Existence of Positive Solution for the Eighth-Order Boundary Value Problem Using Classical Version of Leray–Schauder Alternative Fixed Point Theorem
Abstract
1. Introduction
2. Preliminaries
3. Main Results
4. Examples
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability; Dover: New York, NY, USA, 1961. [Google Scholar]
- Agarwal, R.P. Boundary Value Problems for Higher Order Differential Equations; MATSCIENCE: 98; Institute of Mathematical Sciences: Madras, India, July 1979. [Google Scholar]
- Reddy, S.M. Numerical Solution of Eighth Order Boundary Value Problems by Petrov-Galerkin Method with Quintic B-splines as basic functions and Septic B-Splines as weight functions. Int. J. Eng. Comput. Sci. 2016, 5, 17902–17908. [Google Scholar]
- Porshokouhi, M.G.; Ghanbari, B.; Gholami, M.; Rashidi, M. Numerical Solution of Eighth Order Boundary Value Problems with Variational Iteration Method. Gen. Math. Notes 2011, 2, 128–133. [Google Scholar]
- Ballem, S.; Kasi Viswanadham, K.N.S. Numerical Solution of Eighth Order Boundary Value Problems by Galerkin Method with Septic B-splines. Procedia Eng. 2015, 127, 1370–1377. [Google Scholar] [CrossRef][Green Version]
- Graef, J.R.; Henderson, J.; Yang, B. Positive Solutions for a Nonlinear Higher-Order Boundary Value Problems. Electron. J. Diff. Equ. 2007, 45, 1–10. [Google Scholar]
- Graef, J.R.; Moussaoui, T. A classof nth-order BVPs with nonlocal conditions. Comput. Math. Appl. 2009, 58, 1662–1671. [Google Scholar] [CrossRef][Green Version]
- Hussin, C.H.C.; Mandangan, A. Solving Eighth-order Boundary Value Problems Using Differential Transformation Method. AIP Conf. Proc. 2014, 1635, 99–106. [Google Scholar]
- Kasi Viswanadham, K.N.S.; Ballem, S. Numerical Solution of Eighth Order Boundary Value Problems by Galerkin Method with Quintic B-splines. Int. J. Comput. Appl. 2014, 89, 7–13. [Google Scholar]
- Liu, X.; Jiang, W.; Guo, Y. Multi-Point Boundary Value Problems For Higher Order Differential Equations. Appl. Math. E-Notes 2004, 4, 106–113. [Google Scholar]
- Napoli, A.; Abd-Elhameed, W.M. Numerical Solution of Eighth-Order Boundary Value Problems by Using Legendre Polynomials. Int. J. Comput. Methods 2017, 14, 19. [Google Scholar] [CrossRef]
- Noor, M.A.; Mohyud-Din, S.T. Variational Iteration Decomposition Method for Solving Eighth-Order Boundary Value Problems. Diff. Equ. Nonlinear Mech. 2008. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, F. Numerical Solutions for the Eighth-Order Initial and Boundary Value Problems Using the Second Kind Chebyshev Wavelets. Adv. Math. Phys. 2015, 2015, 964623. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Karapınar, E.; O’Regan, D.; Roldan-Lopez-de-Hierro, A.F. Fixed Point Theory in Metric Type Spaces; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Aleksić, S.; Kadelburg, Z.; Mitrović, Z.D.; Radenović, S. A new survey: Cone metric spaces. J. Int. Math. Virtual Inst. 2019, 9, 93–121. [Google Scholar]
- Ćirić, L. Some Recent Results in Metrical Fixed Point Theory; University of Belgrade: Belgrade, Serbia, 2003. [Google Scholar]
- Kirk, W.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Deng, G.; Huang, H.; Cvetković, M.; Radenović, S. Cone valued measure of noncompactness and related fixed point theorems. Bull. Int. Math. Virtual Inst. 2018, 8, 233–243. [Google Scholar]
- Birgani, O.T.; Chandok, S.; Dedović, N.; Radenović, S. A note on some recent results of the conformable derivative. Adv. Theory Nonlinear Anal. Its Appl. 2019, 3, 11–17. [Google Scholar]
- Todorčević, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Bekri, Z.; Benaicha, S. Nontrivial solution of a nonlinear sixth-order boundary value problem. Waves Wavelets Fract. 2018, 4, 10–18. [Google Scholar] [CrossRef]
- Ma, R. Existence and uniqueness theorems for some fourth-order nonlinear boundary value problems. Int. J. Math. Math. Sci. 2000, 23, 783–788. [Google Scholar] [CrossRef]
- Zvyagin, V.G.; Baranovskii, E.S. Topological degree of condensing multi-valued perturbations of the (S) + -class maps and its applications. J. Math. Sci. 2010, 170, 405–421. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. A study of higher-order nonlinear ordinary differential equations with four-point nonlocal integral boundary conditions. J. Appl. Math. Comput. 2012, 39, 97–108. [Google Scholar] [CrossRef]
- Cabrera, B.; López, I.J.; Sadarangani, K.B. Existence of positive solutions for the nonlinear elastic beam equation via a mixed monotone operator. J. Comput. Appl. Math. 2018, 327, 306–313. [Google Scholar] [CrossRef]
- Isac, G. Leray–Schauder Type Alternatives, Complementarity Problems and Variational Inequalities; Springer: New York, NY, USA, 2006. [Google Scholar]
- Klaus, D. Nonlinear Functional Analysis; Springer: Berlin, Germany, 1985. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shanmugam, T.; Muthiah, M.; Radenović, S. Existence of Positive Solution for the Eighth-Order Boundary Value Problem Using Classical Version of Leray–Schauder Alternative Fixed Point Theorem. Axioms 2019, 8, 129. https://doi.org/10.3390/axioms8040129
Shanmugam T, Muthiah M, Radenović S. Existence of Positive Solution for the Eighth-Order Boundary Value Problem Using Classical Version of Leray–Schauder Alternative Fixed Point Theorem. Axioms. 2019; 8(4):129. https://doi.org/10.3390/axioms8040129
Chicago/Turabian StyleShanmugam, Thenmozhi, Marudai Muthiah, and Stojan Radenović. 2019. "Existence of Positive Solution for the Eighth-Order Boundary Value Problem Using Classical Version of Leray–Schauder Alternative Fixed Point Theorem" Axioms 8, no. 4: 129. https://doi.org/10.3390/axioms8040129
APA StyleShanmugam, T., Muthiah, M., & Radenović, S. (2019). Existence of Positive Solution for the Eighth-Order Boundary Value Problem Using Classical Version of Leray–Schauder Alternative Fixed Point Theorem. Axioms, 8(4), 129. https://doi.org/10.3390/axioms8040129