New Uncertainty Principles in the Linear Canonical Transform Domains Based on Hypercomplex Functions
Abstract
:1. Introduction
2. Preliminaries
2.1. Clifford Algebras
2.2. Fourier Transform of Hypercomplex Functions
3. Linear Canonical Transform of Hypercomplex Functions
4. Uncertainty Principles for Linear Canonical Transform of Hypercomplex Functions
5. Example
6. Potential Applications
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dar, A.H.; Bhat, M.Y. Donoho-Stark’s and Hardy’s uncertainty principles for the short-time quaternion offset linear canonical transform. Filomat 2023, 37, 4467–4480. [Google Scholar] [CrossRef]
- Kais, S. Hardy’s uncertainty principle for Gabor transform on compact extensions of . Monatshefte Math. 2024, 204, 581–600. [Google Scholar]
- Samanta, A.; Sarkar, S. Uncertainty principle for Weyl transform and Fourier-Wigner transform. Can. J. Phys. 2023, 174, 217–227. [Google Scholar] [CrossRef]
- Gao, W.B.; Li, B.Z. Uncertainty principle for the two-sided quaternion windowed linear canonical transform. Circuits Syst. Signal Process. 2022, 41, 1324–1348. [Google Scholar] [CrossRef]
- Nicola, F.; Trapasso, S.I. A note on the HRT conjecture and a new uncertainty principle for the short-time Fourier transform. J. Fourier Anal. Appl. 2020, 26, 68. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Han, Y.P.; Sun, Y.; Wu, A.Y.; Shi, X.Y.; Qiang, S.Z.; Jiang, X.; Wang, G.; Liu, L.B. Heisenberg’s uncertainty principle for N-dimensional fractional Fourier transform of complex-valued functions. Optik 2021, 242, 167052. [Google Scholar] [CrossRef]
- Goncalves, F.; Silva, D.O.; Ramos, J.P.G. On regularity and mass concentration phenomena for the sign uncertainty principle. J. Geom. Anal. 2021, 31, 6080–6101. [Google Scholar] [CrossRef]
- Qu, F.F.; Xin, W.; Chen, J. Uncertainty principle for vector-valued functions. AIMS Math. 2024, 9, 12494–12510. [Google Scholar] [CrossRef]
- Wei, D.Y.; Yan, Z. Generalized sampling of graph signals with the prior information based on graph fractional Fourier transform. Signal Process. 2024, 214, 109263. [Google Scholar] [CrossRef]
- Wei, D.Y.; Yuan, S.X. Hermitian random walk graph Fourier transform for directed graphs and its applications. Digit. Signal Process. 2024, 155, 104751. [Google Scholar] [CrossRef]
- Emory, T.; Iyer, R. Heisenberg’s uncertainty principle, Bohr’s complementarity principle, and the Copenhagen interpretation. Phys. Essays 2024, 37, 71–73. [Google Scholar]
- Afzal, R.; Ali Mohammadian, R.; Saeed, M. A unified approach to the generalized uncetainty principle. Rep. Math. Phys. 2024, 93, 57–69. [Google Scholar] [CrossRef]
- Naoki, H. Sharp uncertainty principle inequality for solenoidal fields. J. Math. Pures Appl. 2023, 172, 202–235. [Google Scholar]
- Mahesh Krishna, K. Functional deutsch uncertainty principle. J. Class Anal. 2023, 1, 11–18. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Shi, X.Y.; Wu, A.Y.; Li, D. Some properties of windowed linear canonical transform and its logarithmic uncertainty principle. IEE Signal Process. Lett. 2021, 28, 1665–1669. [Google Scholar] [CrossRef]
- Fei, M.G.; Wang, Q.; Yang, L. Sharper uncertainty principle and Paley-Wiener theorem for the Dunkl transform. Math. Meth. Appl. Sci. 2022, 45, 882–898. [Google Scholar] [CrossRef]
- Xu, Z.H.; Ren, G.B. Sharper uncertainty principles in quaternionic Hilbert spaces. Math. Methods Appl. Sci. 2022, 43, 1608–1630. [Google Scholar] [CrossRef]
- Zhang, Z.C. Sharper uncertainty principles associated with L-p-norm. Math. Meth. Appl. Sci. 2020, 43, 6663–6676. [Google Scholar] [CrossRef]
- Yang, Y.; Dang, P.; Qian, T. Space-frequency analysis in higher dimensions and applications. Ann. Mat. Pura Appl. 2015, 194, 953–968. [Google Scholar] [CrossRef]
- Yang, Y.; Dang, P.; Qian, T. Stronger uncertainty principles for hypercomplex signals. Complex Var. Elliptic Equ. 2015, 60, 1696–1711. [Google Scholar] [CrossRef]
- Lian, P. Sharp inequalities for geometric Fourier transform and associated ambiguity function. J. Math. Anal. Appl. 2020, 484, 123730. [Google Scholar] [CrossRef]
- Banouh, H.; Ben Mabrouk, A. A sharp Clifford wavelet Heisenberg-type uncertainty principle. J. Math. Phys. 2020, 61, 093502. [Google Scholar] [CrossRef]
- Gao, W.B. Convolution theorem for the windowed linear canonical transform. Integral Transform. Spec. Funct. 2024, 36, 91–101. [Google Scholar] [CrossRef]
- Varghese, S.; Kundu, M. Revisit of uncertainty principles via OPS method approach in the framework of quaternion quadratic phase Fourier transform. Int. J. Geom. Methods Mod. Phys. 2024, 22, 2550007. [Google Scholar] [CrossRef]
- Kundu, M.; Prasad, A. Uncertainty principles associated with quaternion linear canonical transform and their estimates. Math. Meth. Appl. Sci. 2022, 45, 4772–4790. [Google Scholar] [CrossRef]
- Dar, A.H.; Bhat, M.Y. Special affine stockwell transform: Theory, uncertainty principles and applications. Int. J. Wavelets Multiresolut. Inf. Process. 2024, 22, 2350057. [Google Scholar] [CrossRef]
- Dar, A.H.; Bhat, M.Y. N-dimensional wave packet transform and associated uncertainty principles in the free metaplectic transform domain. Math. Meth. Appl. Sci. 2024, 47, 13199–13220. [Google Scholar] [CrossRef]
- Feng, Q.; Li, B.Z.; Rassias, J.M. Weighted Heisenberg-Pauli-Weyl uncertainty principles for the linear canonical transform. Signal Process. 2019, 165, 209–221. [Google Scholar] [CrossRef]
- Adrian, S. Uncertainty principles in linear canonical transform domains and some of their implications in optics. J. Opt. Soc. Am. A 2009, 25, 647–652. [Google Scholar]
- Skoog, R. An uncertainty principle for functions vanishing on a half-line. IEEE Trans. Circuit Theory 1970, 17, 241–243. [Google Scholar] [CrossRef]
- Xu, S.Q.; Li, F.; Chai, Y.; Du, B.; He, Y.G. Uncertainty relations for signal concentrations associated with the linear canonical transform. Digit. Signal Process. 2018, 81, 100–105. [Google Scholar] [CrossRef]
- Zhang, Z.C. Uncertainty principle for linear canonical transform using matrix decomposition of absolute spread matrix. Digit. Signal Process. 2019, 89, 145–154. [Google Scholar] [CrossRef]
- Gao, W.B.; Li, B.Z. Uncertainty principles for the short-time linear canonical transform of complex signals. Digit. Signal Process. 2021, 111, 102953. [Google Scholar] [CrossRef]
- Xu, S.Q.; Chai, Y.; Hu, Y.Q.; Li, F.; Huang, L. Uncertainty inequalities for the linear canonical Hilbert transform. Circuits Syst. Signal Process. 2018, 37, 4584–4598. [Google Scholar] [CrossRef]
- Gao, W.B. Uncertainty principles for the biquaternion offset linear canonical transform. J. Pseudo-Differ. Oper. Appl. 2024, 15, 22. [Google Scholar] [CrossRef]
- Sharma, K.K.; Joshi, S.D. Uncertainty principle for real signals in the linear canonical transform domains. IEEE Trans. Signal Process. 2008, 56, 2677–2683. [Google Scholar] [CrossRef]
- Xu, G.L.; Wang, X.T.; Xu, X.G. Three uncertainty relations for real signals associated with linear canonical transform. IET Signal Process. 2009, 3, 85–92. [Google Scholar]
- Zhao, J.; Tao, R.; Li, Y.L. On signal moments and uncertainty relations associated with linear canonical transform. Signal Process. 2010, 90, 2686–2689. [Google Scholar] [CrossRef]
- Xu, G.L.; Wang, X.T.; Xu, X.G. On uncertainty principle for the linear canonical transform of complex signals. IEEE Trans. Signal Process. 2010, 58, 4916–4918. [Google Scholar]
- Shi, J.; Liu, X.; Zhang, N.T. On uncertainty principles for linear canonical transform of complex signals via operator methods. Signal Image Video Process. 2014, 8, 85–93. [Google Scholar] [CrossRef]
- Dang, P.; Deng, G.T.; Qian, T. A tighter uncertainty principle for linear canonical transform in terms of phase derivative. IEEE Trans. Signal Process. 2013, 61, 5153–5164. [Google Scholar] [CrossRef]
- Li, Z.W.; Gao, W.B. Inequalities for the windowed linear canonical transform of complex functions. Axioms 2023, 12, 554. [Google Scholar] [CrossRef]
- Yang, Y.; Kou, K.I. Uncertainty principles for hypercomplex signals in the linear canonical transform domains. Digit. Signal Process. 2014, 95, 67–75. [Google Scholar] [CrossRef]
- Gao, W.B. Uncertainty principles of hypercomplex functions for fractional Fourier transform. Fract. Calc. Appl. Anal. 2023, 26, 2298–2317. [Google Scholar] [CrossRef]
- Adcock, C.J. The linear skew-t distribution and its properties. Stats 2023, 6, 381–410. [Google Scholar] [CrossRef]
- Lacaze, B. About sampling for band-limited linear canonical transform. Signal Process. 2011, 91, 1076–1078. [Google Scholar] [CrossRef]
- Healy, J.J.; Kutay, M.A.; Ozaktas, H.M.; Sheridan, J.T. Linear Canonical Transforms; Springer: New York, NY, USA, 2016. [Google Scholar]
- Donoho, D.L.; Stark, P.B. Uncertainty principles and signal recovery. SIAM J. Appl. Math. 1989, 49, 906–931. [Google Scholar] [CrossRef]
- Cohen, L. Wavelet Transforms and Time-Frequency Signal Analysis; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, W.-B. New Uncertainty Principles in the Linear Canonical Transform Domains Based on Hypercomplex Functions. Axioms 2025, 14, 415. https://doi.org/10.3390/axioms14060415
Gao W-B. New Uncertainty Principles in the Linear Canonical Transform Domains Based on Hypercomplex Functions. Axioms. 2025; 14(6):415. https://doi.org/10.3390/axioms14060415
Chicago/Turabian StyleGao, Wen-Biao. 2025. "New Uncertainty Principles in the Linear Canonical Transform Domains Based on Hypercomplex Functions" Axioms 14, no. 6: 415. https://doi.org/10.3390/axioms14060415
APA StyleGao, W.-B. (2025). New Uncertainty Principles in the Linear Canonical Transform Domains Based on Hypercomplex Functions. Axioms, 14(6), 415. https://doi.org/10.3390/axioms14060415