Kullback-Leibler Divergence and Mutual Information of Experiments in the Fuzzy Case
Abstract
:1. Introduction
2. Basic Definitions and Facts
- (2.2)
- implies
- (2.3)
- (2.4)
- implies
- (2.5)
- implies
- (2.6)
- with the equality if and only if are statistically independent;
- (2.7)
- (2.8)
3. Mutual Information and Conditional Mutual Information in Fuzzy Probability Spaces
- (i)
- (ii)
- (iii)
- (i)
- (ii)
- (iii)
- (iv)
- (i)
- Since by the assumption using the chain rule for logical mutual information, we obtain:
- (ii)
- According to Theorem 3 we have . Hence, using the equality (i) of this theorem, we obtain:
- (iii)
- Since from (ii) it follows the inequality:By Theorem 5 we can interchange and . Doing so we obtain .
- (iv)
- By Theorem 3, the mutual information can be expressed in two different ways:Since , we have , and, therefore, it holds . Using the second equality, we obtain:Since , we have . □
4. Kullback-Leibler Divergence with Respect to Fuzzy P-Measures
- (i)
- A function is concave over an interval if and only if the function is convex over the interval.
- (ii)
- The sum of two concave functions is itself concave; the sum of two convex functions is itself convex.
- (iii)
- Every real-valued affine function, i.e., each function of the form is simultaneously convex and concave.
5. Discussion
Acknowledgments
Conflicts of Interest
References
- Kolmogorov, A.N. Foundations of the Theory of Probability; Chelsea Press: New York, NY, USA, 1950. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Markechová, D. The entropy of fuzzy dynamical systems and generators. Fuzzy Sets Syst. 1992, 48, 351–363. [Google Scholar] [CrossRef]
- Piasecki, K. Probability of fuzzy events defined as denumerable additive measure. Fuzzy Sets Syst. 1985, 17, 271–284. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–358. [Google Scholar] [CrossRef]
- Markechová, D. Entropy and mutual information of experiments in the fuzzy case. Neural Netw. World 2013, 23, 339–349. [Google Scholar] [CrossRef]
- Markechová, D. Entropy of complete fuzzy partitions. Math. Slovaca 1993, 43, 1–10. [Google Scholar]
- Markechová, D. A note to the Kolmogorov-Sinai entropy of fuzzy dynamical systems. Fuzzy Sets Syst. 1994, 64, 87–90. [Google Scholar] [CrossRef]
- Ellerman, D. An Introduction to Logical Entropy and Its Relation to Shannon Entropy. Int. J. Seman. Comput. 2013, 7, 121–145. [Google Scholar] [CrossRef]
- Markechová, D.; Riečan, B. Logical Entropy of Fuzzy Dynamical Systems. Entropy 2016, 18, 157. [Google Scholar] [CrossRef]
- Ebrahimzadeh, A.; Giski, Z.E.; Markechová, D. Logical Entropy of Dynamical Systems—A General Model. Mathematics 2017, 5, 4. [Google Scholar] [CrossRef]
- Mesiar, R.; Rybárik, J. Entropy of Fuzzy Partitions—A General Model. Fuzzy Sets Syst. 1998, 99, 73–79. [Google Scholar] [CrossRef]
- Mesiar, R. The Bayes formula and the entropy of fuzzy probability spaces. Int. J. Gen. Syst. 1990, 4, 67–71. [Google Scholar]
- Dumitrescu, D. Fuzzy measures and the entropy of fuzzy partitions. J. Math. Anal. Appl. 1993, 176, 359–373. [Google Scholar] [CrossRef]
- Dumitrescu, D. Entropy of a fuzzy dynamical system. Fuzzy Sets Syst. 1995, 70, 45–57. [Google Scholar] [CrossRef]
- Riečan, B. An entropy construction inspired by fuzzy sets. Soft Comput. 2003, 7, 486–488. [Google Scholar]
- Hu, Q.; Yu, D.; Xie, Z.; Liu, J. Fuzzy probabilistic approximation spaces and their information measures. IEEE Trans. Fuzzy Syst. 2006, 14, 191–201. [Google Scholar]
- Yu, D.; Hu, Q.; Wu, C. Uncertainty measures for fuzzy relations and their applications. Appl. Soft Comput. 2007, 7, 1135–1143. [Google Scholar] [CrossRef]
- Rahimi, M.; Riazi, A. On local entropy of fuzzy partitions. Fuzzy Sets Syst. 2014, 234, 97–108. [Google Scholar] [CrossRef]
- Rahimi, M.; Assari, A.; Ramezani, F. A Local Approach to Yager Entropy of Dynamical Systems. Int. J. Fuzzy Syst. 2015, 1, 1–10. [Google Scholar] [CrossRef]
- Markechová, D.; Riečan, B. Entropy of Fuzzy Partitions and Entropy of Fuzzy Dynamical Systems. Entropy 2016, 18, 19. [Google Scholar] [CrossRef]
- Khare, M. Fuzzy σ-algebras and conditional entropy. Fuzzy Sets Syst. 1999, 102, 287–292. [Google Scholar] [CrossRef]
- Khare, M.; Roy, S. Conditional entropy and the Rokhlin metric on an orthomodular lattice with Bayessian state. Int. J. Theor. Phys. 2008, 47, 1386–1396. [Google Scholar] [CrossRef]
- Srivastava, P.; Khare, M.; Srivastava, Y.K. M-Equivalence, entropy and F-dynamical systems. Fuzzy Sets Syst. 2001, 121, 275–283. [Google Scholar] [CrossRef]
- Criado, F.; Gachechiladze, T. Entropy of fuzzy events. Fuzzy Sets Syst. 1997, 88, 99–106. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, M. A review of fuzzy set aggregation connectives. Inf. Sci. 1985, 36, 85–121. [Google Scholar] [CrossRef]
- Gray, R.M. Entropy and Information Theory; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Kullback, S. Information Theory and Statistics; John Wiley & Sons: New York, NY, USA, 1959. [Google Scholar]
- Schnakenberg, J. Network theory of microscopic and macroscopic behavior of master equation systems. Rev. Mod. Phys. 1976, 48, 571–585. [Google Scholar] [CrossRef]
- Risken, H. The Fokker-Planck Equation, Methods of Solution and Applications; Springer: New York, NY, USA, 1984. [Google Scholar]
- Qian, H. Relative entropy: Free energy associated with equilibrium fluctuations and nonequilibrium deviations. Phys. Rev. E 2001, 63, 042103. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.S. Entropy, Large Deviations, and Statistical Mechanics; Springer: New York, NY, USA, 1985. [Google Scholar]
- Dvurečenskij, A. On the existence of probability measures on fuzzy measurable spaces. Fuzzy Sets Syst. 1991, 43, 173–181. [Google Scholar] [CrossRef]
- Piasecki, K. New concept of separated fuzzy subsets. In Proceedings of the Polish Symposium on Interval and Fuzzy Mathematics, Poznan, Poland, 26–29 August 1983; Albrycht, J., Wiśniewski, H., Eds.; Wydaw. Politechniki Poznańskiej: Poznan, Poland, 1985; pp. 193–195. [Google Scholar]
- Piasecki, K. Fuzzy partitions of sets. BUSEFAL 1986, 25, 52–60. [Google Scholar]
- Riečan, B.; Mundici, D. Probability on MV-algebras. In Handbook of Measure Theory; Pap, E., Ed.; Elsevier: Amsterdam, The Netherlands, 2002; pp. 869–910. [Google Scholar]
- Di Nola, A.; Dvurečenskij, A. Product MV-algebras. Multiple-Valued Log. 2001, 6, 193–215. [Google Scholar]
- Kôpka, F.; Chovanec, F. D-posets. Math. Slovaca 1994, 44, 21–34. [Google Scholar]
- Frič, R. On D-posets of fuzzy sets. Math. Slovaca 2014, 64, 545–554. [Google Scholar] [CrossRef]
- Foulis, D.J.; Bennett, M.К. Effect algebras and unsharp quantum logics. Found. Phys. 1994, 24, 1325–1346. [Google Scholar] [CrossRef]
- Dvurečenskij, A.; Pulmannová, S. New Trends in Quantum Structures; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Atanassov, K. Intuitionistic Fuzzy Sets: Theory and Applications; Physica Verlag: New York, NY, USA, 1999. [Google Scholar]
- Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Atanassov, K. More on intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 33, 37–45. [Google Scholar] [CrossRef]
- Atanassov, K.; Riečan, B. On two operations over intuitionistic fuzzy sets. J. Appl. Math. Stat. Inform. 2006, 2, 145–148. [Google Scholar] [CrossRef]
- Riečan, B. Algebraic and Proof-Theoretic Aspects of Non-Classical Logics: Papers in Honor of Daniele Mundici on the Occasion of His 60th Birthday; Springer: Berlin/Heidelberg, Germany, 2007; pp. 290–308. [Google Scholar]
- Petrovičová, J. On the entropy of partitions in product MV-algebras. Soft Comput. 2000, 4, 41–44. [Google Scholar] [CrossRef]
- Petrovičová, J. On the entropy of dynamical systems in product MV-algebras. Fuzzy Sets Syst. 2001, 121, 347–351. [Google Scholar] [CrossRef]
- Riečan, B. Kolmogorov–Sinaj entropy on MV-algebras. Int. J. Theor. Phys. 2005, 44, 1041–1052. [Google Scholar] [CrossRef]
- Ďurica, M. Entropy on IF-events. Notes Intuit. Fuzzy Sets 2007, 13, 30–40. [Google Scholar]
- Di Nola, A.; Dvurečenskij, A.; Hyčko, M.; Manara, C. Entropy on Effect Algebras with the Riesz Decomposition Property I: Basic Properties. Kybernetika 2005, 41, 143–160. [Google Scholar]
- Di Nola, A.; Dvurečenskij, A.; Hyčko, M.; Manara, C. Entropy on Effect Algebras with the Riesz Decomposition Property II: MV-Algebras. Kybernetika 2005, 41, 161–176. [Google Scholar]
- Giski, Z.E.; Ebrahimi, M. Entropy of Countable Partitions on Effect Algebras with the Riesz Decomposition Property and Weak Sequential Effect Algebras. Cankaya Univ. J. Sci. Eng. 2015, 12, 20–39. [Google Scholar]
- Farnoosh, R.; Rahimi, M.; Kumar, P. Removing noise in a digital image using a new entropy method based on intuitionistic fuzzy sets. In Proceedings of the International Conference on Fuzzy Systems, Vancouver, BC, Canada, 24–29 July 2016.
- Burillo, P.; Bustince, H. Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets Syst. 1996, 78, 305–316. [Google Scholar] [CrossRef]
- Szmidt, E.; Kacprzyk, J. Entropy for intuitionistic fuzzy sets. Fuzzy Sets Syst. 2001, 118, 467–477. [Google Scholar] [CrossRef]
- Ebrahimzadeh, A.; Giski, Z.E.; Markechová, D. Logical Entropy on Effect Algebras with the Riesz Decomposition Property. Commun. Theor. Phys. 2017. under review. [Google Scholar]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markechová, D. Kullback-Leibler Divergence and Mutual Information of Experiments in the Fuzzy Case. Axioms 2017, 6, 5. https://doi.org/10.3390/axioms6010005
Markechová D. Kullback-Leibler Divergence and Mutual Information of Experiments in the Fuzzy Case. Axioms. 2017; 6(1):5. https://doi.org/10.3390/axioms6010005
Chicago/Turabian StyleMarkechová, Dagmar. 2017. "Kullback-Leibler Divergence and Mutual Information of Experiments in the Fuzzy Case" Axioms 6, no. 1: 5. https://doi.org/10.3390/axioms6010005