Variational Principle of the Unstable Nonlinear Schrödinger Equation with Fractal Derivatives
Abstract
:1. Introduction
2. The Fractal Variational Principle
3. Proof of the Fractal Variational Principle
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jhangeer, A.; Rezazadeh, H.; Seadawy, A.A. Study of travelling, periodic, quasiperiodic and chaotic structures of perturbed Fokas–Lenells model. Pramana 2021, 95, 41. [Google Scholar]
- Wang, K.L. New perspective to the coupled fractional nonlinear Schrödinger equations in dual-core optical fibers. Fractals 2025, 33, 2550034. [Google Scholar]
- Seadawy, A.R.; Rizvi, S.T.; Ali, I.; Younis, M.; Ali, K.; Makhlouf, M.M.; Althobaiti, A. Conservation laws, optical molecules, modulation instability and Painlevé analysis for the Chen–Lee–Liu model. Opt. Quantum Electron. 2021, 53, 172. [Google Scholar]
- Sohail, M.; Nazir, U. Numerical computation of thermal and mass transportation in Williamson material utilizing modified fluxes via optimal homotopy analysis procedure. Waves Random Complex Media 2023, 1–22. [Google Scholar] [CrossRef]
- Waseem, F.; Sohail, M.; Ilyas, N.; Awwad, E.M.; Sharaf, M.; Khan, M.J.; Tulu, A. Entropy analysis of MHD hybrid nanoparticles with OHAM considering viscous dissipation and thermal radiation. Sci. Rep. 2024, 14, 1096. [Google Scholar]
- Kumar, S.; Kumar, A.; Kharbanda, H. Abundant exact closed-form solutions and solitonic structures for the double-chain deoxyribonucleic acid (DNA) model. Braz. J. Phys. 2021, 51, 1043–1068. [Google Scholar]
- Leonov, A.; Nagornov, O.; Tyuflin, S. Modeling of Mechanisms of Wave Formation for COVID-19 Epidemic. Mathematics 2022, 11, 167. [Google Scholar] [CrossRef]
- Duran, S. Solitary wave solutions of the coupled konno-oono equation by using the functional variable method and the two variables (G’/G, 1/G)-expansion method. Adıyaman Univ. J. Sci. 2020, 10, 585–594. [Google Scholar]
- Seadawy, A.R. Stability analysis for Zakharov–Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma. Comput. Math. Appl. 2014, 67, 172–180. [Google Scholar]
- Wang, K.L. New computational approaches to the fractional coupled nonlinear Helmholtz equation. Eng. Comput. 2024, 41, 1285–1300. [Google Scholar]
- Hosseini, K.; Hincal, E.; Sadri, K.; Rabiei, F.; Ilie, M.; Akgül, A.; Osman, M.S. The positive multi-complexiton solution to a generalized Kadomtsev-Petviashvili equation. Partial. Differ. Equ. Appl. Math. 2024, 9, 100647. [Google Scholar]
- Hu, S.H.; Tian, B.; Du, X.X.; Liu, L.; Zhang, C.R. Lie symmetries, conservation laws and solitons for the AB system with time-dependent coefficients in nonlinear optics or fluid mechanics. Pramana 2019, 93, 38. [Google Scholar]
- Akram, U.; Seadawy, A.R.; Rizvi, S.T.R.; Younis, M.; Althobaiti, S.; Sayed, S. Traveling wave solutions for the fractional Wazwaz–Benjamin–Bona–Mahony model in arising shallow water waves. Results Phys. 2021, 20, 103725. [Google Scholar]
- Wang, K.J. An effective computational approach to the local fractional low-pass electrical transmission lines model. Alex. Eng. J. 2025, 110, 629–635. [Google Scholar]
- Ayati, Z.; Hosseini, K.; Mirzazadeh, M. Application of Kudryashov and functional variable methods to the strain wave equation in microstructured solids. Nonlinear Eng. 2017, 6, 25–29. [Google Scholar]
- Wang, K.J.; Zhu, H.W.; Shi, F.; Liu, X.L.; Wang, G.D.; Li, G. Lump wave, breather wave and other abundant wave solutions to the (2+1)-dimensional Sawada–Kotera–Kadomtsev Petviashvili equation of fluid mechanics. Pramana 2025, 99, 40. [Google Scholar]
- Zaman, U.H.M.; Arefin, M.A.; Akbar, M.A.; Uddin, M.H. Utilizing the extended tanh-function technique to scrutinize fractional order nonlinear partial differential equations. Partial. Differ. Equ. Appl. Math. 2023, 8, 100563. [Google Scholar]
- Darwish, A.; Ahmed, H.M.; Arnous, A.H.; Shehab, M.F. Optical solitons of Biswas–Arshed equation in birefringent fibers using improved modified extended tanh-function method. Optik 2021, 227, 165385. [Google Scholar]
- Zayed, E.M.; Alngar, M.E.; El-Horbaty, M.M.; Biswas, A.; Kara, A.H.; Yıldırım, Y.; Belic, M.R. Cubic-quartic polarized optical solitons and conservation laws for perturbed Fokas-Lenells model. J. Nonlinear Opt. Phys. Mater. 2021, 30, 2150005. [Google Scholar]
- Akram, G.; Sadaf, M.; Khan, M.A.U. Soliton dynamics of the generalized shallow water like equation in nonlinear phenomenon. Front. Phys. 2022, 10, 822042. [Google Scholar]
- Ma, W.X. A novel kind of reduced integrable matrix mKdV equations and their binary Darboux transformations. Mod. Phys. Lett. B 2022, 36, 2250094. [Google Scholar]
- Yang, D.Y.; Tian, B.; Wang, M.; Zhao, X.; Shan, W.R.; Jiang, Y. Lax pair, Darboux transformation, breathers and rogue waves of an N-coupled nonautonomous nonlinear Schrödinger system for an optical fiber or a plasma. Nonlinear Dyn. 2022, 107, 2657–2666. [Google Scholar]
- Wang, K.J.; Liu, X.L.; Wang, W.D.; Li, S.; Zhu, H.W. Novel singular and non-singular complexiton, interaction wave and the complex multi-soliton solutions to the generalized nonlinear evolution equation. Mod. Phys. Lett. B 2025, 39, 2550135. [Google Scholar] [CrossRef]
- Ahmad, S.; Saifullah, S.; Khan, A.; Inc, M. New local and nonlocal soliton solutions of a nonlocal reverse space-time mKdV equation using improved Hirota bilinear method. Phys. Lett. A 2022, 450, 128393. [Google Scholar]
- Lu, D.; Seadawy, A.; Arshad, M. Applications of extended simple equation method on unstable nonlinear Schrödinger equations. Optik 2017, 140, 136–144. [Google Scholar]
- Rafiq, M.H.; Raza, N.; Jhangeer, A. Nonlinear dynamics of the generalized unstable nonlinear Schrödinger equation: A graphical perspective. Opt. Quantum Electron. 2023, 55, 628. [Google Scholar]
- Abdelrahman, M.A.E.; Ammar, S.I.; Abualnaja, K.M. New solutions for the unstable nonlinear Schrödinger equation arising in natural science. Aims Math. 2020, 5, 1893–1912. [Google Scholar]
- Hosseini, K.; Kumar, D.; Kaplan, M.; Bejarbaneh, E.Y. New exact traveling wave solutions of the unstable nonlinear Schrödinger equations. Commun. Theor. Phys. 2017, 68, 761. [Google Scholar]
- Tala-Tebue, E.; Djoufack, Z.I.; Fendzi-Donfack, E.; Kenfack-Jiotsa, A.; Kofané, T.C. Exact solutions of the unstable nonlinear Schrödinger equation with the new Jacobi elliptic function rational expansion method and the exponential rational function method. Optik 2016, 127, 11124–11130. [Google Scholar]
- Khan, M.I.; Farooq, A.; Nisar, K.S.; Shah, N.A. Unveiling new exact solutions of the unstable nonlinear Schrödinger equation using the improved modified Sardar sub-equation method. Results Phys. 2024, 59, 107593. [Google Scholar]
- Hosseini, K.; Zabihi, A.; Samadani, F.; Ansari, R. New explicit exact solutions of the unstable nonlinear Schrödinger’s equation using the exp a and hyperbolic function methods. Opt. Quantum Electron. 2018, 50, 82. [Google Scholar]
- Lu, D.; Seadawy, A.R.; Arshad, M. Bright–dark solitary wave and elliptic function solutions of unstable nonlinear Schrödinger equation and their applications. Opt. Quantum Electron. 2018, 50, 23. [Google Scholar]
- Arshad, M.; Seadawy, A.R.; Lu, D.; Jun, W. Optical soliton solutions of unstable nonlinear Schröodinger dynamical equation and stability analysis with applications. Optik 2018, 157, 597–605. [Google Scholar] [CrossRef]
- Iqbal, M.; Seadawy, A.R. Instability of modulation wave train and disturbance of time period in slightly stable media for unstable nonlinear Schrödinger dynamical equation. Mod. Phys. Lett. B 2020, 34, 2150010. [Google Scholar] [CrossRef]
- Li, Y.; Lu, D.; Arshad, M. New exact traveling wave solutions of the unstable nonlinear Schrödinger equations and their applications. Optik 2021, 226, 165386. [Google Scholar]
- Pandir, Y.; Ekin, A. Dynamics of combined soliton solutions of unstable nonlinear Schrodinger equation with new version of the trial equation method. Chin. J. Phys. 2020, 67, 534–543. [Google Scholar]
- Montazeri, S.; Nazari, F.; Rezazadeh, H. Solitary and periodic wave solutions of the unstable nonlinear Schrödinger’s equation. Optik 2024, 297, 171573. [Google Scholar]
- Arshad, M.; Umer, M.A.; Xu, C.; Almehizia, A.A.; Yasin, F. Exploring conversation laws and nonlinear dynamics of the unstable nonlinear Schrödinger equation: Stability and applications. Ain Shams Eng. J. 2025, 16, 103210. [Google Scholar] [CrossRef]
- Sarwar, A.; Arshad, M.; Farman, M.; Akgül, A.; Ahmed, I.; Bayram, M.; De la Sen, M. Construction of novel bright-dark solitons and breather waves of unstable nonlinear Schrödinger equations with applications. Symmetry 2022, 15, 99. [Google Scholar] [CrossRef]
- He, J.H. Fractal calculus and its geometrical explanation. Results Phys. 2018, 10, 272–276. [Google Scholar]
- Li, W.L.; Chen, S.H.; Wang, K.J. A variational principle of the nonlinear Schrödinger equation with fractal derivatives. Fractals 2025. [Google Scholar] [CrossRef]
- He, J.H. A Tutorial Review on Fractal Spacetime and Fractional Calculus. Int. J. Theor. Phys. 2014, 53, 3698–3718. [Google Scholar] [CrossRef]
- He, J.H. Semi-inverse method and generalized variational principles with multi-variables in elasticity. Appl. Math. Mech. 2000, 21, 797–808. [Google Scholar]
- He, J.H. Semi-Inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics. Int. J. Turbo Jet Engines 1997, 14, 23–31. [Google Scholar] [CrossRef]
- Liang, Y.H.; Wang, K.J. Diverse wave solutions to the new extended (2+1)-dimensional nonlinear evolution equation: Phase portrait, bifurcation and sensitivity analysis, chaotic pattern, variational principle and Hamiltonian. Int. J. Geom. Methods Mod. Phys. 2025, 22, 2550158. [Google Scholar] [CrossRef]
- He, J.H. Variational principle and periodic solution of the Kundu-Mukherjee-Naskar equation. Results Phys. 2020, 17, 103031. [Google Scholar] [CrossRef]
- Liu, J.H.; Yang, Y.N.; Wang, K.J.; Zhu, H.W. On the variational principles of the Burgers-Korteweg-de Vries equation in fluid mechanics. Europhys. Lett. 2025, 149, 52001. [Google Scholar] [CrossRef]
- He, J.H.; Qie, N.; He, C.H.; Saeed, T. On a strong minimum condition of a fractal variational principle. Appl. Math. Lett. 2021, 119, 107199. [Google Scholar] [CrossRef]
- Wang, K.J.; Zhu, H.W.; Li, S.; Shi, F.; Li, G.; Liu, X.L. Bifurcation Analysis, Chaotic Behaviors, Variational Principle, Hamiltonian and Diverse Optical Solitons of the Fractional Complex Ginzburg-Landau Model. Int. J. Theor. Phys. 2025, 64, 134. [Google Scholar] [CrossRef]
- Cao, X.Q.; Zhang, C.Z.; Hou, S.C.; Guo, Y.N.; Peng, K.C. Variational theory for (2+1)-dimensional fractional dispersive long wave equations. Therm. Sci. 2021, 25, 1277–1285. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.-J.; Li, M. Variational Principle of the Unstable Nonlinear Schrödinger Equation with Fractal Derivatives. Axioms 2025, 14, 376. https://doi.org/10.3390/axioms14050376
Wang K-J, Li M. Variational Principle of the Unstable Nonlinear Schrödinger Equation with Fractal Derivatives. Axioms. 2025; 14(5):376. https://doi.org/10.3390/axioms14050376
Chicago/Turabian StyleWang, Kang-Jia, and Ming Li. 2025. "Variational Principle of the Unstable Nonlinear Schrödinger Equation with Fractal Derivatives" Axioms 14, no. 5: 376. https://doi.org/10.3390/axioms14050376
APA StyleWang, K.-J., & Li, M. (2025). Variational Principle of the Unstable Nonlinear Schrödinger Equation with Fractal Derivatives. Axioms, 14(5), 376. https://doi.org/10.3390/axioms14050376