Subordination Properties for Multivalent Functions Associated with a Generalized Fractional Differintegral Operator
Abstract
:1. Introduction and Definitions
2. Preliminaries
3. Properties Involving
- (i)
- (ii)
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bulboacă, T. Differential Subordinations and Superordinations, Recent Results; House of Scientific Book Publ.: Cluj-Napoca, Romania, 2005. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Inc.: New York, NY, USA, 2000; Volume 225. [Google Scholar]
- Owa, S. On the distortion theorems I. Kyungpook Math. J. 1978, 18, 53–59. [Google Scholar]
- Owa, S.; Srivastava, H.M. Univalent and starlike generalized hypergeometric functions. Can. J. Math. 1987, 39, 1057–1077. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Saigo, M.; Owa, S. A class of distortion theorems involving certain operators of fractional calculus. J. Math. Anal. Appl. 1988, 131, 412–420. [Google Scholar] [CrossRef]
- Prajapat, J.K.; Raina, R.K̇.; Srivastava, H.M. Some inclusion properties for certain subclasses of strongly starlike and strongly convex functions involving a family of fractional integral operators. Integral Transform. Spec. Funct. 2007, 18, 639–651. [Google Scholar] [CrossRef]
- Goyal, S.P.; Prajapat, J.K. A new class of analytic p-valent functions with negative coefficients and fractional calculus operators. Tamsui Oxf. J. Math. Sci. 2004, 20, 175–186. [Google Scholar]
- Prajapat, J.K.; Aouf, M.K. Majorization problem for certain class of p-valently analytic function defined by generalized fractional differintegral operator. Comput. Math. Appl. 2012, 63, 42–47. [Google Scholar] [CrossRef]
- Tang, H.; Deng, G.; Li, S.; Aouf, M.K. Inclusion results for certain subclasses of spiral-like multivalent functions involving a generalized fractional differintegral operator. Integral Transform. Spec. Funct. 2013, 24, 873–883. [Google Scholar] [CrossRef]
- Aouf, M.K.; Mostafa, A.O.; Zayed, H.M. Some characterizations of integral operators associated with certain classes of p-valent functions defined by the Srivastava-Saigo-Owa fractional differintegral operator. Complex Anal. Oper. Theory 2016, 10, 1267–1275. [Google Scholar] [CrossRef]
- Aouf, M.K.; Mostafa, A.O.; Zayed, H.M. Subordination and superordination properties of p-valent functions defined by a generalized fractional differintegral operator. Quaest. Math. 2016, 39, 545–560. [Google Scholar] [CrossRef]
- Aouf, M.K.; Mostafa, A.O.; Zayed, H.M. On certain subclasses of multivalent functions defined by a generalized fractional differintegral operator. Afr. Mat. 2017, 28, 99–107. [Google Scholar] [CrossRef]
- Mostafa, A.O.; Aouf, M.K.; Zayed, H.M.; Bulboacă, T. Multivalent functions associated with Srivastava-Saigo-Owa fractional differintegral operator. RACSAM 2017. [Google Scholar] [CrossRef]
- Mostafa, A.O.; Aouf, M.K.; Zayed, H.M. Inclusion relations for subclasses of multivalent functions defined by Srivastava–Saigo–Owa fractional differintegral operator. Afr. Mat. 2018. [Google Scholar] [CrossRef]
- Mostafa, A.O.; Aouf, M.K.; Zayed, H.M. Subordinating results for p-valent functions associated with the Srivastava–Saigo–Owa fractional differintegral operator. Afr. Mat. 2018. [Google Scholar] [CrossRef]
- Mostafa, A.O.; Aouf, M.K. Some applications of differential subordination of p-valent functions associated with Cho-Kwon-Srivastava operator. Acta Math. Sin. (Engl. Ser.) 2009, 25, 1483–1496. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, L. Some properties of certain extended fractional differintegral operator. RACSAM 2017, 1–11. [Google Scholar] [CrossRef]
- Hallenbeck, D.Z.; Ruscheweyh, S. Subordination by convex functions. Proc. Am. Math. Soc. 1975, 52, 191–195. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Functions; Vandenhoeck & Ruprecht: Göttingen, Germany, 1975. [Google Scholar]
- Stankiewicz, J.; Stankiewicz, Z. Some applications of Hadamard convolution in the theory of functions. Ann. Univ. Mariae Curie-Sklodowska Sect. A 1986, 40, 251–265. [Google Scholar]
- Obradović, M.; Owa, S. On certain properties for some classes of starlike functions. J. Math. Anal. Appl. 1990, 145, 357–364. [Google Scholar] [CrossRef]
- Takahashi, N.; Nunokawa, M. A certain connection between starlike and convex functions. Appl. Math. Lett. 2003, 16, 653–655. [Google Scholar] [CrossRef]
- Choi, J.H.; Saigo, M.; Srivastava, H.M. Some inclusion properties of a certain family of integral operators. J. Math. Anal. Appl. 2002, 276, 432–445. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zayed, H.M.; Kamal Aouf, M.; Mostafa, A.O. Subordination Properties for Multivalent Functions Associated with a Generalized Fractional Differintegral Operator. Axioms 2018, 7, 27. https://doi.org/10.3390/axioms7020027
Zayed HM, Kamal Aouf M, Mostafa AO. Subordination Properties for Multivalent Functions Associated with a Generalized Fractional Differintegral Operator. Axioms. 2018; 7(2):27. https://doi.org/10.3390/axioms7020027
Chicago/Turabian StyleZayed, Hanaa M., Mohamed Kamal Aouf, and Adela O. Mostafa. 2018. "Subordination Properties for Multivalent Functions Associated with a Generalized Fractional Differintegral Operator" Axioms 7, no. 2: 27. https://doi.org/10.3390/axioms7020027
APA StyleZayed, H. M., Kamal Aouf, M., & Mostafa, A. O. (2018). Subordination Properties for Multivalent Functions Associated with a Generalized Fractional Differintegral Operator. Axioms, 7(2), 27. https://doi.org/10.3390/axioms7020027