, S.A. A remark on the separable quotient problem for topological groups. Bull. Aust. Math. Soc.
**2019**, 100, 453–457. [Google Scholar] [CrossRef] - Argyros, S.A.; Dodos, P.; Kanellopoulos, V. Unconditional families in Banach spaces. Math. Ann.
**2008**, 341, 15–38. [Google Scholar] [CrossRef] - Morris, S.A. Pontryagin Duality and the Structure of Locally Compact Abelian Groups; London Math. Soc. Lecture Notes Series 29; Cambridge University Press: Cambridge, UK, 1977. [Google Scholar]
- Hofmann, K.H.; Morris, S.A. The Structure of Compact Groups, 3rd ed.; Walter de Gruyter GmbH: Berlin, Germany, 2013. [Google Scholar]
- Banaszczyk, W. Additive Subgroups of Topological Vector Spaces; Springer: Berlin, Germany, 1991. [Google Scholar]
- Aussenhofer, L. Contributions to the duality theory of abelian topological groups and to the theory of nuclear groups. In Dissertationes Mathematicae; Polska Akademia Nauk Instytut Matematyczny: Warszawa, Poland, 1999. [Google Scholar]
- Chasco, M.J. Pontryagin duality for metrizable groups. Arch. Math.
**1998**, 70, 22–28. [Google Scholar] [CrossRef] - Morris, S.A. A topological group charachterization of those locally convex spaces having their weak topology. Math. Ann.
**1972**, 195, 330–331. [Google Scholar] [CrossRef] - Brown, R.; Higgins, P.J.; Morris, S.A. Countable products and sums of lines and circles: Their closed subgroups, quotients and duality properties. Math. Proc. Camb. Philos. Soc.
**1975**, 78, 19–32. [Google Scholar] [CrossRef]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Morris, S.A. The Tubby Torus as a Quotient Group. *Axioms* **2020**, *9*, 11.
https://doi.org/10.3390/axioms9010011

**AMA Style**

Morris SA. The Tubby Torus as a Quotient Group. *Axioms*. 2020; 9(1):11.
https://doi.org/10.3390/axioms9010011

**Chicago/Turabian Style**

Morris, Sidney A. 2020. "The Tubby Torus as a Quotient Group" *Axioms* 9, no. 1: 11.
https://doi.org/10.3390/axioms9010011