Interior Approximate Controllability of a Class of Nonlinear Thermoelastic Plate Equations
Abstract
1. Introduction
2. Preliminaries and Abstract Representation of the Problem
- Its spectrum consists only of eigenvalues
- There exists a complete orthonormal family of eigenfunctions of .
- The operator generates an analytic semigroup given by
- For , the fractional power spaces are defined asHere, denotes the norm in , and acts as
3. Controllability of the Unperturbed Linear System
- 1.
- The controllability operatorwhose adjoint is given by
- 2.
- The Gramian operator , defined by
- 1.
- .
- 2.
- .
- 3.
- for every .
- 4.
- for all implies .
- 5.
- .
- 6.
- .
4. Controllability of the Perturbed System
- The component
- The component
5. Examples: Sublinear Nonlinearities Satisfying the Assumptions
- Example A (saturated sublinear powers).
- Example B (component-wise sublinear mixing).
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lagnese, J.E. Boundary Stabilization of Thin Plate; SIAM Studies in Applied Mathematics, 10; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1989. [Google Scholar]
- Banquet, C.; Doria, M.; Villamizar-Roa, É.J. On the existence theory for the nonlinear thermoelastic plate equation. Appl. Anal. 2023, 3, 636–656. [Google Scholar] [CrossRef]
- Chen, W. Cauchy problem for thermoelastic plate equations with different damping mechanisms. Commum. Math. Sci. 2019, 2, 429–457. [Google Scholar] [CrossRef]
- Enomoto, Y. On a thermoelastic plate equation in an exterior domain. Math. Methods Appl. Sci. 2002, 25, 443–472. [Google Scholar] [CrossRef]
- Hasanyan, D.; Hovakimyan, N.; Sasane, A.J.; Stepanyan, V. Analysis of nonlinear thermoelastic plate equations. In Proceedings of the 43rd IEEE Conference on Decision and Control, Nassau, Bahamas, 14–17 December 2004. [Google Scholar]
- Leiva, H.; Sivoli, Z. Existence, stability and smoothness of a bounded solution for nonlinear time-varying thermoelastic plate equations. J. Math. Anal. Appl. 2003, 285, 191–211. [Google Scholar] [CrossRef]
- Norris, A.N. Dynamics of thermoelastic thin plates: A comparison of four theories. J. Therm. Stress. 2006, 29, 169–195. [Google Scholar] [CrossRef]
- Racke, R.; Ueda, Y. Dissipative structures for thermoelastic plate equations in Rn. Adv. Differ. Equ. 2016, 21, 601–630. [Google Scholar]
- Racke, R.; Ueda, Y. The Cauchy problem for thermoelastic plates with two temperatures. Z. Für Anal. Und Ihre Anwendungen 2020, 39, 103–129. [Google Scholar] [CrossRef]
- Trifunović, S.; Wang, Y.G. On the interaction problem between a compressible viscous fluid and a nonlinear thermoelastic plate. SIAM J. Math. Anal. 2023, 55, 3509–3566. [Google Scholar] [CrossRef]
- Abbas, I.A.; Abdalla, A.E.N.N.; Alzahrani, F.S.; Spagnuolo, M. Wave propagation in a generalized thermoelastic plate using eigenvalue approach. J. Therm. Stress. 2016, 39, 1367–1377. [Google Scholar] [CrossRef]
- Baroun, M.; Boulite, S.; Diagana, T.; Maniar, L. Almost periodic solutions to some semilinear non-autonomous thermoelastic plate equations. J. Math. Anal. Appl. 2009, 349, 74–84. [Google Scholar] [CrossRef]
- Aouadi, M.; Moulahi, T. The controllability of a thermoelastic plate problem revisited. Evol. Equ. Control Theory 2018, 7, 1–31. [Google Scholar] [CrossRef]
- Avalos, G.; Lasiecka, I. The null controllability of thermoelastic plates and singularity of the associated minimal energy function. J. Math. Anal. Appl. 2004, 294, 34–61. [Google Scholar] [CrossRef]
- Lasiecka, I.; Triggiani, R. Exact null controllability of structurally damped and thermo-elastic parabolic models. Atti Accad. Naz. Lincei. Cl. Sci. Fis. Mat. Naturali. Rend. Lincei. Mat. Appl. 1998, 9, 43–69. [Google Scholar]
- Leiva, H. A necessary and sufficient algebraic condition for the controllability of a thermoelastic plate equation. IMA J. Math. Control. Inf. 2003, 20, 393–410. [Google Scholar] [CrossRef]
- Larez, H.; Leiva, H.; Uzcategui, J. Controllability of block diagonal systems and applications. Int. J. Syst. Control. Commun. 2011, 3, 64–81. [Google Scholar] [CrossRef]
- Leiva, H.; Merentes, N. Interior controllability of the thermoelastic plate equation. Afr. Diaspora J. Math. 2011, 12, 46–59. [Google Scholar]
- Castro, C.; de Teresa, L. Null controllability of the linear system of thermoelastic plates. J. Math. Anal. Appl. 2015, 428, 772–793. [Google Scholar] [CrossRef]
- Benabdallah, A.; Naso, M.G. Null controllability of thermoelastic plate. Abstr. Appl. Anal. 2002, 7, 585–599. [Google Scholar] [CrossRef]
- Denk, R.; Racke, R. Lp-resolvent estimate and time decay for generalized thermoelastic plate equations. Electron. J. Differ. Equ. 2006, 48, 1–16. [Google Scholar]
- Denk, R.; Racke, R.; Shibata, Y. Lp theory for the linear thermoelastic plate equations in bounded and exterior domains. Adv. Differ. Equ. 2009, 14, 685–715. [Google Scholar]
- Fernández, H.; Quintanilla, R. Moore Gibson Thompson thermoelastic plates: Comparisons. J. Evol. Equ. 2023, 23, 1–24. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W. Asymptotic profiles of solutions for regularity-loss-type generalized thermoelastic plate equations and their applications. Z. Für Angew. Math. Und Phys. 2020, 71, 55. [Google Scholar] [CrossRef]
- Moulahi, T.; Aouadi, M.; Althobaiti, S. Exact controllability for nonlinear thermoviscoelastic plate problem. Demonstr. Math. 2024, 57, 20240071. [Google Scholar] [CrossRef]
- Naito, Y.; Shibata, Y. On the Lp analytic semigroup associated with the linear thermoelastic plate equations in the half-space. J. Math. Soc. Jpn. 2009, 61, 971–1011. [Google Scholar] [CrossRef]
- Racke, R.; Ueda, Y. Nonlinear thermoelastic plate equations-Global existence and decay rates for the Cauchy problem. J. Differ. Equ. 2017, 263, 8138–8177. [Google Scholar] [CrossRef]
- Leiva, H. A lemma on C0-semigroups and applications. Quaest. Math. 2003, 26, 247–265. [Google Scholar] [CrossRef]
- Curtain, R.F.; Zwart, H.J. An Introduction to Infinite-Dimensional Linear Systems Theory; Texts in Applied Mathematics 21; Springer: New York, NY, USA, 1995. [Google Scholar]
- Henry, D. Geometric Theory of Semilinear Parabolic Equations; Lecture Notes in Mathematicas; Springer: Berlin/Heidelberg, Germany, 1981; Volume 840. [Google Scholar]
- Yosida, K. Functional Analysis, 6th ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1995. [Google Scholar]
- Leiva, H.; Merentes, N. Approximate controllability of the impulsive semilinear heat equation. J. Math. Appl. 2015, 38, 85–104. [Google Scholar] [CrossRef]
- Leiva, H.; Merentes, N.; Sanchez, J.L. A characterization of semilinear dense range operators and applications. Abstr. Appl. Anal. 2013, 2013, 729093. [Google Scholar] [CrossRef]
- Isa, G. On Rothe’s Fixed Point Theorem in General Topological Vector Space. An. Şt. Univ. Ovidius Constanţa. 2004, 12, 127–134. [Google Scholar]
- Smart, J.D.R. Fixed Point Theorems, Cambridge Tracts in Mathematics; No. 66; Cambridge University Press: London, UK; New York, NY, USA, 1974. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duque, C.; Leiva, H.; Sivoli, Z. Interior Approximate Controllability of a Class of Nonlinear Thermoelastic Plate Equations. Axioms 2025, 14, 682. https://doi.org/10.3390/axioms14090682
Duque C, Leiva H, Sivoli Z. Interior Approximate Controllability of a Class of Nonlinear Thermoelastic Plate Equations. Axioms. 2025; 14(9):682. https://doi.org/10.3390/axioms14090682
Chicago/Turabian StyleDuque, Cosme, Hugo Leiva, and Zoraida Sivoli. 2025. "Interior Approximate Controllability of a Class of Nonlinear Thermoelastic Plate Equations" Axioms 14, no. 9: 682. https://doi.org/10.3390/axioms14090682
APA StyleDuque, C., Leiva, H., & Sivoli, Z. (2025). Interior Approximate Controllability of a Class of Nonlinear Thermoelastic Plate Equations. Axioms, 14(9), 682. https://doi.org/10.3390/axioms14090682