Yang-Baxter Systems, Algebra Factorizations and Braided Categories
Abstract
:1. Introduction
2. Preliminaries
- (1)
- ,
- (2)
- ,
- (3)
- ,
- (4)
- ,
3. Algebra Factorizations, Yang-Baxter Systems and Braided Categories
- (i)
- and are k-algebra structures.
- (ii)
- There exists an algebra factorization, , defined by
Conflicts of Interest
References
- Kanakoglou, K. Gradings, braidings, representations, paraparticles: Some open problems. Axioms 2012, 1, 74–98. [Google Scholar] [CrossRef]
- Underwood, R.G. Quasi-triangular structure of Myhill-Nerode bialgebras. Axioms 2012, 1, 155–172. [Google Scholar] [CrossRef]
- Schmidt, J.R. From coalgebra to bialgebra for the six-vertex model: The star-triangle relation as a necessary condition for commuting transfer matrices. Axioms 2012, 1, 186–200. [Google Scholar] [CrossRef]
- Nichita, F.F.; Zielinski, B. The duality between corings and ring extensions. Axioms 2012, 1, 173–185. [Google Scholar] [CrossRef]
- Links, J. Hopf algebra symmetries of an integrable Hamiltonian for anionic pairing. Axioms 2012, 1, 226–237. [Google Scholar] [CrossRef]
- Hoffnung, A.E. The Hecke bicategory. Axioms 2012, 1, 291–323. [Google Scholar] [CrossRef]
- Nichita, F.F. Introduction to the Yang-Baxter equation with open problems. Axioms 2012, 1, 33–37. [Google Scholar] [CrossRef]
- Nichita, F.F.; Schack, S.D. The duality between algebras and coalgebras. Ann. Univ. Ferrara 2005, 51, 173–181. [Google Scholar]
- Morris, S.A. Pontryagin Duality and the Structure of Locally Compact Abelian Groups; Cambridge University Press: Cambridge, UK, 1977. [Google Scholar]
- Kouloukas, T.E.; Papageorgiou, V.G. Entwining Yang-Baxter maps and integrable lattices. Math. Phys. 2011, 93, 163–175. [Google Scholar] [CrossRef]
- Lebed, V. Braided Systems, Multi-Braided Tensor Products and Bialgebra Homologies. 2013. arxiv 1305.0944. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/1305.0944 (accessed on 3 September 2013).
- Nichita, F.F. Lie algebras and Yang-Baxter equations. Bull. Transylv. Univ. Brasov, Ser. III: Math. Inf. Phys. 2012, 5, 195–208. [Google Scholar]
- Nichita, F.F.; Parashar, D.; Zielinski, B. Semi-entwining structures and their applications. ISRN Algebra 2013, 817919:1–817919:9. [Google Scholar]
- Nichita, F.F.; Popovici, B.P. Yang-Baxter operators from (G, θ)-lie algebras. Rom. Rep. Phy. 2011, 63, 641–650. [Google Scholar]
- Dăscălescu, S.; Nichita, F. Yang-Baxter operators arising from (co)algebra structures. Commun. Algebra 1999, 27, 5833–5845. [Google Scholar] [CrossRef]
- Brzeziński, T.; Nichita, F.F. Yang-Baxter systems and entwining structures. Comm. Algebra 2005, 33, 1083–1093. [Google Scholar] [CrossRef]
- Hlavaty, L.; Snobl, L. Solution of the Yang-Baxter system for quantum doubles. Int. J. Mod. Phys. 1999, A14, 3029–3058. [Google Scholar] [CrossRef]
- Hlavaty, L.; Kundu, A. Quantum integrability of nonultralocal models through Baxterization of quantized braided algebra. Int. J. Mod. Phys. 1996, A11, 2143–2165. [Google Scholar] [CrossRef]
- Majid, S.; Markl, M. Gluing operations for R-Matrices, quantum groups and link-invariants of Hecke type. Math. Proc. Cambridge Philos. Soc. 1996, 119, 139–166. [Google Scholar] [CrossRef]
- Berceanu, B.; Nichita, F.; Popescu, C. Algebra Structures Arising from Yang-Baxter Systems. 2010. arXiv:1005.0989. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/1005.0989 (accessed on 3 September 2013).
- Kassel, C. Quantum Groups; Springer Verlag: New York, NY, USA, 1995. [Google Scholar]
© 2013 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nichita, F.F. Yang-Baxter Systems, Algebra Factorizations and Braided Categories. Axioms 2013, 2, 437-442. https://doi.org/10.3390/axioms2030437
Nichita FF. Yang-Baxter Systems, Algebra Factorizations and Braided Categories. Axioms. 2013; 2(3):437-442. https://doi.org/10.3390/axioms2030437
Chicago/Turabian StyleNichita, Florin F. 2013. "Yang-Baxter Systems, Algebra Factorizations and Braided Categories" Axioms 2, no. 3: 437-442. https://doi.org/10.3390/axioms2030437
APA StyleNichita, F. F. (2013). Yang-Baxter Systems, Algebra Factorizations and Braided Categories. Axioms, 2(3), 437-442. https://doi.org/10.3390/axioms2030437