A Space Decomposition-Based Deterministic Algorithm for Solving Linear Optimization Problems
Abstract
:1. Introduction
2. The Method
2.1. General Approach and Definitions
2.2. The Dominant Dimension
2.3. Problem Decomposition
2.4. Constraint Closest Point
2.5. Upper and Lower Constraints
2.6. Inward and Outward Constraints
2.7. Principal Planes and Constraint Projections
2.7.1. Identifying the 2D Projected Problem Active Upper-Constraints
2.7.2. Identifying the 2D Projected Problem Active Lower-Constraints
2.8. Selecting Active Constraints and Solving the Problem
3. The Algorithm
3.1. Define and Dimension set Variables and Arrays
- 3.1.1.
- Check dimensional coherence. Define variables and arrays. Allocating values for matrixes and vectors describing the problem takes + . This includes allocating values for the objective function’s coefficients , the constraints’ coefficients , the resources and the vector of constraint operator-comparators (greater than or equal, lower or than or equal).
- 3.1.2.
- Determine dominant dimension g. Fastest growing dimension g. Identifying the fastest growing dimension g is performed by applying Criterion (2) to each dimensional component of each constraints. Thus, Criterion (2) is evaluated times.
- 3.1.3.
- Determine the coordinate for each dimension of the closest point for all constraints . In this segment, the code first computes the shortest distance from the origin to each constraint. Then the coordinate value for each dimension is determined. This process requires steps.
- 3.1.4.
- Determine the objective-function’s angles and the on-principal-planes-projected-constraint angles .
3.2. Study the 2D-Projected Problem’s Upper-Constraints
- 3.2.1.
- Recognize upper-constraints for all projections over the principal planes. Apply Equation (3). The variable UpperBoundsDIMg[j, i] is set to true or false for each constraint and for each dimension except for the dominant dimension g. The computational complexity of this segment is .
- 3.2.2.
- Identify the upper-constraint with the shortest hypotenuse for each principal plane projection. Apply Equation (7). 3.2.2.a. Compute the projection-factor for upper-constraints. Equation (6). In this segment the hypotenuse length is determined for all constraint-projections on having a value UpperBoundsDIMg[j, i] = true. There are n − 1 constraint-projections for each constraint, then the worst case scenario leads to steps.
- 3.2.3.
- Build array with the possible active upper-constraints in each projections over the principal planes. Rank upper constraints according to the constraint gradient criterion.
3.3. Study the 2D-Projected Problem’s Lower-Constraints
3.4. Select Active Constraints
3.5. Find the Extreme Vertex’s Coordinates by Intersecting Active Constraints
4. Computational Study
5. Discussion
- A better understanding of the effect each constraint exerts over the problem’s feasible region by classifying the role of each constraint.
- Returning lists of active, non-active and redundant constraints.
- Ranking non-active constraints according to their distance to the feasible extreme vertex found. This ranking provides a useful scope of the sequence of conditions bounding a real situation beyond the found extreme point.
6. Conclusions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Example 1: Problem A.1: 3 Dims, 8 Constraints. Cradle
max z = | , | ||||
subject to: | R1 | ≤ | 4.0 | , | |
R2 | ≤ | 8.0 | , | ||
R3 | ≤ | 5.2 | , | ||
R4 | ≤ | 8.0 | , | ||
R5 | ≤ | 10.0 | , | ||
R6 | ≤ | 0 | , | ||
R7 | ≤ | 0 | , | ||
R8 | ≤ | 0 | . |
Appendix A.1.1. Define and Dimension Set Variables and Arrays
- A.1.1.1. Check dimensional coherence. Define variables and arrays.
- A.1.1.2. Determine dominant dimension g. Fastest growing g dimension g. Applying Equation (2) the dominant dimension is , thus g = 2.
- A.1.1.3. and A.1.1.4. Determine the coordinate xcpi for each dimension of the closest point for all constraints j. Determine the objective-function’s angles , and the on-principal-planes-projected-constraint angles .
Closest Point Coordinates | Projection Angles to Axes (Rad) | ||||||
---|---|---|---|---|---|---|---|
Constraint | Dimension i | Dimension i | |||||
Rj | By Objective Function Direction Distance to Origin | xcp0 | xcp1 | xcp2 | |||
R0 | 6.5652 | 2.296 | 5.714 | 2.296 | π/4 | 0 | 0 |
R1 | 22.9783 | 8 | 20 | 8 | π/2 | 0 | ∞ |
R2 | 14.9359 | 5.2 | 13 | 5.2 | π/2 | 0 | ∞ |
R3 | 9.1913 | 3.2 | 8 | 3.2 | 0 | 0 | 0 |
R4 | 28.7228 | 10 | 25 | 10 | ∞ | 0 | π/2 |
R5 | NR | NR | NR | NR | −π/2 | 0 | ∞ |
R6 | NR | NR | NR | NR | −π | 0 | −π |
R7 | NR | NR | NR | NR | ∞ | 0 | −π/2 |
Appendix A.1.2. Study the 2D-Projected Problem’s Upper-Constraints and Lower-Constraints
Over Principal Planes Projected Extreme-Point-Movement Hypotenuse Length | True if Projected Upper-Constraint Limits Dim i. Stack Position (1 = Top) Indicates Higher Probability | |||||
---|---|---|---|---|---|---|
Constraint | Dimension i | Dimension i | ||||
Rj | 0 | 1 (*) | 2 | 0 | 1 (*) | 2 |
R0 | 11.3137 | NR | DNUC | true (1) | NR | false |
R1 | ∞ | NR | DNUC | false | NR | false |
R2 | ∞ | NR | DNUC | true (2) | NR | false |
R3 | DNUC | NR | DNUC | false | NR | false |
R4 | DNUC | NR | ∞ | false | NR | true (1) |
R5 | DNUC | NR | DNUC | false | NR | false |
R6 | DNUC | NR | DNUC | false | NR | false |
R7 | DNUC | NR | DNUC | false | NR | false |
Appendix A.1.3. Study the 2D-Projected Problem’s Lower-Constraints
Over Principal Planes Criterion Distance wCritDistG | True if Projected Lower-Constraint Limits Dim i | |||||
---|---|---|---|---|---|---|
Constraint | Dimension i | Dimension i | ||||
Rj | 0 | 1 (*) | 2 | 0 | 1 (*) | 2 |
R0 | DNWC | NR | 5.174 | false | NR | true |
R1 | DNWC | NR | DNWC | false | NR | false |
R2 | DNWC | NR | DNWC | false | NR | false |
R3 | 8 | NR | 8 | true | NR | true |
R4 | DNWC | NR | DNWC | false | NR | false |
R5 | 8 | NR | DNWC | true | NR | false |
R6 | DNWC | NR | DNWC | false | NR | false |
R7 | DNWC | NR | DNWC | false | NR | false |
Appendix A.1.4. Select Active Constraints
Appendix A.1.5. Find the Extreme Vertex’s Coordinates by Intersecting Active Constraints
References
- Dantzig, G.B. Origins of The Simplex Method; Technical Report SOL 87-5; Stanford University: Stanford, CA, USA, 1987. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Shamos, M.I.; Hoey, D. CLOSEST-POINT PROBLEMS. 1975. Available online: https://pdfs.semanticscholar.org/dfba/35c318f0fc244c6d6cad98c1ad33f82d16ad.pdf (accessed on 15 October 2018).
- Shamos, M.I.; Hoey, D. Geometric Intersection Problems. 1976. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.9983&rep=rep1&type=pdf (accessed on 15 October 2018).
- Shamos, M.I. Computational Geometry [Internet]. Yale Universiy. 1978. Available online: http://euro.ecom.cmu.edu/people/faculty/mshamos/1978ShamosThesis.pdf (accessed on 15 October 2018).
- Khachiyan, L. Polynomial algorithm in linear programming. Sov. Math. Dokl. 1979, 20, 191–194. [Google Scholar] [CrossRef]
- Karmarkar, N. A new polynomial-time algorithm for linear programming. Combinatorica 1984, 4, 373–395. [Google Scholar] [CrossRef]
- Paparrizos, K. An infeasible (exterior point) simplex algorithm for assignment problems. Math. Program. 1991, 51, 45–54. [Google Scholar] [CrossRef]
- Anstreicher, K.M.; Terlaky, T. A Monotonic Build-Up Simplex Algorithm for Linear Programming. Oper. Res. 1994, 42, 556–561. [Google Scholar] [CrossRef] [Green Version]
- Andrus, J.F.; Schaferkotter, M.R. An exterior-point method for linear programming problems. J. Optim. Theory Appl. 1996, 91, 561–583. [Google Scholar] [CrossRef]
- Hassan, A.S.O.; Abdel-Malek, H.L.; Sharaf, I.M. An exterior point algorithm for some linear complementarity problems with applications. Eng. Optim. 2007, 39, 661–677. [Google Scholar] [CrossRef]
- Paparrizos, K.; Samaras, N.; Sifaleras, A. Exterior point simplex-type algorithms for linear and network optimization problems. Ann. Oper. Res. 2015, 229, 607–633. [Google Scholar] [CrossRef]
- Glavelis, T.; Ploskas, N.; Samaras, N. Improving a primal–dual simplex-type algorithm using interior point methods. Optimization 2018, 67, 2259–2274. [Google Scholar] [CrossRef]
- Elble, J.M.; Sahinidis, N.V. Scaling linear optimization problems prior to application of the simplex method. Comput. Optim. Appl. 2012, 52, 345–371. [Google Scholar] [CrossRef]
- Gondzio, J. Another Simplex-type Method for Large Scale 1 Introduction; Technical Report ZTSW-1-G244/94; Systems Research Institute, Polish Academy of Sciences: Warsaw, Poland, 1996. [Google Scholar]
- Kalai, G.A. Subexponential randomized simplex algorithm. In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, STOC’92, Victoria, BC, Canada, 4–6 May 1992; pp. 475–482. [Google Scholar]
- Hansen, T.D.; Zwick, U. An Improved Version of the Random-Facet Pivoting Rule for the Simplex Algorithm Categories and Subject Descriptors. In Proceedings of the 47th ACM Symposium of Theory Compution, Portland, OR, USA, 14–17 June 2015; pp. 209–218. [Google Scholar] [CrossRef]
- Kelner, J.A.; Spielman, D.A. A randomized polynomial-time simplex algorithm for linear programming. In Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing—STOC’06, Seattle, WA, USA, 21–23 May 2006; Volume 51. [Google Scholar] [CrossRef]
- Ploskas, N.; Samaras, N. GPU accelerated pivoting rules for the simplex algorithm. J. Syst. Softw. 2014, 96, 1–9. [Google Scholar] [CrossRef]
- Clarkson, K.L. Las Vegas algorithms for linear and integer programming when the dimension is small. J. ACM 1995, 42, 488–499. [Google Scholar] [CrossRef] [Green Version]
- Brise, Y.; Gartner, B. Clarkson’s Algorithm for Violator Spaces. In Proceedings of the 21st Annual Canadian Conference on Computational Geometry, Vancouver, BC, Canada, 30 June 2009. [Google Scholar]
- RinnooyKan, A.H.G.; Telgen, J. The Complexity of Linear Programming. Stat. Neerl. 1981, 35, 91–107. [Google Scholar] [CrossRef]
- Febres, G.L. Non-Iterative Linear Maximization Algorithm [Internet]. figshare.com. 2019. Available online: https://figshare.com/articles/Non-Iterative_Linear_Maximization_Algorithm/7928948 (accessed on 20 May 2019).
- Febres, G.L. Basis to Develop a Platform for Multiple-Scale Complex Systems Modeling and Visualization: MoNet v3. arXiv 2017, arXiv:1701.04064. [Google Scholar]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.; Cambridge University Press: Cambridge, UK, 1992; Available online: http://www.jstor.org/stable/1269484?origin=crossref (accessed on 15 May 2019).
- Febres, G.L. Gerardo Luis Febres’s Homepage. 2019. Available online: Gfebres.net (accessed on 20 May 2019).
- Klee, V.; Minty, G.J. How Good Is the Simplex Method. In Inequalities III; Shisha, O., Ed.; Academic Press: New York, NY, USA, 1972; pp. 159–175. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Febres, G.L. A Space Decomposition-Based Deterministic Algorithm for Solving Linear Optimization Problems. Axioms 2019, 8, 92. https://doi.org/10.3390/axioms8030092
Febres GL. A Space Decomposition-Based Deterministic Algorithm for Solving Linear Optimization Problems. Axioms. 2019; 8(3):92. https://doi.org/10.3390/axioms8030092
Chicago/Turabian StyleFebres, Gerardo L. 2019. "A Space Decomposition-Based Deterministic Algorithm for Solving Linear Optimization Problems" Axioms 8, no. 3: 92. https://doi.org/10.3390/axioms8030092
APA StyleFebres, G. L. (2019). A Space Decomposition-Based Deterministic Algorithm for Solving Linear Optimization Problems. Axioms, 8(3), 92. https://doi.org/10.3390/axioms8030092