Hermite–Hadamard-Mercer Type Inequalities for Interval-Valued Coordinated Convex Functions
Abstract
1. Introduction
2. Preliminaries
- Moreover, another set feature is the inclusion ⊆ that is defined by
3. Main Results
4. Numerical Examples
5. Concluding Remarks and Future Direction
- Investigate Jensen–Mercer and H.H. Mercer inequalities for other generalized convex functions, such as quasi-convex, h-convex, or Godunova-Levin interval-valued functions.
- Study coordinated versions of other convexity classes (e.g., s-convex, strongly convex, or logarithmically convex interval-valued functions).
- Incorporate fractional calculus operators (e.g., Riemann–Liouville or Caputo fractional integrals) into interval-valued Mercer-type inequalities.
- Explore the use of alternative generalized difference operations (beyond ) to derive sharper bounds.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moore, R.E.; Yang, C.T. Interval Analysis; Technical Document LMSD-285875; Lockheed Missiles and Space Division: Sunnyvale, CA, USA, 1959. [Google Scholar]
- Lupulescu, V. Fractional calculus for interval-valued functions. Fuzzy Sets Syst. 2015, 265, 63–85. [Google Scholar] [CrossRef]
- Moore, R.E.; Kearfott, R.B.; Cloud, M.J. Introduction to interval analysis. Siam 2009, 201–223. [Google Scholar] [CrossRef]
- Abbas, M.A.; Chen, L.; Khan, A.R.; Muhammad, G.; Sun, B.; Hussain, S.; Hussain, J.; Rasool, A.U. Some New Anderson Type h and q Integral Inequalities in Quantum Calculus. Symmetry 2022, 14, 1294. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Ali, M.A.; Murtaza, G.; Sial, I.B. Hermite-Hadamard and Ostrowski type inequalities in h-calculus with applications. AIMS Math. 2022, 7, 7056–7068. [Google Scholar] [CrossRef]
- Dwilewicz, R.J. A short history of Convexity. Differ. Geom.–Dyn. Syst. 2009, 112. [Google Scholar]
- Green, J.W. Recent applications of convex functions. Am. Math. Mon. 1954, 61, 449–454. [Google Scholar] [CrossRef]
- Sarpong, P.K.; Prah, J.A. Applications of convex functions and concave functions. Dama Int. J. Res. (DIJR) 2018, 3, 1–14. [Google Scholar]
- Robertson, E.F. Jacques Hadamard (1865–1963). In MacTutor History of Mathematics Archive; University of St Andrews: St Andrews, UK; Available online: https://mathshistory.st-andrews.ac.uk/ (accessed on 24 August 2025).
- Asjad, M.I.; Faridi, W.A.; Al-Shomrani, M.M.; Yusuf, A. The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. Aims Math. 2022, 11, 7040–7055. [Google Scholar] [CrossRef]
- Mandelbrojt, S.; Schwartz, L. Jacques Hadamard (1865–1963). Bull. Am. Math. Soc. 1965, 71, 107–129. [Google Scholar] [CrossRef]
- Zhao, D.; Ali, M.A.; Kashuri, A.; Budak, H.; Sarikaya, M.Z. Hermite Hadamard type inequalities for interval-valued approximately h-convex functions via generalized fractional integrals. J. Inequalities Appl. 2020, 2020, 222. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, C.; Zhou, Y. New generalized Hermite Hadamard type inequalities and applications to special means. J. Inequalities Appl. 2013, 2013, 325. [Google Scholar] [CrossRef]
- Xi, B.Y.; Qi, F. Some integral inequalities of Hermite Hadamard type for convex functions with applications to means. J. Funct. Spaces 2012, 2012, 980438. [Google Scholar] [CrossRef]
- Sadowska, E. Hadamard inequality and a refinement of Jensen inequality for set-valued functions. Results Math. 1997, 32, 332–337. [Google Scholar] [CrossRef]
- Dragomir, S.S. On Hadamard’s inequality for convex functions on the coordinates in a rectangle from the plane. Taiwan. J. Math. 2001, 5, 775–788. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Pearce, C. Selected Topics on Hermite-Hadamard Inequalities and Applications. In RGMIA, Monographs; Victoria University: Melbourne, Australia, 2000. [Google Scholar]
- Alomari, M.; Darus, M. coordinated s-convex function in the first sense with some Hadamard-type inequalities. Int. Contemp. Math. Sci. 2008, 3, 1557–1567. [Google Scholar]
- Özdemir, M.E.; Set, E.; Sarikaya, M.Z. New some Hadamard’s type inequalities for coordinated m-convex and (α, m)-convex functions. Hecettepe J. Math. Stat. 2011, 40, 219–229. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E.; Dragomir, S.S. New some Hadamard’s type inequalities for coordinated convex functions. Tamsui Oxf. J. Inf. Math. Sci. 2012, 28, 137–152. [Google Scholar]
- Alomari, M.; Darus, M. On the Hadamard’s inequality for log-convex functions on the coordinates. J. Inequalities Appl. 2009, 13, 283147. [Google Scholar] [CrossRef]
- Latif, A.; Alomari, M. Hadamard-type inequalities for product two convex functions on the coordinates. Int. Math. Forum 2009, 4, 2327–2338. [Google Scholar]
- Zhao, D.; Ali, M.A.; Murtaza, G.; Zhang, Z. On the Hermite-Hadamard inequalities for interval-valued coordinated convex functions. Adv. Differ. Equ. 2020, 2020, 570. [Google Scholar] [CrossRef]
- Dragomir, S.S. Some refinements of Jensen’s inequality. J. Math. Anal. Appl. 1992, 168, 518–522. [Google Scholar] [CrossRef]
- Dragomir, S.S. On Hadamard’s inequality for the convex mappings defined on a ball in the space and applications. Math. Inequalities Appl. 2000, 3, 177–187. [Google Scholar] [CrossRef]
- Dragomir, S.S. A refinement of Jensen’s inequality with applications for f-divergence measure. Taiwan. J. Math. 2010, 14, 153–164. [Google Scholar] [CrossRef]
- Bakula, M.K.; Pečariĉ, J. On Jensen’s inequality for convex functions on the coordinates in a rectangle from the plane. Taiwan. J. Math. 2006, 10, 1271–1292. [Google Scholar] [CrossRef]
- Ali, M.A.; Asjad, M.I.; Budak, H.; Faridi, W.A. On Ostrowski–Mercer inequalities for differentiable harmonically convex functions with applications. Math. Methods Appl. Sci. 2023, 46, 8546–8559. [Google Scholar] [CrossRef]
- Mercer, A.M. A variant of Jensen Inequality. J. Inequalities Pure Appl. Math. 2003, 6, 73. [Google Scholar]
- Matkovic, A.; Peĉarić, J.; Perić, I. A variant of Jensen’s inequality of Mercer type for operators with applications. Linear Algebra Appl. 2006, 418, 551–564. [Google Scholar] [CrossRef]
- Niezgoda, M. A generalization of Mercer’s result on convex functions. Nonlinear Anal. 2009, 71, 277. [Google Scholar] [CrossRef]
- Kian, M.; Moslehian, M.S. Refinements of the operator Jensen-Mercer inequality. Electron. J. Linear Algebra 2013, 26, 742–753. [Google Scholar] [CrossRef]
- Toseef, M.; Zhang, Z.; Ali, M.A. q-H.H-Mercer and Midpoint-Mercer Inequalities for General Convex Functions with Their Computational Analysis. Int. J. Geom. Methods Mod. Phys. 2025, 22, 2450319. [Google Scholar] [CrossRef]
- Moslehian, M.S. Matrix Hermite-Hadamard type inequalities. Houst. J. Math. 2013, 39, 177–189. [Google Scholar]
- Sitthiwirattham, T.; Sial, I.B.; Ali, M.A.; Budak, H.; Reunsumrit, J. A new variant of Jensen inclusion and Hermite-Hadamard type inclusions for interval-valued functions. Filomat 2023, 37, 5553–5565. [Google Scholar] [CrossRef]
- Toseef, M.; Ali, M.A. Jensen-Mercer and related Inequalities for Coordinated Convex Functions with their Computational Analysis and Applications. Int. J. Theor. Phys. 2025, accepted. [Google Scholar]
- Aubin, J.P.; Cellina, A. Differential Inclusions; Springer: New York, NY, USA, 1984. [Google Scholar]
- Markov, S. On the algebraic properties of convex bodies and some applications. J. Convex Anal. 2000, 7, 129–166. [Google Scholar]
- Dinghas, A. Zum Minkowskischen Integralbegriff abgeschlossener Mengen. Math. Z. 1956, 66, 173–188. [Google Scholar] [CrossRef]
- Piatek, B. On the Riemann integral of set-valued functions. Zesz. Nauk. Mat. Stosow./Politech. Slaska 2012, 2, 5–18. [Google Scholar]
- Piatek, B. On the Sincov functional equation. Demonstr. Math. 2005, 38, 875–882. [Google Scholar] [CrossRef]
- Lou, T.; Ye, G.; Zhao, D.; Liu, W. Iq-Calculus and Iq-Hermite–Hadamard inequalities for interval-valued functions. Adv. Differ. Equ. 2020, 2020, 446. [Google Scholar] [CrossRef]
- Matković, A.; Pečarić, J. A variant of Jensen Inequality for convex functions of several variables. J. Math. Inequalities 2007, 1, 45–51. [Google Scholar] [CrossRef]
- Schwarz, H.A. Über ein Flächen kleinsten Flächeninhalts betreffendes Problem der Variationsrechnung. Acta Soc. Sci. Fenn. 1888, 318. [Google Scholar]
- Zhao, D.; An, T.; Ye, G.; Liu, W. New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions. J. Inequalities Appl. 2018, 2018, 302. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toseef, M.; Javed, I.; Ali, M.A.; Ciurdariu, L. Hermite–Hadamard-Mercer Type Inequalities for Interval-Valued Coordinated Convex Functions. Axioms 2025, 14, 661. https://doi.org/10.3390/axioms14090661
Toseef M, Javed I, Ali MA, Ciurdariu L. Hermite–Hadamard-Mercer Type Inequalities for Interval-Valued Coordinated Convex Functions. Axioms. 2025; 14(9):661. https://doi.org/10.3390/axioms14090661
Chicago/Turabian StyleToseef, Muhammad, Iram Javed, Muhammad Aamir Ali, and Loredana Ciurdariu. 2025. "Hermite–Hadamard-Mercer Type Inequalities for Interval-Valued Coordinated Convex Functions" Axioms 14, no. 9: 661. https://doi.org/10.3390/axioms14090661
APA StyleToseef, M., Javed, I., Ali, M. A., & Ciurdariu, L. (2025). Hermite–Hadamard-Mercer Type Inequalities for Interval-Valued Coordinated Convex Functions. Axioms, 14(9), 661. https://doi.org/10.3390/axioms14090661