Variational Principle of the Unstable Nonlinear Schrödinger Equation with Fractal Derivatives
Abstract
1. Introduction
2. The Fractal Variational Principle
3. Proof of the Fractal Variational Principle
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jhangeer, A.; Rezazadeh, H.; Seadawy, A.A. Study of travelling, periodic, quasiperiodic and chaotic structures of perturbed Fokas–Lenells model. Pramana 2021, 95, 41. [Google Scholar]
- Wang, K.L. New perspective to the coupled fractional nonlinear Schrödinger equations in dual-core optical fibers. Fractals 2025, 33, 2550034. [Google Scholar]
- Seadawy, A.R.; Rizvi, S.T.; Ali, I.; Younis, M.; Ali, K.; Makhlouf, M.M.; Althobaiti, A. Conservation laws, optical molecules, modulation instability and Painlevé analysis for the Chen–Lee–Liu model. Opt. Quantum Electron. 2021, 53, 172. [Google Scholar]
- Sohail, M.; Nazir, U. Numerical computation of thermal and mass transportation in Williamson material utilizing modified fluxes via optimal homotopy analysis procedure. Waves Random Complex Media 2023, 1–22. [Google Scholar] [CrossRef]
- Waseem, F.; Sohail, M.; Ilyas, N.; Awwad, E.M.; Sharaf, M.; Khan, M.J.; Tulu, A. Entropy analysis of MHD hybrid nanoparticles with OHAM considering viscous dissipation and thermal radiation. Sci. Rep. 2024, 14, 1096. [Google Scholar]
- Kumar, S.; Kumar, A.; Kharbanda, H. Abundant exact closed-form solutions and solitonic structures for the double-chain deoxyribonucleic acid (DNA) model. Braz. J. Phys. 2021, 51, 1043–1068. [Google Scholar]
- Leonov, A.; Nagornov, O.; Tyuflin, S. Modeling of Mechanisms of Wave Formation for COVID-19 Epidemic. Mathematics 2022, 11, 167. [Google Scholar] [CrossRef]
- Duran, S. Solitary wave solutions of the coupled konno-oono equation by using the functional variable method and the two variables (G’/G, 1/G)-expansion method. Adıyaman Univ. J. Sci. 2020, 10, 585–594. [Google Scholar]
- Seadawy, A.R. Stability analysis for Zakharov–Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma. Comput. Math. Appl. 2014, 67, 172–180. [Google Scholar]
- Wang, K.L. New computational approaches to the fractional coupled nonlinear Helmholtz equation. Eng. Comput. 2024, 41, 1285–1300. [Google Scholar]
- Hosseini, K.; Hincal, E.; Sadri, K.; Rabiei, F.; Ilie, M.; Akgül, A.; Osman, M.S. The positive multi-complexiton solution to a generalized Kadomtsev-Petviashvili equation. Partial. Differ. Equ. Appl. Math. 2024, 9, 100647. [Google Scholar]
- Hu, S.H.; Tian, B.; Du, X.X.; Liu, L.; Zhang, C.R. Lie symmetries, conservation laws and solitons for the AB system with time-dependent coefficients in nonlinear optics or fluid mechanics. Pramana 2019, 93, 38. [Google Scholar]
- Akram, U.; Seadawy, A.R.; Rizvi, S.T.R.; Younis, M.; Althobaiti, S.; Sayed, S. Traveling wave solutions for the fractional Wazwaz–Benjamin–Bona–Mahony model in arising shallow water waves. Results Phys. 2021, 20, 103725. [Google Scholar]
- Wang, K.J. An effective computational approach to the local fractional low-pass electrical transmission lines model. Alex. Eng. J. 2025, 110, 629–635. [Google Scholar]
- Ayati, Z.; Hosseini, K.; Mirzazadeh, M. Application of Kudryashov and functional variable methods to the strain wave equation in microstructured solids. Nonlinear Eng. 2017, 6, 25–29. [Google Scholar]
- Wang, K.J.; Zhu, H.W.; Shi, F.; Liu, X.L.; Wang, G.D.; Li, G. Lump wave, breather wave and other abundant wave solutions to the (2+1)-dimensional Sawada–Kotera–Kadomtsev Petviashvili equation of fluid mechanics. Pramana 2025, 99, 40. [Google Scholar]
- Zaman, U.H.M.; Arefin, M.A.; Akbar, M.A.; Uddin, M.H. Utilizing the extended tanh-function technique to scrutinize fractional order nonlinear partial differential equations. Partial. Differ. Equ. Appl. Math. 2023, 8, 100563. [Google Scholar]
- Darwish, A.; Ahmed, H.M.; Arnous, A.H.; Shehab, M.F. Optical solitons of Biswas–Arshed equation in birefringent fibers using improved modified extended tanh-function method. Optik 2021, 227, 165385. [Google Scholar]
- Zayed, E.M.; Alngar, M.E.; El-Horbaty, M.M.; Biswas, A.; Kara, A.H.; Yıldırım, Y.; Belic, M.R. Cubic-quartic polarized optical solitons and conservation laws for perturbed Fokas-Lenells model. J. Nonlinear Opt. Phys. Mater. 2021, 30, 2150005. [Google Scholar]
- Akram, G.; Sadaf, M.; Khan, M.A.U. Soliton dynamics of the generalized shallow water like equation in nonlinear phenomenon. Front. Phys. 2022, 10, 822042. [Google Scholar]
- Ma, W.X. A novel kind of reduced integrable matrix mKdV equations and their binary Darboux transformations. Mod. Phys. Lett. B 2022, 36, 2250094. [Google Scholar]
- Yang, D.Y.; Tian, B.; Wang, M.; Zhao, X.; Shan, W.R.; Jiang, Y. Lax pair, Darboux transformation, breathers and rogue waves of an N-coupled nonautonomous nonlinear Schrödinger system for an optical fiber or a plasma. Nonlinear Dyn. 2022, 107, 2657–2666. [Google Scholar]
- Wang, K.J.; Liu, X.L.; Wang, W.D.; Li, S.; Zhu, H.W. Novel singular and non-singular complexiton, interaction wave and the complex multi-soliton solutions to the generalized nonlinear evolution equation. Mod. Phys. Lett. B 2025, 39, 2550135. [Google Scholar] [CrossRef]
- Ahmad, S.; Saifullah, S.; Khan, A.; Inc, M. New local and nonlocal soliton solutions of a nonlocal reverse space-time mKdV equation using improved Hirota bilinear method. Phys. Lett. A 2022, 450, 128393. [Google Scholar]
- Lu, D.; Seadawy, A.; Arshad, M. Applications of extended simple equation method on unstable nonlinear Schrödinger equations. Optik 2017, 140, 136–144. [Google Scholar]
- Rafiq, M.H.; Raza, N.; Jhangeer, A. Nonlinear dynamics of the generalized unstable nonlinear Schrödinger equation: A graphical perspective. Opt. Quantum Electron. 2023, 55, 628. [Google Scholar]
- Abdelrahman, M.A.E.; Ammar, S.I.; Abualnaja, K.M. New solutions for the unstable nonlinear Schrödinger equation arising in natural science. Aims Math. 2020, 5, 1893–1912. [Google Scholar]
- Hosseini, K.; Kumar, D.; Kaplan, M.; Bejarbaneh, E.Y. New exact traveling wave solutions of the unstable nonlinear Schrödinger equations. Commun. Theor. Phys. 2017, 68, 761. [Google Scholar]
- Tala-Tebue, E.; Djoufack, Z.I.; Fendzi-Donfack, E.; Kenfack-Jiotsa, A.; Kofané, T.C. Exact solutions of the unstable nonlinear Schrödinger equation with the new Jacobi elliptic function rational expansion method and the exponential rational function method. Optik 2016, 127, 11124–11130. [Google Scholar]
- Khan, M.I.; Farooq, A.; Nisar, K.S.; Shah, N.A. Unveiling new exact solutions of the unstable nonlinear Schrödinger equation using the improved modified Sardar sub-equation method. Results Phys. 2024, 59, 107593. [Google Scholar]
- Hosseini, K.; Zabihi, A.; Samadani, F.; Ansari, R. New explicit exact solutions of the unstable nonlinear Schrödinger’s equation using the exp a and hyperbolic function methods. Opt. Quantum Electron. 2018, 50, 82. [Google Scholar]
- Lu, D.; Seadawy, A.R.; Arshad, M. Bright–dark solitary wave and elliptic function solutions of unstable nonlinear Schrödinger equation and their applications. Opt. Quantum Electron. 2018, 50, 23. [Google Scholar]
- Arshad, M.; Seadawy, A.R.; Lu, D.; Jun, W. Optical soliton solutions of unstable nonlinear Schröodinger dynamical equation and stability analysis with applications. Optik 2018, 157, 597–605. [Google Scholar] [CrossRef]
- Iqbal, M.; Seadawy, A.R. Instability of modulation wave train and disturbance of time period in slightly stable media for unstable nonlinear Schrödinger dynamical equation. Mod. Phys. Lett. B 2020, 34, 2150010. [Google Scholar] [CrossRef]
- Li, Y.; Lu, D.; Arshad, M. New exact traveling wave solutions of the unstable nonlinear Schrödinger equations and their applications. Optik 2021, 226, 165386. [Google Scholar]
- Pandir, Y.; Ekin, A. Dynamics of combined soliton solutions of unstable nonlinear Schrodinger equation with new version of the trial equation method. Chin. J. Phys. 2020, 67, 534–543. [Google Scholar]
- Montazeri, S.; Nazari, F.; Rezazadeh, H. Solitary and periodic wave solutions of the unstable nonlinear Schrödinger’s equation. Optik 2024, 297, 171573. [Google Scholar]
- Arshad, M.; Umer, M.A.; Xu, C.; Almehizia, A.A.; Yasin, F. Exploring conversation laws and nonlinear dynamics of the unstable nonlinear Schrödinger equation: Stability and applications. Ain Shams Eng. J. 2025, 16, 103210. [Google Scholar] [CrossRef]
- Sarwar, A.; Arshad, M.; Farman, M.; Akgül, A.; Ahmed, I.; Bayram, M.; De la Sen, M. Construction of novel bright-dark solitons and breather waves of unstable nonlinear Schrödinger equations with applications. Symmetry 2022, 15, 99. [Google Scholar] [CrossRef]
- He, J.H. Fractal calculus and its geometrical explanation. Results Phys. 2018, 10, 272–276. [Google Scholar]
- Li, W.L.; Chen, S.H.; Wang, K.J. A variational principle of the nonlinear Schrödinger equation with fractal derivatives. Fractals 2025. [Google Scholar] [CrossRef]
- He, J.H. A Tutorial Review on Fractal Spacetime and Fractional Calculus. Int. J. Theor. Phys. 2014, 53, 3698–3718. [Google Scholar] [CrossRef]
- He, J.H. Semi-inverse method and generalized variational principles with multi-variables in elasticity. Appl. Math. Mech. 2000, 21, 797–808. [Google Scholar]
- He, J.H. Semi-Inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics. Int. J. Turbo Jet Engines 1997, 14, 23–31. [Google Scholar] [CrossRef]
- Liang, Y.H.; Wang, K.J. Diverse wave solutions to the new extended (2+1)-dimensional nonlinear evolution equation: Phase portrait, bifurcation and sensitivity analysis, chaotic pattern, variational principle and Hamiltonian. Int. J. Geom. Methods Mod. Phys. 2025, 22, 2550158. [Google Scholar] [CrossRef]
- He, J.H. Variational principle and periodic solution of the Kundu-Mukherjee-Naskar equation. Results Phys. 2020, 17, 103031. [Google Scholar] [CrossRef]
- Liu, J.H.; Yang, Y.N.; Wang, K.J.; Zhu, H.W. On the variational principles of the Burgers-Korteweg-de Vries equation in fluid mechanics. Europhys. Lett. 2025, 149, 52001. [Google Scholar] [CrossRef]
- He, J.H.; Qie, N.; He, C.H.; Saeed, T. On a strong minimum condition of a fractal variational principle. Appl. Math. Lett. 2021, 119, 107199. [Google Scholar] [CrossRef]
- Wang, K.J.; Zhu, H.W.; Li, S.; Shi, F.; Li, G.; Liu, X.L. Bifurcation Analysis, Chaotic Behaviors, Variational Principle, Hamiltonian and Diverse Optical Solitons of the Fractional Complex Ginzburg-Landau Model. Int. J. Theor. Phys. 2025, 64, 134. [Google Scholar] [CrossRef]
- Cao, X.Q.; Zhang, C.Z.; Hou, S.C.; Guo, Y.N.; Peng, K.C. Variational theory for (2+1)-dimensional fractional dispersive long wave equations. Therm. Sci. 2021, 25, 1277–1285. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.-J.; Li, M. Variational Principle of the Unstable Nonlinear Schrödinger Equation with Fractal Derivatives. Axioms 2025, 14, 376. https://doi.org/10.3390/axioms14050376
Wang K-J, Li M. Variational Principle of the Unstable Nonlinear Schrödinger Equation with Fractal Derivatives. Axioms. 2025; 14(5):376. https://doi.org/10.3390/axioms14050376
Chicago/Turabian StyleWang, Kang-Jia, and Ming Li. 2025. "Variational Principle of the Unstable Nonlinear Schrödinger Equation with Fractal Derivatives" Axioms 14, no. 5: 376. https://doi.org/10.3390/axioms14050376
APA StyleWang, K.-J., & Li, M. (2025). Variational Principle of the Unstable Nonlinear Schrödinger Equation with Fractal Derivatives. Axioms, 14(5), 376. https://doi.org/10.3390/axioms14050376