Next Article in Journal
Hybrid Inertial Self-Adaptive Iterative Methods for Split Variational Inclusion Problems
Previous Article in Journal
Polygonal Quasiconformality and Grunsky’s Operator
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On the Dynamics of Some Three-Dimensional Systems of Difference Equations

by
Turki D. Alharbi
1,* and
Jawharah G. AL-Juaid
2
1
Department of Mathematics, Al-Leith University College, Umm Al-Qura University, Mecca 24382, Saudi Arabia
2
Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
*
Author to whom correspondence should be addressed.
Axioms 2025, 14(5), 371; https://doi.org/10.3390/axioms14050371
Submission received: 23 February 2025 / Revised: 7 May 2025 / Accepted: 9 May 2025 / Published: 15 May 2025
(This article belongs to the Section Mathematical Analysis)

Abstract

:
This paper looks into the dynamics of nonlinear systems of difference equations, with particular emphasis on fourth-order cases. Analytical solutions are derived for some cases of systems, a tedious task due to the lack of explicit mathematical techniques for their solution. In addition, the qualitative properties of the solutions, such as boundedness and periodicity, are analyzed through theoretical methods and numerical simulations. The results advance our understanding of nonlinear systems, providing important implications for their use in various scientific fields.

1. Introduction

The system of difference equations (SDE) forms an essential part of mathematical modeling and has had a significant impact on scientific fields and applications. Recently, the field has developed significantly as evidenced by the increased interest in scientific activity within this field. This interest confirms the growing value and recognized usefulness of SDEs in addressing complex phenomena and making informed decisions.
In recent research, there has been an increasing focus on formulating solutions for nonlinear SDEs and the extensive analysis of their dynamical behavior. In addition, this field has extended to the application of models in various disciplines which include engineering, physics, biology, and environmental science. Recent studies have discussed various aspects of nonlinear dynamics, such as local and global behavior, boundedness, topological classifications, and chaos analysis [1,2,3]. For example, Khan et al. [4] explored these dynamics in the context of a discrete hepatitis C virus model. Lei and Han [5] investigated the dynamic behavior of a discrete predator–prey model with a fear effect and Allee effect by theoretical analysis and numerical simulation. However, despite the fact that various methods have been found for solving linear difference equations, the aspect surrounding systems of nonlinear difference equations is generally unknown. Despite efforts by several researchers to convert the complicated nonlinear systems into linear expressions, there is a clear discrepancy in the analytical methods for addressing these systems. These efforts have posed a major challenge for researchers who seek to expand their understanding of the behavior of these systems, demonstrate their properties, and obtain solution forms in general.
The increasing interest in nonlinear SDEs focuses on their capacity to capture intricate dynamics and phenomena that linear models might not be able to capture. Nonlinear systems often operate in a rich method, including bifurcations, chaos, and complex attractors, making them useful instruments for comprehending the dynamics of occurrences in the actual world. A particularly active area of research focuses on finding closed-form solutions to nonlinear SDEs, to advance our understanding of dynamical systems and improve predictions with greater accuracy. (see [6,7,8,9,10,11] ). Numerous researchers have made important contributions to the discovery of behavior of difference equations and solved systems, illuminating their dynamics and stability characteristics. For example, Turki and Elsayed [12] provided the form of solutions and the periodic behavior characteristics of some SDEs. The study by Kara et al. [13] highlights the difficulties in solving nonlinear difference equations in closed form. Khaliq et al. [14] discussed the dynamical analysis of a three-dimensional system with two predators in discrete time and one prey. Taskara and Buyuk in [15] investigated the dynamics of some SDEs and proved a relationship between Pell numbers and the solutions of the systems. In this paper, we extend the system in [16] to the following three-dimensional system and delve into studying the behavior of the solution and illustrating explicit solutions for several cases. In addition, boundedness and periodic behavior are explored for specific cases:
X n + 1 = Z n 1 X n 3 Y n 1 ( ± 1 ± Z n 1 X n 3 ) , Y n + 1 = X n 1 Y n 3 Z n 1 ( ± 1 ± X n 1 Y n 3 ) , Z n + 1 = Y n 1 Z n 3 X n 1 ( ± 1 ± Y n 1 Z n 3 ) ,
where n = 0 , 1 , 2 , . . . and the initial conditions X n i , Y n i , and Z n i for i { 3 , 2 , 1 , 0 } are arbitrary nonzero real numbers.
The paper is arranged as follows: In Section 2, we define the system and illustrate all the cases derived from system (1). Some theorems and lemmas are shown in this section. Section 3 is designed to present a numerical simulation to validate the effectiveness of our findings. The discussion of the findings is shown in Section 4.

2. The Main Results

In this section, we substantiate some theorems and lemmas related to the behavior of some cases derived from the system (1) such as boundedness, periodicity, and solutions forms. A nonlinear difference equation is any equation of the form
Y n + 1 = f ( Y n , Y n 1 , . . . ) , n = 0 , 1 , 2 , . . .
where y n is the value of y in generation n and where the recursion function f depends on nonlinear combinations of its arguments (f may involve quadratics, exponentials, reciprocals, powers of the x n ’s, etc.) [17].
Definition 1 
([18]). Assume I X ,   I Y and I Z are any intervals of real numbers and S : I X 3 × I Y 3 × I Z 3 I X , F : I X 3 × I Y 3 × I Z 3 I Y ,   T : I X 3 × I Y 3 × I Z 3 I Z are continuously differentiable functions. Then, for each initial condition ( X i , Y i , Z i ) I X × I Y × I Z for i { 3 , 2 , 1 , 0 } , the system of difference Equations (1)
X n + 1 = S ( X n , X n 1 , X n 2 , X n 3 , Y n , Y n 1 , Y n 2 , Y n 3 , Z n , Z n 1 , Z n 2 , Z n 3 ) , Y n + 1 = F ( X n , X n 1 , X n 2 , X n 3 , Y n , Y n 1 , Y n 2 , Y n 3 , Z n , Z n 1 , Z n 2 , Z n 3 ) , Z n + 1 = T ( X n , X n 1 , X n 2 , X n 3 , Y n , Y n 1 , Y n 2 , Y n 3 , Z n , Z n 1 , Z n 2 , Z n 3 ) ,
has a unique solution { X n , Y n , Z n } n = 3 .
Definition 2 
([18]). A sequence { Y n } is said to be periodic with period p if Y n + p = Y n for n = 0 , 1 , 2 , .

2.1. The First Case

This section is designed to discuss the form of solutions of the following system:
X n + 1 = Z n 1 X n 3 Y n 1 ( 1 + Z n 1 X n 3 ) , Y n + 1 = X n 1 Y n 3 Z n 1 ( 1 + X n 1 Y n 3 ) , Z n + 1 = Y n 1 Z n 3 X n 1 ( 1 + Y n 1 Z n 3 ) ,
where n = 0 , 1 , 2 , . . . and the initial conditions are arbitrary nonzero real numbers.
Theorem 1. 
Suppose that { X n , Y n , Z n } are solutions of the system (4). Then, for n 0 , the solutions of system (4) can take the following form:
X 12 n 3 = a 3 i = 0 n 1 ( 1 + ( 6 i + 2 ) b 1 c 3 ) ( 1 + ( 6 i + 4 ) a 1 b 3 ) i = 0 n 2 ( 1 + ( 6 i + 6 ) c 1 a 3 ) i = 0 n 1 ( 1 + ( 6 i + 1 ) a 1 b 3 ) ( 1 + ( 6 i + 3 ) c 1 a 3 ) ( 1 + ( 6 i + 5 ) b 1 c 3 ) , Y 12 n 3 = b 3 i = 0 n 1 ( 1 + ( 6 i + 2 ) c 1 a 3 ) ( 1 + ( 6 i + 4 ) b 1 c 3 ) i = 0 n 2 ( 1 + ( 6 i + 6 ) a 1 b 3 ) i = 0 n 1 ( 1 + ( 6 i + 1 ) b 1 c 3 ) ( 1 + ( 6 i + 3 ) a 1 b 3 ) ( 1 + ( 6 i + 5 ) c 1 a 3 ) , Z 12 n 3 = c 3 i = 0 n 1 ( 1 + ( 6 i + 2 ) a 1 b 3 ) ( 1 + ( 6 i + 4 ) c 1 a 3 ) i = 0 n 2 ( 1 + ( 6 i + 6 ) b 1 c 3 ) i = 0 n 1 ( 1 + ( 6 i + 1 ) c 1 a 3 ) ( 1 + ( 6 i + 3 ) b 1 c 3 ) ( 1 + ( 6 i + 5 ) a 1 b 3 ) ,
X 12 n 2 = a 2 i = 0 n 1 ( 1 + ( 6 i + 2 ) b 0 c 2 ) ( 1 + ( 6 i + 4 ) a 0 b 2 ) i = 0 n 2 ( 1 + ( 6 i + 6 ) c 0 a 2 ) i = 0 n 1 ( 1 + ( 6 i + 1 ) a 0 b 2 ) ( 1 + ( 6 i + 3 ) c 0 a 2 ) ( 1 + ( 6 i + 5 ) b 0 c 2 ) , Y 12 n 2 = b 2 i = 0 n 1 ( 1 + ( 6 i + 2 ) c 0 a 2 ) ( 1 + ( 6 i + 4 ) b 0 c 2 ) i = 0 n 2 ( 1 + ( 6 i + 6 ) a 0 b 2 ) i = 0 n 1 ( 1 + ( 6 i + 1 ) b 0 c 2 ) ( 1 + ( 6 i + 3 ) a 0 b 2 ) ( 1 + ( 6 i + 5 ) c 0 a 2 ) , Z 12 n 2 = c 2 i = 0 n 1 ( 1 + ( 6 i + 2 ) a 0 b 2 ) ( 1 + ( 6 i + 4 ) c 0 a 2 ) i = 0 n 2 ( 1 + ( 6 i + 6 ) b 0 c 2 ) i = 0 n 1 ( 1 + ( 6 i + 1 ) c 0 a 2 ) ( 1 + ( 6 i + 3 ) b 0 c 2 ) ( 1 + ( 6 i + 5 ) a 0 b 2 ) ,
X 12 n 1 = a 1 i = 0 n 1 ( 1 + ( 6 i + 1 ) b 1 c 3 ) ( 1 + ( 6 i + 3 ) a 1 b 3 ) ( 1 + ( 6 i + 5 ) c 1 a 3 ) ( 1 + ( 6 i + 2 ) c 1 a 3 ) ( 1 + ( 6 i + 4 ) b 1 c 3 ) ( 1 + ( 6 i + 6 ) a 1 b 3 ) , Y 12 n 1 = b 1 i = 0 n 1 ( 1 + ( 6 i + 1 ) c 1 a 3 ) ( 1 + ( 6 i + 3 ) b 1 c 3 ) ( 1 + ( 6 i + 5 ) a 1 b 3 ) ( 1 + ( 6 i + 2 ) a 1 b 3 ) ( 1 + ( 6 i + 4 ) c 1 a 3 ) ( 1 + ( 6 i + 6 ) b 1 c 3 ) , Z 12 n 1 = c 1 i = 0 n 1 ( 1 + ( 6 i + 1 ) a 1 b 3 ) ( 1 + ( 6 i + 3 ) c 1 a 3 ) ( 1 + ( 6 i + 5 ) b 1 c 3 ) ( 1 + ( 6 i + 2 ) b 1 c 3 ) ( 1 + ( 6 i + 4 ) a 1 b 3 ) ( 1 + ( 6 i + 6 ) c 1 a 3 ) ,
X 12 n = a 0 i = 0 n 1 ( 1 + ( 6 i + 1 ) b 0 c 2 ) ( 1 + ( 6 i + 3 ) a 0 b 2 ) ( 1 + ( 6 i + 5 ) c 0 a 2 ) ( 1 + ( 6 i + 2 ) c 0 a 2 ) ( 1 + ( 6 i + 4 ) b 0 c 2 ) ( 1 + ( 6 i + 6 ) a 0 b 2 ) , Y 12 n = b 0 i = 0 n 1 ( 1 + ( 6 i + 1 ) c 0 a 2 ) ( 1 + ( 6 i + 3 ) b 0 c 2 ) ( 1 + ( 6 i + 5 ) a 0 b 2 ) ( 1 + ( 6 i + 2 ) a 0 b 2 ) ( 1 + ( 6 i + 4 ) c 0 a 2 ) ( 1 + ( 6 i + 6 ) b 0 c 2 ) , Z 12 n = c 0 i = 0 n 1 ( 1 + ( 6 i + 1 ) a 0 b 2 ) ( 1 + ( 6 i + 3 ) c 0 a 2 ) ( 1 + ( 6 i + 5 ) b 0 c 2 ) ( 1 + ( 6 i + 2 ) b 0 c 2 ) ( 1 + ( 6 i + 4 ) a 0 b 2 ) ( 1 + ( 6 i + 6 ) c 0 a 2 ) ,
X 12 n + 1 = c 1 a 3 i = 0 n 1 ( 1 + ( 6 i + 2 ) a 1 b 3 ) ( 1 + ( 6 i + 4 ) c 1 a 3 ) ( 1 + ( 6 i + 6 ) b 1 c 3 ) b 1 i = 0 n ( 1 + ( 6 i + 1 ) c 1 a 3 ) i = 0 n 1 ( 1 + ( 6 i + 3 ) b 1 c 3 ) ( 1 + ( 6 i + 5 ) a 1 b 3 ) , Y 12 n + 1 = a 1 b 3 i = 0 n 1 ( 1 + ( 6 i + 2 ) b 1 c 3 ) ( 1 + ( 6 i + 4 ) a 1 b 3 ) ( 1 + ( 6 i + 6 ) c 1 a 3 ) c 1 i = 0 n ( 1 + ( 6 i + 1 ) a 1 b 3 ) i = 0 n 1 ( 1 + ( 6 i + 3 ) c 1 a 3 ) ( 1 + ( 6 i + 5 ) b 1 c 3 ) , Z 12 n + 1 = b 1 c 3 i = 0 n 1 ( 1 + ( 6 i + 2 ) c 1 a 3 ) ( 1 + ( 6 i + 4 ) b 1 c 3 ) ( 1 + ( 6 i + 6 ) a 1 b 3 ) a 1 i = 0 n ( 1 + ( 6 i + 1 ) b 1 c 3 ) i = 0 n 1 ( 1 + ( 6 i + 3 ) a 1 b 3 ) ( 1 + ( 6 i + 5 ) c 1 a 3 ) ,
X 12 n + 2 = c 0 a 2 i = 0 n 1 ( 1 + ( 6 i + 2 ) a 0 b 2 ) ( 1 + ( 6 i + 4 ) c 0 a 2 ) ( 1 + ( 6 i + 6 ) b 0 c 2 ) b 0 i = 0 n ( 1 + ( 6 i + 1 ) c 0 a 2 ) i = 0 n 1 ( 1 + ( 6 i + 3 ) b 0 c 2 ) ( 1 + ( 6 i + 5 ) a 0 b 2 ) , Y 12 n + 2 = a 0 b 2 i = 0 n 1 ( 1 + ( 6 i + 2 ) b 0 c 2 ) ( 1 + ( 6 i + 4 ) a 0 b 2 ) ( 1 + ( 6 i + 6 ) c 0 a 2 ) c 0 i = 0 n ( 1 + ( 6 i + 1 ) a 0 b 2 ) i = 0 n 1 ( 1 + ( 6 i + 3 ) c 0 a 2 ) ( 1 + ( 6 i + 5 ) b 0 c 2 ) , Z 12 n + 2 = b 0 c 2 i = 0 n 1 ( 1 + ( 6 i + 2 ) c 0 a 2 ) ( 1 + ( 6 i + 4 ) b 0 c 2 ) ( 1 + ( 6 i + 6 ) a 0 b 2 ) a 0 i = 0 n ( 1 + ( 6 i + 1 ) b 0 c 2 ) i = 0 n 1 ( 1 + ( 6 i + 3 ) a 0 b 2 ) ( 1 + ( 6 i + 5 ) c 0 a 2 ) ,
X 12 n + 3 = b 1 c 3 c 1 i = 0 n ( 1 + ( 6 i + 1 ) a 1 b 3 ) i = 0 n 1 ( 1 + ( 6 i + 3 ) c 1 a 3 ) ( 1 + ( 6 i + 5 ) b 1 c 3 ) a 1 b 3 i = 0 n ( 1 + ( 6 i + 2 ) b 1 c 3 ) i = 0 n 1 ( 1 + ( 6 i + 4 ) a 1 b 3 ) ( 1 + ( 6 i + 6 ) c 1 a 3 ) , Y 12 n + 3 = c 1 a 3 a 1 i = 0 n ( 1 + ( 6 i + 1 ) b 1 c 3 ) i = 0 n 1 ( 1 + ( 6 i + 3 ) a 1 b 3 ) ( 1 + ( 6 i + 5 ) c 1 a 3 ) b 1 c 3 i = 0 n ( 1 + ( 6 i + 2 ) c 1 a 3 ) i = 0 n 1 ( 1 + ( 6 i + 4 ) b 1 c 3 ) ( 1 + ( 6 i + 6 ) a 1 b 3 ) , Z 12 n + 3 = a 1 b 3 b 1 i = 0 n ( 1 + ( 6 i + 1 ) c 1 a 3 ) i = 0 n 1 ( 1 + ( 6 i + 3 ) b 1 c 3 ) ( 1 + ( 6 i + 5 ) a 1 b 3 ) c 1 a 3 i = 0 n ( 1 + ( 6 i + 2 ) a 1 b 3 ) i = 0 n 1 ( 1 + ( 6 i + 4 ) c 1 a 3 ) ( 1 + ( 6 i + 6 ) b 1 c 3 ) ,
X 12 n + 4 = b 0 c 2 c 0 i = 0 n ( 1 + ( 6 i + 1 ) a 0 b 2 ) i = 0 n 1 ( 1 + ( 6 i + 3 ) c 0 a 2 ) ( 1 + ( 6 i + 5 ) b 0 c 2 ) a 0 b 2 i = 0 n ( 1 + ( 6 i + 2 ) b 0 c 2 ) i = 0 n 1 ( 1 + ( 6 i + 4 ) a 0 b 2 ) ( 1 + ( 6 i + 6 ) c 0 a 2 ) , Y 12 n + 4 = c 0 a 2 a 0 i = 0 n ( 1 + ( 6 i + 1 ) b 0 c 2 ) i = 0 n 1 ( 1 + ( 6 i + 3 ) a 0 b 2 ) ( 1 + ( 6 i + 5 ) c 0 a 2 ) b 0 c 2 i = 0 n ( 1 + ( 6 i + 2 ) c 0 a 2 ) i = 0 n 1 ( 1 + ( 6 i + 4 ) b 0 c 2 ) ( 1 + ( 6 i + 6 ) a 0 b 2 ) , Z 12 n + 4 = a 0 b 2 b 0 i = 0 n ( 1 + ( 6 i + 1 ) c 0 a 2 ) i = 0 n 1 ( 1 + ( 6 i + 3 ) b 0 c 2 ) ( 1 + ( 6 i + 5 ) a 0 b 2 ) c 0 a 2 i = 0 n ( 1 + ( 6 i + 2 ) a 0 b 2 ) i = 0 n 1 ( 1 + ( 6 i + 4 ) c 0 a 2 ) ( 1 + ( 6 i + 6 ) b 0 c 2 ) ,
X 12 n + 5 = b 3 b 1 c 3 i = 0 n ( 1 + ( 6 i + 2 ) c 1 a 3 ) i = 0 n 1 ( 1 + ( 6 i + 4 ) b 1 c 3 ) ( 1 + ( 6 i + 6 ) a 1 b 3 ) c 1 a 3 i = 0 n ( 1 + ( 6 i + 1 ) b 1 c 3 ) ( 1 + ( 6 i + 3 ) a 1 b 3 ) i = 0 n 1 ( 1 + ( 6 i + 5 ) c 1 a 3 ) , Y 12 n + 5 = c 3 c 1 a 3 i = 0 n ( 1 + ( 6 i + 2 ) a 1 b 3 ) i = 0 n 1 ( 1 + ( 6 i + 4 ) c 1 a 3 ) ( 1 + ( 6 i + 6 ) b 1 c 3 ) a 1 b 3 i = 0 n ( 1 + ( 6 i + 1 ) c 1 a 3 ) ( 1 + ( 6 i + 3 ) b 1 c 3 ) i = 0 n 1 ( 1 + ( 6 i + 5 ) a 1 b 3 ) , Z 12 n + 5 = a 3 a 1 b 3 i = 0 n ( 1 + ( 6 i + 2 ) b 1 c 3 ) i = 0 n 1 ( 1 + ( 6 i + 4 ) a 1 b 3 ) ( 1 + ( 6 i + 6 ) c 1 a 3 ) b 1 c 3 i = 0 n ( 1 + ( 6 i + 1 ) a 1 b 3 ) ( 1 + ( 6 i + 3 ) c 1 a 3 ) i = 0 n 1 ( 1 + ( 6 i + 5 ) b 1 c 3 ) ,
X 12 n + 6 = b 2 b 0 c 2 i = 0 n ( 1 + ( 6 i + 2 ) c 0 a 2 ) i = 0 n 1 ( 1 + ( 6 i + 4 ) b 0 c 2 ) ( 1 + ( 6 i + 6 ) a 0 b 2 ) c 0 a 2 i = 0 n ( 1 + ( 6 i + 1 ) b 0 c 2 ) ( 1 + ( 6 i + 3 ) a 0 b 2 ) i = 0 n 1 ( 1 + ( 6 i + 5 ) c 0 a 2 ) , Y 12 n + 6 = c 2 c 0 a 2 i = 0 n ( 1 + ( 6 i + 2 ) a 0 b 2 ) i = 0 n 1 ( 1 + ( 6 i + 4 ) c 0 a 2 ) ( 1 + ( 6 i + 6 ) b 0 c 2 ) a 0 b 2 i = 0 n ( 1 + ( 6 i + 1 ) c 0 a 2 ) ( 1 + ( 6 i + 3 ) b 0 c 2 ) i = 0 n 1 ( 1 + ( 6 i + 5 ) a 0 b 2 ) , Z 12 n + 6 = a 2 a 0 b 2 i = 0 n ( 1 + ( 6 i + 2 ) b 0 c 2 ) i = 0 n 1 ( 1 + ( 6 i + 4 ) a 0 b 2 ) ( 1 + ( 6 i + 6 ) c 0 a 2 ) b 0 c 2 i = 0 n ( 1 + ( 6 i + 1 ) a 0 b 2 ) ( 1 + ( 6 i + 3 ) c 0 a 2 ) i = 0 n 1 ( 1 + ( 6 i + 5 ) b 0 c 2 ) ,
X 12 n + 7 = a 1 b 3 i = 0 n ( 1 + ( 6 i + 1 ) c 1 a 3 ) ( 1 + ( 6 i + 3 ) b 1 c 3 ) i = 0 n 1 ( 1 + ( 6 i + 5 ) a 1 b 3 ) c 3 i = 0 n ( 1 + ( 6 i + 2 ) a 1 b 3 ) ( 1 + ( 6 i + 4 ) c 1 a 3 ) i = 0 n 1 ( 1 + ( 6 i + 6 ) b 1 c 3 ) , Y 12 n + 7 = b 1 c 3 i = 0 n ( 1 + ( 6 i + 1 ) a 1 b 3 ) ( 1 + ( 6 i + 3 ) c 1 a 3 ) i = 0 n 1 ( 1 + ( 6 i + 5 ) b 1 c 3 ) a 3 i = 0 n ( 1 + ( 6 i + 2 ) b 1 c 3 ) ( 1 + ( 6 i + 4 ) a 1 b 3 ) i = 0 n 1 ( 1 + ( 6 i + 6 ) c 1 a 3 ) , Z 12 n + 7 = c 1 a 3 i = 0 n ( 1 + ( 6 i + 1 ) b 1 c 3 ) ( 1 + ( 6 i + 3 ) a 1 b 3 ) i = 0 n 1 ( 1 + ( 6 i + 5 ) c 1 a 3 ) b 3 i = 0 n ( 1 + ( 6 i + 2 ) c 1 a 3 ) ( 1 + ( 6 i + 4 ) b 1 c 3 ) i = 0 n 1 ( 1 + ( 6 i + 6 ) a 1 b 3 ) ,
X 12 n + 8 = a 0 b 2 i = 0 n ( 1 + ( 6 i + 1 ) c 0 a 2 ) ( 1 + ( 6 i + 3 ) b 0 c 2 ) i = 0 n 1 ( 1 + ( 6 i + 5 ) a 0 b 2 ) c 2 i = 0 n ( 1 + ( 6 i + 2 ) a 0 b 2 ) ( 1 + ( 6 i + 4 ) c 0 a 2 ) i = 0 n 1 ( 1 + ( 6 i + 6 ) b 0 c 2 ) , Y 12 n + 8 = b 0 c 2 i = 0 n ( 1 + ( 6 i + 1 ) a 0 b 2 ) ( 1 + ( 6 i + 3 ) c 0 a 2 ) i = 0 n 1 ( 1 + ( 6 i + 5 ) b 0 c 2 ) a 2 i = 0 n ( 1 + ( 6 i + 2 ) b 0 c 2 ) ( 1 + ( 6 i + 4 ) a 0 b 2 ) i = 0 n 1 ( 1 + ( 6 i + 6 ) c 0 a 2 ) , Z 12 n + 8 = c 0 a 2 i = 0 n ( 1 + ( 6 i + 1 ) b 0 c 2 ) ( 1 + ( 6 i + 3 ) a 0 b 2 ) i = 0 n 1 ( 1 + ( 6 i + 5 ) c 0 a 2 ) b 2 i = 0 n ( 1 + ( 6 i + 2 ) c 0 a 2 ) ( 1 + ( 6 i + 4 ) b 0 c 2 ) i = 0 n 1 ( 1 + ( 6 i + 6 ) a 0 b 2 ) ,
where X 0 = a 0 , X 1 = a 1 , X 2 = a 2 , X 3 = a 3 , Y 0 = b 0 , Y 1 = b 1 , Y 2 = b 2 , Y 3 = b 3 , Z 0 = c 0 , Z 1 = c 1 , Z 2 = c 2 and Z 3 = c 3 .
Proof. 
The results for n = 0 are obviously true. Now for n > 0 , assume the results hold for n 1 and they are provided as follows:
X 12 n 15 = a 3 i = 0 n 2 ( 1 + ( 6 i + 2 ) b 1 c 3 ) ( 1 + ( 6 i + 4 ) a 1 b 3 ) i = 0 n 3 ( 1 + ( 6 i + 6 ) c 1 a 3 ) i = 0 n 2 ( 1 + ( 6 i + 1 ) a 1 b 3 ) ( 1 + ( 6 i + 3 ) c 1 a 3 ) ( 1 + ( 6 i + 5 ) b 1 c 3 ) , Y 12 n 15 = b 3 i = 0 n 2 ( 1 + ( 6 i + 2 ) c 1 a 3 ) ( 1 + ( 6 i + 4 ) b 1 c 3 ) i = 0 n 3 ( 1 + ( 6 i + 6 ) a 1 b 3 ) i = 0 n 2 ( 1 + ( 6 i + 1 ) b 1 c 3 ) ( 1 + ( 6 i + 3 ) a 1 b 3 ) ( 1 + ( 6 i + 5 ) c 1 a 3 ) , Z 12 n 15 = c 3 i = 0 n 2 ( 1 + ( 6 i + 2 ) a 1 b 3 ) ( 1 + ( 6 i + 4 ) c 1 a 3 ) i = 0 n 3 ( 1 + ( 6 i + 6 ) b 1 c 3 ) i = 0 n 2 ( 1 + ( 6 i + 1 ) c 1 a 3 ) ( 1 + ( 6 i + 3 ) b 1 c 3 ) ( 1 + ( 6 i + 5 ) a 1 b 3 ) ,
X 12 n 14 = a 2 i = 0 n 2 ( 1 + ( 6 i + 2 ) b 0 c 2 ) ( 1 + ( 6 i + 4 ) a 0 b 2 ) i = 0 n 3 ( 1 + ( 6 i + 6 ) c 0 a 2 ) i = 0 n 2 ( 1 + ( 6 i + 1 ) a 0 b 2 ) ( 1 + ( 6 i + 3 ) c 0 a 2 ) ( 1 + ( 6 i + 5 ) b 0 c 2 ) , Y 12 n 14 = b 2 i = 0 n 2 ( 1 + ( 6 i + 2 ) c 0 a 2 ) ( 1 + ( 6 i + 4 ) b 0 c 2 ) i = 0 n 3 ( 1 + ( 6 i + 6 ) a 0 b 2 ) i = 0 n 2 ( 1 + ( 6 i + 1 ) b 0 c 2 ) ( 1 + ( 6 i + 3 ) a 0 b 2 ) ( 1 + ( 6 i + 5 ) c 0 a 2 ) , Z 12 n 14 = c 2 i = 0 n 2 ( 1 + ( 6 i + 2 ) a 0 b 2 ) ( 1 + ( 6 i + 4 ) c 0 a 2 ) i = 0 n 3 ( 1 + ( 6 i + 6 ) b 0 c 2 ) i = 0 n 2 ( 1 + ( 6 i + 1 ) c 0 a 2 ) ( 1 + ( 6 i + 3 ) b 0 c 2 ) ( 1 + ( 6 i + 5 ) a 0 b 2 ) ,
X 12 n 13 = a 1 i = 0 n 2 ( 1 + ( 6 i + 1 ) b 1 c 3 ) ( 1 + ( 6 i + 3 ) a 1 b 3 ) ( 1 + ( 6 i + 5 ) c 1 a 3 ) ( 1 + ( 6 i + 2 ) c 1 a 3 ) ( 1 + ( 6 i + 4 ) b 1 c 3 ) ( 1 + ( 6 i + 6 ) a 1 b 3 ) , Y 12 n 13 = b 1 i = 0 n 2 ( 1 + ( 6 i + 1 ) c 1 a 3 ) ( 1 + ( 6 i + 3 ) b 1 c 3 ) ( 1 + ( 6 i + 5 ) a 1 b 3 ) ( 1 + ( 6 i + 2 ) a 1 b 3 ) ( 1 + ( 6 i + 4 ) c 1 a 3 ) ( 1 + ( 6 i + 6 ) b 1 c 3 ) , Z 12 n 13 = c 1 i = 0 n 2 ( 1 + ( 6 i + 1 ) a 1 b 3 ) ( 1 + ( 6 i + 3 ) c 1 a 3 ) ( 1 + ( 6 i + 5 ) b 1 c 3 ) ( 1 + ( 6 i + 2 ) b 1 c 3 ) ( 1 + ( 6 i + 4 ) a 1 b 3 ) ( 1 + ( 6 i + 6 ) c 1 a 3 ) ,
X 12 n 12 = a 0 i = 0 n 2 ( 1 + ( 6 i + 1 ) b 0 c 2 ) ( 1 + ( 6 i + 3 ) a 0 b 2 ) ( 1 + ( 6 i + 5 ) c 0 a 2 ) ( 1 + ( 6 i + 2 ) c 0 a 2 ) ( 1 + ( 6 i + 4 ) b 0 c 2 ) ( 1 + ( 6 i + 6 ) a 0 b 2 ) , Y 12 n 12 = b 0 i = 0 n 2 ( 1 + ( 6 i + 1 ) c 0 a 2 ) ( 1 + ( 6 i + 3 ) b 0 c 2 ) ( 1 + ( 6 i + 5 ) a 0 b 2 ) ( 1 + ( 6 i + 2 ) a 0 b 2 ) ( 1 + ( 6 i + 4 ) c 0 a 2 ) ( 1 + ( 6 i + 6 ) b 0 c 2 ) , Z 12 n 12 = c 0 i = 0 n 2 ( 1 + ( 6 i + 1 ) a 0 b 2 ) ( 1 + ( 6 i + 3 ) c 0 a 2 ) ( 1 + ( 6 i + 5 ) b 0 c 2 ) ( 1 + ( 6 i + 2 ) b 0 c 2 ) ( 1 + ( 6 i + 4 ) a 0 b 2 ) ( 1 + ( 6 i + 6 ) c 0 a 2 ) ,
X 12 n 11 = c 1 a 3 i = 0 n 2 ( 1 + ( 6 i + 2 ) a 1 b 3 ) ( 1 + ( 6 i + 4 ) c 1 a 3 ) ( 1 + ( 6 i + 6 ) b 1 c 3 ) b 1 i = 0 n 1 ( 1 + ( 6 i + 1 ) c 1 a 3 ) i = 0 n 2 ( 1 + ( 6 i + 3 ) b 1 c 3 ) ( 1 + ( 6 i + 5 ) a 1 b 3 ) , Y 12 n 11 = a 1 b 3 i = 0 n 2 ( 1 + ( 6 i + 2 ) b 1 c 3 ) ( 1 + ( 6 i + 4 ) a 1 b 3 ) ( 1 + ( 6 i + 6 ) c 1 a 3 ) c 1 i = 0 n 1 ( 1 + ( 6 i + 1 ) a 1 b 3 ) i = 0 n 2 ( 1 + ( 6 i + 3 ) c 1 a 3 ) ( 1 + ( 6 i + 5 ) b 1 c 3 ) , Z 12 n 11 = b 1 c 3 i = 0 n 2 ( 1 + ( 6 i + 2 ) c 1 a 3 ) ( 1 + ( 6 i + 4 ) b 1 c 3 ) ( 1 + ( 6 i + 6 ) a 1 b 3 ) a 1 i = 0 n 1 ( 1 + ( 6 i + 1 ) b 1 c 3 ) i = 0 n 2 ( 1 + ( 6 i + 3 ) a 1 b 3 ) ( 1 + ( 6 i + 5 ) c 1 a 3 ) ,
X 12 n 10 = c 0 a 2 i = 0 n 2 ( 1 + ( 6 i + 2 ) a 0 b 2 ) ( 1 + ( 6 i + 4 ) c 0 a 2 ) ( 1 + ( 6 i + 6 ) b 0 c 2 ) b 0 i = 0 n 1 ( 1 + ( 6 i + 1 ) c 0 a 2 ) i = 0 n 2 ( 1 + ( 6 i + 3 ) b 0 c 2 ) ( 1 + ( 6 i + 5 ) a 0 b 2 ) , Y 12 n 10 = a 0 b 2 i = 0 n 2 ( 1 + ( 6 i + 2 ) b 0 c 2 ) ( 1 + ( 6 i + 4 ) a 0 b 2 ) ( 1 + ( 6 i + 6 ) c 0 a 2 ) c 0 i = 0 n 1 ( 1 + ( 6 i + 1 ) a 0 b 2 ) i = 0 n 2 ( 1 + ( 6 i + 3 ) c 0 a 2 ) ( 1 + ( 6 i + 5 ) b 0 c 2 ) , Z 12 n 10 = b 0 c 2 i = 0 n 2 ( 1 + ( 6 i + 2 ) c 0 a 2 ) ( 1 + ( 6 i + 4 ) b 0 c 2 ) ( 1 + ( 6 i + 6 ) a 0 b 2 ) a 0 i = 0 n 1 ( 1 + ( 6 i + 1 ) b 0 c 2 ) i = 0 n 2 ( 1 + ( 6 i + 3 ) a 0 b 2 ) ( 1 + ( 6 i + 5 ) c 0 a 2 ) ,
X 12 n 9 = b 1 c 3 c 1 i = 0 n 1 ( 1 + ( 6 i + 1 ) a 1 b 3 ) i = 0 n 2 ( 1 + ( 6 i + 3 ) c 1 a 3 ) ( 1 + ( 6 i + 5 ) b 1 c 3 ) a 1 b 3 i = 0 n 1 ( 1 + ( 6 i + 2 ) b 1 c 3 ) i = 0 n 2 ( 1 + ( 6 i + 4 ) a 1 b 3 ) ( 1 + ( 6 i + 6 ) c 1 a 3 ) , Y 12 n 9 = c 1 a 3 a 1 i = 0 n 1 ( 1 + ( 6 i + 1 ) b 1 c 3 ) i = 0 n 2 ( 1 + ( 6 i + 3 ) a 1 b 3 ) ( 1 + ( 6 i + 5 ) c 1 a 3 ) b 1 c 3 i = 0 n 1 ( 1 + ( 6 i + 2 ) c 1 a 3 ) i = 0 n 2 ( 1 + ( 6 i + 4 ) b 1 c 3 ) ( 1 + ( 6 i + 6 ) a 1 b 3 ) , Z 12 n 9 = a 1 b 3 b 1 i = 0 n 1 ( 1 + ( 6 i + 1 ) c 1 a 3 ) i = 0 n 2 ( 1 + ( 6 i + 3 ) b 1 c 3 ) ( 1 + ( 6 i + 5 ) a 1 b 3 ) c 1 a 3 i = 0 n 1 ( 1 + ( 6 i + 2 ) a 1 b 3 ) i = 0 n 2 ( 1 + ( 6 i + 4 ) c 1 a 3 ) ( 1 + ( 6 i + 6 ) b 1 c 3 ) ,
X 12 n 8 = b 0 c 2 c 0 i = 0 n 1 ( 1 + ( 6 i + 1 ) a 0 b 2 ) i = 0 n 2 ( 1 + ( 6 i + 3 ) c 0 a 2 ) ( 1 + ( 6 i + 5 ) b 0 c 2 ) a 0 b 2 i = 0 n 1 ( 1 + ( 6 i + 2 ) b 0 c 2 ) i = 0 n 2 ( 1 + ( 6 i + 4 ) a 0 b 2 ) ( 1 + ( 6 i + 6 ) c 0 a 2 ) , Y 12 n 8 = c 0 a 2 a 0 i = 0 n 1 ( 1 + ( 6 i + 1 ) b 0 c 2 ) i = 0 n 2 ( 1 + ( 6 i + 3 ) a 0 b 2 ) ( 1 + ( 6 i + 5 ) c 0 a 2 ) b 0 c 2 i = 0 n 1 ( 1 + ( 6 i + 2 ) c 0 a 2 ) i = 0 n 2 ( 1 + ( 6 i + 4 ) b 0 c 2 ) ( 1 + ( 6 i + 6 ) a 0 b 2 ) , Z 12 n 8 = a 0 b 2 b 0 i = 0 n 1 ( 1 + ( 6 i + 1 ) c 0 a 2 ) i = 0 n 2 ( 1 + ( 6 i + 3 ) b 0 c 2 ) ( 1 + ( 6 i + 5 ) a 0 b 2 ) c 0 a 2 i = 0 n 1 ( 1 + ( 6 i + 2 ) a 0 b 2 ) i = 0 n 2 ( 1 + ( 6 i + 4 ) c 0 a 2 ) ( 1 + ( 6 i + 6 ) b 0 c 2 ) ,
X 12 n 7 = b 3 b 1 c 3 i = 0 n 1 ( 1 + ( 6 i + 2 ) c 1 a 3 ) i = 0 n 2 ( 1 + ( 6 i + 4 ) b 1 c 3 ) ( 1 + ( 6 i + 6 ) a 1 b 3 ) c 1 a 3 i = 0 n 1 ( 1 + ( 6 i + 1 ) b 1 c 3 ) ( 1 + ( 6 i + 3 ) a 1 b 3 ) i = 0 n 2 ( 1 + ( 6 i + 5 ) c 1 a 3 ) , Y 12 n 7 = c 3 c 1 a 3 i = 0 n 1 ( 1 + ( 6 i + 2 ) a 1 b 3 ) i = 0 n 2 ( 1 + ( 6 i + 4 ) c 1 a 3 ) ( 1 + ( 6 i + 6 ) b 1 c 3 ) a 1 b 3 i = 0 n 1 ( 1 + ( 6 i + 1 ) c 1 a 3 ) ( 1 + ( 6 i + 3 ) b 1 c 3 ) i = 0 n 2 ( 1 + ( 6 i + 5 ) a 1 b 3 ) , Z 12 n 7 = a 3 a 1 b 3 i = 0 n 1 ( 1 + ( 6 i + 2 ) b 1 c 3 ) i = 0 n 2 ( 1 + ( 6 i + 4 ) a 1 b 3 ) ( 1 + ( 6 i + 6 ) c 1 a 3 ) b 1 c 3 i = 0 n 1 ( 1 + ( 6 i + 1 ) a 1 b 3 ) ( 1 + ( 6 i + 3 ) c 1 a 3 ) i = 0 n 2 ( 1 + ( 6 i + 5 ) b 1 c 3 ) ,
X 12 n 6 = b 2 b 0 c 2 i = 0 n 1 ( 1 + ( 6 i + 2 ) c 0 a 2 ) i = 0 n 2 ( 1 + ( 6 i + 4 ) b 0 c 2 ) ( 1 + ( 6 i + 6 ) a 0 b 2 ) c 0 a 2 i = 0 n 1 ( 1 + ( 6 i + 1 ) b 0 c 2 ) ( 1 + ( 6 i + 3 ) a 0 b 2 ) i = 0 n 2 ( 1 + ( 6 i + 5 ) c 0 a 2 ) , Y 12 n 6 = c 2 c 0 a 2 i = 0 n 1 ( 1 + ( 6 i + 2 ) a 0 b 2 ) i = 0 n 2 ( 1 + ( 6 i + 4 ) c 0 a 2 ) ( 1 + ( 6 i + 6 ) b 0 c 2 ) a 0 b 2 i = 0 n 1 ( 1 + ( 6 i + 1 ) c 0 a 2 ) ( 1 + ( 6 i + 3 ) b 0 c 2 ) i = 0 n 2 ( 1 + ( 6 i + 5 ) a 0 b 2 ) , Z 12 n 6 = a 2 a 0 b 2 i = 0 n 1 ( 1 + ( 6 i + 2 ) b 0 c 2 ) i = 0 n 2 ( 1 + ( 6 i + 4 ) a 0 b 2 ) ( 1 + ( 6 i + 6 ) c 0 a 2 ) b 0 c 2 i = 0 n 1 ( 1 + ( 6 i + 1 ) a 0 b 2 ) ( 1 + ( 6 i + 3 ) c 0 a 2 ) i = 0 n 2 ( 1 + ( 6 i + 5 ) b 0 c 2 ) ,
X 12 n 5 = a 1 b 3 i = 0 n 1 ( 1 + ( 6 i + 1 ) c 1 a 3 ) ( 1 + ( 6 i + 3 ) b 1 c 3 ) i = 0 n 2 ( 1 + ( 6 i + 5 ) a 1 b 3 ) c 3 i = 0 n 1 ( 1 + ( 6 i + 2 ) a 1 b 3 ) ( 1 + ( 6 i + 4 ) c 1 a 3 ) i = 0 n 2 ( 1 + ( 6 i + 6 ) b 1 c 3 ) , Y 12 n 5 = b 1 c 3 i = 0 n 1 ( 1 + ( 6 i + 1 ) a 1 b 3 ) ( 1 + ( 6 i + 3 ) c 1 a 3 ) i = 0 n 2 ( 1 + ( 6 i + 5 ) b 1 c 3 ) a 3 i = 0 n 1 ( 1 + ( 6 i + 2 ) b 1 c 3 ) ( 1 + ( 6 i + 4 ) a 1 b 3 ) i = 0 n 2 ( 1 + ( 6 i + 6 ) c 1 a 3 ) , Z 12 n 5 = c 1 a 3 i = 0 n 1 ( 1 + ( 6 i + 1 ) b 1 c 3 ) ( 1 + ( 6 i + 3 ) a 1 b 3 ) i = 0 n 2 ( 1 + ( 6 i + 5 ) c 1 a 3 ) b 3 i = 0 n 1 ( 1 + ( 6 i + 2 ) c 1 a 3 ) ( 1 + ( 6 i + 4 ) b 1 c 3 ) i = 0 n 2 ( 1 + ( 6 i + 6 ) a 1 b 3 ) ,
X 12 n 4 = a 0 b 2 i = 0 n 1 ( 1 + ( 6 i + 1 ) c 0 a 2 ) ( 1 + ( 6 i + 3 ) b 0 c 2 ) i = 0 n 2 ( 1 + ( 6 i + 5 ) a 0 b 2 ) c 2 i = 0 n 1 ( 1 + ( 6 i + 2 ) a 0 b 2 ) ( 1 + ( 6 i + 4 ) c 0 a 2 ) i = 0 n 2 ( 1 + ( 6 i + 6 ) b 0 c 2 ) , Y 12 n 4 = b 0 c 2 i = 0 n 1 ( 1 + ( 6 i + 1 ) a 0 b 2 ) ( 1 + ( 6 i + 3 ) c 0 a 2 ) i = 0 n 2 ( 1 + ( 6 i + 5 ) b 0 c 2 ) a 2 i = 0 n 1 ( 1 + ( 6 i + 2 ) b 0 c 2 ) ( 1 + ( 6 i + 4 ) a 0 b 2 ) i = 0 n 2 ( 1 + ( 6 i + 6 ) c 0 a 2 ) , Z 12 n 4 = c 0 a 2 i = 0 n 1 ( 1 + ( 6 i + 1 ) b 0 c 2 ) ( 1 + ( 6 i + 3 ) a 0 b 2 ) i = 0 n 2 ( 1 + ( 6 i + 5 ) c 0 a 2 ) b 2 i = 0 n 1 ( 1 + ( 6 i + 2 ) c 0 a 2 ) ( 1 + ( 6 i + 4 ) b 0 c 2 ) i = 0 n 2 ( 1 + ( 6 i + 6 ) a 0 b 2 ) .
Now, we will demonstrate the relations.
Substituting 12 n into system (4), we obtain
X 12 n = Z 12 n 2 X 12 n 4 Y 12 n 2 ( 1 + Z 12 n 2 X 12 n 4 ) , = a 0 b 2 ( 1 + ( 6 i + 5 ) a 0 b 2 ) b 2 i = 0 n 1 ( 1 + ( 6 i + 2 ) c 0 a 2 ) ( 1 + ( 6 i + 4 ) b 0 c 2 ) i = 0 n 2 ( 1 + ( 6 i + 6 ) a 0 b 2 ) i = 0 n 1 ( 1 + ( 6 i + 1 ) b 0 c 2 ) ( 1 + ( 6 i + 3 ) a 0 b 2 ) ( 1 + ( 6 i + 5 ) c 0 a 2 ) ( 1 + a 0 b 2 ( 1 + ( 6 i + 5 ) a 0 b 2 ) ) .
Therefore, we obtain
X 12 n = a 0 i = 0 n 1 ( 1 + ( 6 i + 1 ) b 0 c 2 ) ( 1 + ( 6 i + 3 ) a 0 b 2 ) ( 1 + ( 6 i + 5 ) c 0 a 2 ) ( 1 + ( 6 i + 2 ) c 0 a 2 ) ( 1 + ( 6 i + 4 ) b 0 c 2 ) ( 1 + ( 6 i + 6 ) a 0 b 2 ) .
Y 12 n = X 12 n 2 Y 12 n 4 Z 12 n 2 ( 1 + X 12 n 2 Y 12 n 4 ) , = b 0 c 2 ( 1 + ( 6 i + 5 ) b 0 c 2 ) c 2 i = 0 n 1 ( 1 + ( 6 i + 2 ) a 0 b 2 ) ( 1 + ( 6 i + 4 ) c 0 a 2 ) i = 0 n 2 ( 1 + ( 6 i + 6 ) b 0 c 2 ) i = 0 n 1 ( 1 + ( 6 i + 1 ) c 0 a 2 ) ( 1 + ( 6 i + 3 ) b 0 c 2 ) ( 1 + ( 6 i + 5 ) a 0 b 2 ) ( 1 + b 0 c 2 ( 1 + ( 6 i + 5 ) b 0 c 2 ) ) .
Hence, we obtain
Y 12 n = b 0 i = 0 n 1 ( 1 + ( 6 i + 1 ) c 0 a 2 ) ( 1 + ( 6 i + 3 ) b 0 c 2 ) ( 1 + ( 6 i + 5 ) a 0 b 2 ) ( 1 + ( 6 i + 2 ) a 0 b 2 ) ( 1 + ( 6 i + 4 ) c 0 a 2 ) ( 1 + ( 6 i + 6 ) b 0 c 2 ) .
Also,
Z 12 n = Y 12 n 2 Z 12 n 4 X 12 n 2 ( 1 + Y 12 n 2 Z 12 n 4 ) , = c 0 a 2 ( 1 + ( 6 i + 5 ) c 0 a 2 ) a 2 i = 0 n 1 ( 1 + ( 6 i + 2 ) b 0 c 2 ) ( 1 + ( 6 i + 4 ) a 0 b 2 ) i = 0 n 2 ( 1 + ( 6 i + 6 ) c 0 a 2 ) i = 0 n 1 ( 1 + ( 6 i + 1 ) a 0 b 2 ) ( 1 + ( 6 i + 3 ) c 0 a 2 ) ( 1 + ( 6 i + 5 ) b 0 c 2 ) ( 1 + c 0 a 2 ( 1 + ( 6 i + 5 ) c 0 a 2 ) ) , = c 0 i = 0 n 1 ( 1 + ( 6 i + 1 ) a 0 b 2 ) ( 1 + ( 6 i + 3 ) c 0 a 2 ) ( 1 + ( 6 i + 5 ) b 0 c 2 ) ( 1 + ( 6 i + 2 ) b 0 c 2 ) ( 1 + ( 6 i + 4 ) a 0 b 2 ) ( 1 + ( 6 i + 6 ) c 0 a 2 ) .
Similarly, we can prove the remaining relations. The proof is complete. □
Lemma 1. 
Every positive solution of the system (4) is bounded and approaches zero.
Proof. 
Let the sequence { X n , Y n , Z n } be solutions of system (4) in which the initial conditions are arbitrary positive numbers. We have from (4)
X n + 1 1 Y n 1 , Y n + 1 1 Z n 1 , Z n + 1 1 X n 1 .
So, for k = 1 , 2 , . . . , we obtain
X n + 1 1 Y n 1 Z n 3 1 X n 5 Y n 7 1 Z n 9 X n 11 . . . 1 ( X n 6 K + 1 ) ( 1 ) ( k + 1 ) ,
setting n = n + 1 , n + 2 , n + 3 , n + 4 and n + 5 , we obtain
X n + 2 1 Y n Z n 2 1 X n 4 Y n 6 1 Z n 8 X n 10 . . . 1 ( X n 6 K + 2 ) ( 1 ) ( k + 1 ) ,
X n + 3 1 Y n Z n 2 1 X n 4 Y n 6 1 Z n 8 X n 10 . . . 1 ( X n 6 K + 3 ) ( 1 ) ( k + 1 ) ,
X n + 4 1 Y n Z n 2 1 X n 4 Y n 6 1 Z n 8 X n 10 . . . 1 ( X n 6 K + 4 ) ( 1 ) ( k + 1 ) ,
X n + 5 1 Y n Z n 2 1 X n 4 Y n 6 1 Z n 8 X n 10 . . . 1 ( X n 6 K + 5 ) ( 1 ) ( k + 1 ) ,
X n + 6 1 Y n Z n 2 1 X n 4 Y n 6 1 Z n 8 X n 10 . . . 1 ( X n 6 K + 6 ) ( 1 ) ( k + 1 ) .
Likewise, for the sequences Y n + 1 and Z n + 1 , we observe that all subsequences of X n , Y n , Z n are decreasing. Therefore, they are bounded from above by
X n + 1 = m a x { X 3 , X 2 , X 1 , X 0 } , Y n + 1 = m a x { Y 3 , Y 2 , Y 1 , Y 0 } , Z n + 1 = m a x { Z 3 , Z 2 , Z 1 , Z 0 } .

2.2. The Second Case

The derivation of the solution’s form is demonstrated in this subsection for the following system:
X n + 1 = Z n 1 X n 3 Y n 1 ( 1 + Z n 1 X n 3 ) , Y n + 1 = X n 1 Y n 3 Z n 1 ( 1 + X n 1 Y n 3 ) , Z n + 1 = Y n 1 Z n 3 X n 1 ( 1 + Y n 1 Z n 3 ) ,
where n = 0 , 1 , 2 , . . . and the initial conditions are arbitrary nonzero real numbers.
Theorem 2. 
Assume that { X n , Y n , Z n } are solutions of system (19). Then, for n 0 , the solutions of system (19) are formed as follows:
X 12 n 3 = ( 1 ) n a 3 ( 1 2 a 1 b 3 ) n ( 1 + 2 b 1 c 3 ) n ( 1 b 1 c 3 ) n ( 1 c 1 a 3 ) n ( 1 + a 1 b 3 ) n , Y 12 n 3 = b 3 ( 1 2 b 1 c 3 ) n ( 1 + 2 c 1 a 3 ) n ( 1 c 1 a 3 ) n ( 1 + b 1 c 3 ) n ( 1 a 1 b 3 ) n , Z 12 n 3 = ( 1 ) n c 3 ( 1 + 3 b 1 c 3 ) n ( 1 + c 1 a 3 ) n ( 1 + a 1 b 3 ) n ,
X 12 n 2 = ( 1 ) n a 2 ( 1 2 a 0 b 2 ) n ( 1 + 2 b 0 c 2 ) n ( 1 b 0 c 2 ) n ( 1 c 0 a 2 ) n ( 1 + a 0 b 2 ) n , Y 12 n 2 = b 2 ( 1 2 b 0 c 2 ) n ( 1 + 2 c 0 a 2 ) n ( 1 c 0 a 2 ) n ( 1 + b 0 c 2 ) n ( 1 a 0 b 2 ) n , Z 12 n 2 = ( 1 ) n c 2 ( 1 + 3 b 0 c 2 ) n ( 1 + c 0 a 2 ) n ( 1 + a 0 b 2 ) n ,
X 12 n 1 = a 1 ( 1 + b 1 c 3 ) n ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n ( 1 2 b 1 c 3 ) n ( 1 + 2 c 1 a 3 ) n , Y 12 n 1 = ( 1 ) n b 1 ( 1 + c 1 a 3 ) n ( 1 + 3 b 1 c 3 ) n ( 1 + a 1 b 3 ) n , Z 12 n 1 = ( 1 ) n c 1 ( 1 + a 1 b 3 ) n ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n ( 1 2 a 1 b 3 ) n ( 1 + 2 b 1 c 3 ) n ,
X 12 n = a 0 ( 1 + b 0 c 2 ) n ( 1 a 0 b 2 ) n ( 1 c 0 a 2 ) n ( 1 2 b 0 c 2 ) n ( 1 + 2 c 0 a 2 ) n , Y 12 n = ( 1 ) n b 0 ( 1 + c 0 a 2 ) n ( 1 + 3 b 0 c 2 ) n ( 1 + a 0 b 2 ) n , Z 12 n = ( 1 ) n c 0 ( 1 + a 0 b 2 ) n ( 1 c 0 a 2 ) n ( 1 b 0 c 2 ) n ( 1 2 a 0 b 2 ) n ( 1 + 2 b 0 c 2 ) n ,
X 12 n + 1 = ( 1 ) n c 1 a 3 b 1 ( 1 + c 1 a 3 ) n + 1 ( 1 + 3 b 1 c 3 ) n ( 1 + a 1 b 3 ) n , Y 12 n + 1 = ( 1 ) n a 1 b 3 ( 1 + 2 b 1 c 3 ) n ( 1 2 a 1 b 3 ) n c 1 ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n ( 1 + a 1 b 3 ) n + 1 , Z 12 n + 1 = b 1 c 3 ( 1 + 2 c 1 a 3 ) n ( 1 2 b 1 c 3 ) n a 1 ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n ( 1 + b 1 c 3 ) n + 1 ,
X 12 n + 2 = ( 1 ) n c 0 a 2 b 0 ( 1 + c 0 a 2 ) n + 1 ( 1 + 3 b 0 c 2 ) n ( 1 + a 0 b 2 ) n , Y 12 n + 2 = ( 1 ) n a 0 b 2 ( 1 + 2 b 0 c 2 ) n ( 1 2 a 0 b 2 ) n c 0 ( 1 c 0 a 2 ) n ( 1 b 0 c 2 ) n ( 1 + a 1 b 3 ) n + 1 , Z 12 n + 2 = b 0 c 2 ( 1 + 2 c 0 a 2 ) n ( 1 2 b 0 c 2 ) n a 1 ( 1 a 0 b 2 ) n ( 1 c 0 a 2 ) n ( 1 + b 0 c 2 ) n + 1 ,
X 12 n + 3 = ( 1 ) n c 1 c 3 b 1 ( 1 + a 1 b 3 ) n + 1 ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n a 1 b 3 ( 1 + 2 b 1 c 3 ) n + 1 ( 1 2 a 1 b 3 ) n , Y 12 n + 3 = a 1 a 3 c 1 ( 1 + b 1 c 3 ) n + 1 ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n b 1 c 3 ( 1 2 b 1 c 3 ) n ( 1 + 2 c 1 a 3 ) n + 1 , Z 12 n + 3 = ( 1 ) n + 1 b 1 b 3 a 1 ( 1 + c 1 a 3 ) n + 1 ( 1 + 3 b 1 c 3 ) n ( 1 + a 1 b 3 ) n c 1 a 3 ,
X 12 n + 4 = ( 1 ) n c 0 c 2 b 0 ( 1 + a 0 b 2 ) n + 1 ( 1 c 0 a 2 ) n ( 1 b 0 c 2 ) n a 0 b 2 ( 1 + 2 b 0 c 2 ) n + 1 ( 1 2 a 0 b 2 ) n , Y 12 n + 4 = a 0 a 2 c 0 ( 1 + b 0 c 2 ) n + 1 ( 1 a 0 b 2 ) n ( 1 c 0 a 2 ) n b 0 c 2 ( 1 2 b 0 c 2 ) n ( 1 + 2 c 0 a 2 ) n + 1 , Z 12 n + 4 = ( 1 ) n + 1 b 0 b 2 a 0 ( 1 + c 0 a 2 ) n + 1 ( 1 + 3 b 0 c 2 ) n ( 1 + a 0 b 2 ) n c 0 a 2 ,
X 12 n + 5 = ( 1 ) n b 1 b 3 c 3 ( 1 + 2 c 1 a 3 ) n + 1 ( 1 2 b 1 c 3 ) n c 1 a 3 ( 1 c 1 a 3 ) n ( 1 + b 1 c 3 ) n + 1 ( 1 a 1 b 3 ) n + 1 , Y 12 n + 5 = ( 1 ) n c 1 c 3 a 3 a 1 b 3 ( 1 + c 1 a 3 ) n + 1 ( 1 + 3 b 1 c 3 ) n + 1 ( 1 + a 1 b 3 ) n , Z 12 n + 5 = ( 1 ) n a 1 a 3 b 3 ( 1 2 a 1 b 3 ) n ( 1 + 2 b 1 c 3 ) n + 1 b 1 c 3 ( 1 b 1 c 3 ) n ( 1 c 1 a 3 ) n + 1 ( 1 + a 1 b 3 ) n + 1 ,
X 12 n + 6 = ( 1 ) n b 0 b 2 c 2 ( 1 + 2 c 0 a 2 ) n + 1 ( 1 2 b 0 c 2 ) n c 0 a 2 ( 1 c 0 a 2 ) n ( 1 + b 0 c 2 ) n + 1 ( 1 a 0 b 2 ) n + 1 , Y 12 n + 6 = ( 1 ) n c 0 c 2 a 2 a 0 b 2 ( 1 + c 0 a 2 ) n + 1 ( 1 + 3 b 0 c 2 ) n + 1 ( 1 + a 0 b 2 ) n , Z 12 n + 6 = ( 1 ) n a 0 a 2 b 2 ( 1 2 a 0 b 2 ) n ( 1 + 2 b 0 c 2 ) n + 1 b 0 c 2 ( 1 b 0 c 2 ) n ( 1 c 0 a 2 ) n + 1 ( 1 + a 0 b 2 ) n + 1 ,
X 12 n + 7 = ( 1 ) n a 1 b 3 ( 1 + 3 b 1 c 3 ) n + 1 ( 1 + c 1 a 3 ) n + 1 ( 1 + a 1 b 3 ) n c 3 , Y 12 n + 7 = ( 1 ) n + 1 b 1 c 3 ( 1 + a 1 b 3 ) n + 1 ( 1 c 1 a 3 ) n + 1 ( 1 b 1 c 3 ) n a 3 ( 1 2 a 1 b 3 ) n + 1 ( 1 + 2 a 1 b 3 ) n + 1 , Z 12 n + 7 = c 1 a 3 ( 1 c 1 a 3 ) n ( 1 + b 1 c 3 ) n + 1 ( 1 a 1 b 3 ) n + 1 b 3 ( 1 2 b 1 c 3 ) n + 1 ( 1 + 2 c 1 a 3 ) n + 1 ,
X 12 n + 8 = ( 1 ) n a 0 b 2 ( 1 + 3 b 0 c 2 ) n + 1 ( 1 + c 0 a 2 ) n + 1 ( 1 + a 0 b 2 ) n c 2 , Y 12 n + 8 = ( 1 ) n + 1 b 0 c 2 ( 1 + a 0 b 2 ) n + 1 ( 1 c 0 a 2 ) n + 1 ( 1 b 0 c 2 ) n a 2 ( 1 2 a 0 b 2 ) n + 1 ( 1 + 2 a 0 b 2 ) n + 1 , Z 12 n + 8 = c 0 a 2 ( 1 c 0 a 2 ) n ( 1 + b 0 c 2 ) n + 1 ( 1 a 0 b 2 ) n + 1 b 2 ( 1 2 b 0 c 2 ) n + 1 ( 1 + 2 c 0 a 2 ) n + 1 .
Proof. 
For n = 0 , it is obvious that the results are true. Now for n > 0 , assume that the results hold for n 1 and they are provided in the form of
X 12 n 15 = ( 1 ) n 1 a 3 ( 1 2 a 1 b 3 ) n 1 ( 1 + 2 b 1 c 3 ) n 1 ( 1 b 1 c 3 ) n 1 ( 1 c 1 a 3 ) n 1 ( 1 + a 1 b 3 ) n 1 , Y 12 n 15 = b 3 ( 1 2 b 1 c 3 ) n 1 ( 1 + 2 c 1 a 3 ) n 1 ( 1 c 1 a 3 ) n 1 ( 1 + b 1 c 3 ) n 1 ( 1 a 1 b 3 ) n 1 , Z 12 n 15 = ( 1 ) n 1 c 3 ( 1 + 3 b 1 c 3 ) n 1 ( 1 + c 1 a 3 ) n 1 ( 1 + a 1 b 3 ) n 1 ,
X 12 n 14 = ( 1 ) n 1 a 2 ( 1 2 a 0 b 2 ) n 1 ( 1 + 2 b 0 c 2 ) n 1 ( 1 b 0 c 2 ) n 1 ( 1 c 0 a 2 ) n 1 ( 1 + a 0 b 2 ) n 1 , Y 12 n 14 = b 2 ( 1 2 b 0 c 2 ) n 1 ( 1 + 2 c 0 a 2 ) n 1 ( 1 c 0 a 2 ) n 1 ( 1 + b 0 c 2 ) n 1 ( 1 a 0 b 2 ) n 1 , Z 12 n 14 = ( 1 ) n 1 c 2 ( 1 + 3 b 0 c 2 ) n 1 ( 1 + c 0 a 2 ) n 1 ( 1 + a 0 b 2 ) n 1 ,
X 12 n 13 = a 1 ( 1 + b 1 c 3 ) n 1 ( 1 a 1 b 3 ) n 1 ( 1 c 1 a 3 ) n 1 ( 1 2 b 1 c 3 ) n 1 ( 1 + 2 c 1 a 3 ) n 1 , Y 12 n 13 = ( 1 ) n 1 b 1 ( 1 + c 1 a 3 ) n 1 ( 1 + 3 b 1 c 3 ) n 1 ( 1 + a 1 b 3 ) n 1 , Z 12 n 13 = ( 1 ) n 1 c 1 ( 1 + a 1 b 3 ) n 1 ( 1 c 1 a 3 ) n 1 ( 1 b 1 c 3 ) n 1 ( 1 2 a 1 b 3 ) n 1 ( 1 + 2 b 1 c 3 ) n 1 ,
X 12 n 12 = a 0 ( 1 + b 0 c 2 ) n 1 ( 1 a 0 b 2 ) n 1 ( 1 c 0 a 2 ) n 1 ( 1 2 b 0 c 2 ) n 1 ( 1 + 2 c 0 a 2 ) n 1 , Y 12 n 12 = ( 1 ) n 1 b 0 ( 1 + c 0 a 2 ) n 1 ( 1 + 3 b 0 c 2 ) n 1 ( 1 + a 0 b 2 ) n 1 , Z 12 n 12 = ( 1 ) n 1 c 0 ( 1 + a 0 b 2 ) n 1 ( 1 c 0 a 2 ) n 1 ( 1 b 0 c 2 ) n 1 ( 1 2 a 0 b 2 ) n 1 ( 1 + 2 b 0 c 2 ) n 1 ,
X 12 n 11 = ( 1 ) n 1 c 1 a 3 b 1 ( 1 + c 1 a 3 ) n ( 1 + 3 b 1 c 3 ) n 1 ( 1 + a 1 b 3 ) n 1 , Y 12 n 11 = ( 1 ) n 1 a 1 b 3 ( 1 + 2 b 1 c 3 ) n 1 ( 1 2 a 1 b 3 ) n 1 c 1 ( 1 c 1 a 3 ) n 1 ( 1 b 1 c 3 ) n 1 ( 1 + a 1 b 3 ) n , Z 12 n 11 = b 1 c 3 ( 1 + 2 c 1 a 3 ) n 1 ( 1 2 b 1 c 3 ) n 1 a 1 ( 1 a 1 b 3 ) n 1 ( 1 c 1 a 3 ) n 1 ( 1 + b 1 c 3 ) n ,
X 12 n 10 = ( 1 ) n 1 c 0 a 2 b 0 ( 1 + c 0 a 2 ) n ( 1 + 3 b 0 c 2 ) n 1 ( 1 + a 0 b 2 ) n 1 , Y 12 n 10 = ( 1 ) n 1 a 0 b 2 ( 1 + 2 b 0 c 2 ) n 1 ( 1 2 a 0 b 2 ) n 1 c 0 ( 1 c 0 a 2 ) n 1 ( 1 b 0 c 2 ) n 1 ( 1 + a 1 b 3 ) n , Z 12 n 10 = b 0 c 2 ( 1 + 2 c 0 a 2 ) n 1 ( 1 2 b 0 c 2 ) n 1 a 1 ( 1 a 0 b 2 ) n 1 ( 1 c 0 a 2 ) n 1 ( 1 + b 0 c 2 ) n ,
X 12 n 9 = ( 1 ) n 1 c 1 c 3 b 1 ( 1 + a 1 b 3 ) n ( 1 c 1 a 3 ) n 1 ( 1 b 1 c 3 ) n 1 a 1 b 3 ( 1 + 2 b 1 c 3 ) n ( 1 2 a 1 b 3 ) n 1 , Y 12 n 9 = a 1 a 3 c 1 ( 1 + b 1 c 3 ) n ( 1 a 1 b 3 ) n 1 ( 1 c 1 a 3 ) n 1 b 1 c 3 ( 1 2 b 1 c 3 ) n 1 ( 1 + 2 c 1 a 3 ) n , Z 12 n 9 = ( 1 ) n b 1 b 3 a 1 ( 1 + c 1 a 3 ) n ( 1 + 3 b 1 c 3 ) n 1 ( 1 + a 1 b 3 ) n 1 c 1 a 3 ,
X 12 n 8 = ( 1 ) n 1 c 0 c 2 b 0 ( 1 + a 0 b 2 ) n ( 1 c 0 a 2 ) n 1 ( 1 b 0 c 2 ) n 1 a 0 b 2 ( 1 + 2 b 0 c 2 ) n ( 1 2 a 0 b 2 ) n 1 , Y 12 n 8 = a 0 a 2 c 0 ( 1 + b 0 c 2 ) n ( 1 a 0 b 2 ) n 1 ( 1 c 0 a 2 ) n 1 b 0 c 2 ( 1 2 b 0 c 2 ) n 1 ( 1 + 2 c 0 a 2 ) n , Z 12 n 8 = ( 1 ) n b 0 b 2 a 0 ( 1 + c 0 a 2 ) n ( 1 + 3 b 0 c 2 ) n 1 ( 1 + a 0 b 2 ) n 1 c 0 a 2 ,
X 12 n 7 = ( 1 ) n 1 b 1 b 3 c 3 ( 1 + 2 c 1 a 3 ) n ( 1 2 b 1 c 3 ) n 1 c 1 a 3 ( 1 c 1 a 3 ) n 1 ( 1 + b 1 c 3 ) n ( 1 a 1 b 3 ) n , Y 12 n 7 = ( 1 ) n 1 c 1 c 3 a 3 a 1 b 3 ( 1 + c 1 a 3 ) n ( 1 + 3 b 1 c 3 ) n ( 1 + a 1 b 3 ) n 1 , Z 12 n 7 = ( 1 ) n 1 a 1 a 3 b 3 ( 1 2 a 1 b 3 ) n 1 ( 1 + 2 b 1 c 3 ) n b 1 c 3 ( 1 b 1 c 3 ) n 1 ( 1 c 1 a 3 ) n ( 1 + a 1 b 3 ) n ,
X 12 n 6 = ( 1 ) n 1 b 0 b 2 c 2 ( 1 + 2 c 0 a 2 ) n ( 1 2 b 0 c 2 ) n 1 c 0 a 2 ( 1 c 0 a 2 ) n 1 ( 1 + b 0 c 2 ) n ( 1 a 0 b 2 ) n , Y 12 n 6 = ( 1 ) n 1 c 0 c 2 a 2 a 0 b 2 ( 1 + c 0 a 2 ) n ( 1 + 3 b 0 c 2 ) n ( 1 + a 0 b 2 ) n 1 , Z 12 n 6 = ( 1 ) n 1 a 0 a 2 b 2 ( 1 2 a 0 b 2 ) n 1 ( 1 + 2 b 0 c 2 ) n b 0 c 2 ( 1 b 0 c 2 ) n 1 ( 1 c 0 a 2 ) n ( 1 + a 0 b 2 ) n ,
X 12 n 5 = ( 1 ) n 1 a 1 b 3 ( 1 + 3 b 1 c 3 ) n ( 1 + c 1 a 3 ) n ( 1 + a 1 b 3 ) n 1 c 3 , Y 12 n 5 = ( 1 ) n b 1 c 3 ( 1 + a 1 b 3 ) n ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n 1 a 3 ( 1 2 a 1 b 3 ) n ( 1 + 2 a 1 b 3 ) n , Z 12 n 5 = c 1 a 3 ( 1 c 1 a 3 ) n 1 ( 1 + b 1 c 3 ) n ( 1 a 1 b 3 ) n b 3 ( 1 2 b 1 c 3 ) n ( 1 + 2 c 1 a 3 ) n ,
X 12 n 4 = ( 1 ) n 1 a 0 b 2 ( 1 + 3 b 0 c 2 ) n ( 1 + c 0 a 2 ) n ( 1 + a 0 b 2 ) n 1 c 2 , Y 12 n 4 = ( 1 ) n b 0 c 2 ( 1 + a 0 b 2 ) n ( 1 c 0 a 2 ) n ( 1 b 0 c 2 ) n 1 a 2 ( 1 2 a 0 b 2 ) n ( 1 + 2 a 0 b 2 ) n , Z 12 n 4 = c 0 a 2 ( 1 c 0 a 2 ) n 1 ( 1 + b 0 c 2 ) n ( 1 a 0 b 2 ) n b 2 ( 1 2 b 0 c 2 ) n ( 1 + 2 c 0 a 2 ) n .
Now, we will demonstrate the relation.
Substituting 12 n 1 into the system (19), we obtain
X 12 n 1 = Z 12 n 3 X 12 n 5 Y 12 n 3 ( 1 + Z 12 n 3 X 12 n 5 ) , = a 1 b 3 ( 1 a 1 b 3 ) b 3 ( 1 2 b 1 c 3 ) n ( 1 + 2 c 1 a 3 ) n ( 1 c 1 a 3 ) n ( 1 + b 1 c 3 ) n ( 1 a 1 b 3 ) n ( 1 + a 1 b 3 ( 1 a 1 b 3 ) ) ,
and therefore,
X 12 n 1 = a 1 ( 1 + b 1 c 3 ) n ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n ( 1 2 b 1 c 3 ) n ( 1 + 2 c 1 a 3 ) n .
Also,
Y 12 n 1 = X 12 n 3 Y 12 n 5 Z 12 n 3 ( 1 + X 12 n 3 Y 12 n 5 ) , = b 1 c 3 ( 1 b 1 c 3 ) ( 1 ) n c 3 ( 1 + 3 b 1 c 3 ) n ( 1 + c 1 a 3 ) n ( 1 + a 1 b 3 ) n ( 1 + b 1 c 3 ( 1 b 1 c 3 ) ) ,
and therefore,
Y 12 n 1 = ( 1 ) n b 1 ( 1 + c 1 a 3 ) n ( 1 + 3 b 1 c 3 ) n ( 1 + a 1 b 3 ) n .
Also, for equation Y 12 n 1 , we obtain from (19)
Z 12 n 1 = Y 12 n 3 Z 12 n 5 X 12 n 3 ( 1 + Y 12 n 3 Z 12 n 5 ) , = c 1 a 3 ( 1 + c 1 a 3 ) ( 1 ) n a 3 ( 1 2 a 1 b 3 ) n ( 1 + 2 b 1 c 3 ) n ( 1 b 1 c 3 ) n ( 1 c 1 a 3 ) n ( 1 + a 1 b 3 ) n ( 1 + c 1 a 3 ( 1 + c 1 a 3 ) ) ,
and hence,
Z 12 n 1 = ( 1 ) n c 1 ( 1 + a 1 b 3 ) n ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n ( 1 2 a 1 b 3 ) n ( 1 + 2 b 1 c 3 ) n .
Likewise, we can show the other relations. The proof is complete. □

2.3. The Third Case

In this section, we examine the solution of the SDEs
X n + 1 = Z n 1 X n 3 Y n 1 ( 1 Z n 1 X n 3 ) , Y n + 1 = X n 1 Y n 3 Z n 1 ( 1 X n 1 Y n 3 ) , Z n + 1 = Y n 1 Z n 3 X n 1 ( 1 Y n 1 Z n 3 ) ,
where n = 0 , 1 , 2 , . . . and the initial conditions are arbitrary nonzero real numbers.
Theorem 3. 
Assume that the sequence { X n , Y n , Z n } are solutions of system (32). Then, for n = 0 , 1 , 2 , 3 , . . .
X 12 n 3 = a 3 ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n , Y 12 n 3 = b 3 ( 1 b 1 c 3 ) n ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n , Z 12 n 3 = c 3 ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n ( 1 a 1 b 3 ) n ,
X 12 n 2 = a 2 ( 1 a 0 b 2 ) n ( 1 c 0 a 2 ) n ( 1 b 0 c 2 ) n , Y 12 n 2 = b 2 ( 1 b 0 c 2 ) n ( 1 a 0 b 2 ) n ( 1 c 0 a 2 ) n , Z 12 n 2 = c 2 ( 1 c 0 a 2 ) n ( 1 b 0 c 2 ) n ( 1 a 0 b 2 ) n ,
X 12 n 1 = a 1 ( 1 b 1 c 3 ) n ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n , Y 12 n 1 = b 1 ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n ( 1 a 1 b 3 ) n , Z 12 n 1 = c 1 ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n ,
X 12 n = a 0 ( 1 b 0 c 2 ) n ( 1 a 0 b 2 ) n ( 1 c 0 a 2 ) n , Y 12 n = b 0 ( 1 c 0 a 2 ) n ( 1 b 0 c 2 ) n ( 1 a 0 b 2 ) n , Z 12 n = c 0 ( 1 a 0 b 2 ) n ( 1 c 0 a 2 ) n ( 1 b 0 c 2 ) n ,
X 12 n + 1 = c 1 a 3 b 1 ( 1 c 1 a 3 ) n + 1 ( 1 b 1 c 3 ) n ( 1 a 1 b 3 ) n , Y 12 n + 1 = a 1 b 3 c 1 ( 1 a 1 b 3 ) n + 1 ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n , Z 12 n + 1 = b 1 c 3 a 1 ( 1 b 1 c 3 ) n + 1 ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n ,
X 12 n + 2 = c 0 a 2 b 0 ( 1 c 0 a 2 ) n + 1 ( 1 b 0 c 2 ) n ( 1 a 0 b 2 ) n , Y 12 n + 2 = a 0 b 2 c 0 ( 1 a 0 b 2 ) n + 1 ( 1 c 0 a 2 ) n ( 1 b 0 c 2 ) n , Z 12 n + 2 = b 0 c 2 a 0 ( 1 b 0 c 2 ) n + 1 ( 1 a 0 b 2 ) n ( 1 c 0 a 2 ) n ,
X 12 n + 3 = c 1 c 3 b 1 ( 1 a 1 b 3 ) n + 1 ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n a 1 b 3 , Y 12 n + 3 = a 1 a 3 c 1 ( 1 b 1 c 3 ) n + 1 ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n b 1 c 3 , Z 12 n + 3 = b 1 b 3 a 1 ( 1 c 1 a 3 ) n + 1 ( 1 b 1 c 3 ) n ( 1 a 1 b 3 ) n c 1 a 3 ,
X 12 n + 4 = c 0 c 2 b 0 ( 1 a 0 b 2 ) n + 1 ( 1 c 0 a 2 ) n ( 1 b 0 c 2 ) n a 0 b 2 , Y 12 n + 4 = a 0 a 2 c 0 ( 1 b 0 c 2 ) n + 1 ( 1 a 0 b 2 ) n ( 1 c 0 a 2 ) n b 0 c 2 , Z 12 n + 4 = b 0 b 2 a 0 ( 1 c 0 a 2 ) n + 1 ( 1 b 0 c 2 ) n ( 1 a 0 b 2 ) n c 0 a 2 ,
X 12 n + 5 = b 1 b 3 c 3 c 1 a 3 ( 1 b 1 c 3 ) n + 1 ( 1 a 1 b 3 ) n + 1 ( 1 c 1 a 3 ) n , Y 12 n + 5 = c 1 c 3 a 3 a 1 b 3 ( 1 c 1 a 3 ) n + 1 ( 1 b 1 c 3 ) n + 1 ( 1 a 1 b 3 ) n , Z 12 n + 5 = a 1 a 3 b 3 b 1 c 3 ( 1 a 1 b 3 ) n + 1 ( 1 c 1 a 3 ) n + 1 ( 1 b 1 c 3 ) n ,
X 12 n + 6 = b 0 b 2 c 2 c 0 a 2 ( 1 b 0 c 2 ) n + 1 ( 1 a 0 b 2 ) n + 1 ( 1 c 0 a 2 ) n , Y 12 n + 6 = c 0 c 2 a 2 a 0 b 2 ( 1 c 0 a 2 ) n + 1 ( 1 b 0 c 2 ) n + 1 ( 1 a 0 b 2 ) n , Z 12 n + 6 = a 0 a 2 b 2 b 0 c 2 ( 1 a 0 b 2 ) n + 1 ( 1 c 0 a 2 ) n + 1 ( 1 b 0 c 2 ) n ,
X 12 n + 7 = a 1 b 3 ( 1 c 1 a 3 ) n + 1 ( 1 b 1 c 3 ) n + 1 ( 1 a 1 b 3 ) n c 3 , Y 12 n + 7 = b 1 c 3 ( 1 a 1 b 3 ) n + 1 ( 1 c 1 a 3 ) n + 1 ( 1 b 1 c 3 ) n a 3 , Z 12 n + 7 = c 1 a 3 ( 1 b 1 c 3 ) n + 1 ( 1 a 1 b 3 ) n + 1 ( 1 c 1 a 3 ) n b 3 ,
X 12 n + 8 = a 0 b 2 ( 1 c 0 a 2 ) n + 1 ( 1 b 0 c 2 ) n + 1 ( 1 a 0 b 2 ) n c 3 , Y 12 n + 8 = b 0 c 2 ( 1 a 0 b 2 ) n + 1 ( 1 c 0 a 2 ) n + 1 ( 1 b 0 c 2 ) n a 2 , Z 12 n + 8 = c 0 a 2 ( 1 b 0 c 2 ) n + 1 ( 1 a 0 b 2 ) n + 1 ( 1 c 0 a 2 ) n b 2 ,
where X 0 = a 0 , X 1 = a 1 , X 2 = a 2 , X 3 = a 3 , Y 0 = b 0 , Y 1 = b 1 , Y 2 = b 2 , Y 3 = b 3 , Z 0 = c 0 , Z 1 = c 1 , Z 2 = c 2 and Z 3 = c 3 .
Proof. 
We apply the same approach used in Theorem 2. See Appendix A. □
Theorem 4. 
The system of nonlinear difference Equation (32) has a periodic solution of period twelve iff a 1 b 3 = c 1 a 3 = b 1 c 3 = a 0 b 2 = c 0 a 2 = b 0 c 2 = 2 , and it will take the following form:
{ X n } = { a 3 , a 2 , a 1 , a 0 , 2 b 1 , 2 b 0 , c 1 , c 0 , b 3 , b 2 , 2 c 3 , 2 c 2 , . . . } ,
{ Y n } = { b 3 , b 2 , b 1 , b 0 , 2 c 1 , 2 c 0 , a 1 , a 0 , c 3 , c 2 , 2 a 3 , 2 a 2 , . . . } ,
{ Z n } = { c 3 , c 2 , c 1 , c 0 , 2 a 1 , 2 a 0 , b 1 , b 0 , a 3 , a 2 , 2 b 3 , 2 b 2 , . . . } .
Proof. 
Suppose that a prime period twelve solution exists of system (32):
{ X n } = { a 3 , a 2 , a 1 , a 0 , 2 b 1 , 2 b 0 , c 1 , c 0 , b 3 , b 2 , 2 c 3 , 2 c 2 , . . . } ,
{ Y n } = { b 3 , b 2 , b 1 , b 0 , 2 c 1 , 2 c 0 , a 1 , a 0 , c 3 , c 2 , 2 a 3 , 2 a 2 , . . . } ,
{ Z n } = { c 3 , c 2 , c 1 , c 0 , 2 a 1 , 2 a 0 , b 1 , b 0 , a 3 , a 2 , 2 b 3 , 2 b 2 , . . . } .
Then, we can recognize from the form of the solution of system (32) that
a 3 = a 3 ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n , b 3 = b 3 ( 1 b 1 c 3 ) n ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n , c 3 = c 3 ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n ( 1 a 1 b 3 ) n ,
a 2 = a 2 ( 1 a 0 b 2 ) n ( 1 c 0 a 2 ) n ( 1 b 0 c 2 ) n , b 2 = b 2 ( 1 b 0 c 2 ) n ( 1 a 0 b 2 ) n ( 1 c 0 a 2 ) n , c 2 = c 2 ( 1 c 0 a 2 ) n ( 1 b 0 c 2 ) n ( 1 a 0 b 2 ) n ,
a 1 = a 1 ( 1 b 1 c 3 ) n ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n , b 1 = b 1 ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n ( 1 a 1 b 3 ) n , c 1 = c 1 ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n ,
a 0 = a 0 ( 1 b 0 c 2 ) n ( 1 a 0 b 2 ) n ( 1 c 0 a 2 ) n , b 0 = b 0 ( 1 c 0 a 2 ) n ( 1 b 0 c 2 ) n ( 1 a 0 b 2 ) n , c 0 = c 0 ( 1 a 0 b 2 ) n ( 1 c 0 a 2 ) n ( 1 b 0 c 2 ) n ,
2 b 1 = c 1 a 3 b 1 ( 1 c 1 a 3 ) n + 1 ( 1 b 1 c 3 ) n ( 1 a 1 b 3 ) n , 2 c 1 = a 1 b 3 c 1 ( 1 a 1 b 3 ) n + 1 ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n , 2 a 1 = b 1 c 3 a 1 ( 1 b 1 c 3 ) n + 1 ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n ,
2 b 0 = c 0 a 2 b 0 ( 1 c 0 a 2 ) n + 1 ( 1 b 0 c 2 ) n ( 1 a 0 b 2 ) n , 2 c 0 = a 0 b 2 c 0 ( 1 a 0 b 2 ) n + 1 ( 1 c 0 a 2 ) n ( 1 b 0 c 2 ) n , 2 a 0 = b 0 c 2 a 0 ( 1 b 0 c 2 ) n + 1 ( 1 a 0 b 2 ) n ( 1 c 0 a 2 ) n ,
c 1 = c 1 c 3 b 1 ( 1 a 1 b 3 ) n + 1 ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n a 1 b 3 , a 1 = a 1 a 3 c 1 ( 1 b 1 c 3 ) n + 1 ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n b 1 c 3 , b 1 = b 1 b 3 a 1 ( 1 c 1 a 3 ) n + 1 ( 1 b 1 c 3 ) n ( 1 a 1 b 3 ) n c 1 a 3 ,
c 0 = c 0 c 2 b 0 ( 1 a 0 b 2 ) n + 1 ( 1 c 0 a 2 ) n ( 1 b 0 c 2 ) n a 0 b 2 , a 0 = a 0 a 2 c 0 ( 1 b 0 c 2 ) n + 1 ( 1 a 0 b 2 ) n ( 1 c 0 a 2 ) n b 0 c 2 , b 0 = b 0 b 2 a 0 ( 1 c 0 a 2 ) n + 1 ( 1 b 0 c 2 ) n ( 1 a 0 b 2 ) n c 0 a 2 ,
b 3 = b 1 b 3 c 3 c 1 a 3 ( 1 b 1 c 3 ) n + 1 ( 1 a 1 b 3 ) n + 1 ( 1 c 1 a 3 ) n , c 3 = c 1 c 3 a 3 a 1 b 3 ( 1 c 1 a 3 ) n + 1 ( 1 b 1 c 3 ) n + 1 ( 1 a 1 b 3 ) n , a 3 = a 1 a 3 b 3 b 1 c 3 ( 1 a 1 b 3 ) n + 1 ( 1 c 1 a 3 ) n + 1 ( 1 b 1 c 3 ) n ,
b 2 = b 0 b 2 c 2 c 0 a 2 ( 1 b 0 c 2 ) n + 1 ( 1 a 0 b 2 ) n + 1 ( 1 c 0 a 2 ) n , c 2 = c 0 c 2 a 2 a 0 b 2 ( 1 c 0 a 2 ) n + 1 ( 1 b 0 c 2 ) n + 1 ( 1 a 0 b 2 ) n , a 2 = a 0 a 2 b 2 b 0 c 2 ( 1 a 0 b 2 ) n + 1 ( 1 c 0 a 2 ) n + 1 ( 1 b 0 c 2 ) n ,
2 c 3 = a 1 b 3 ( 1 c 1 a 3 ) n + 1 ( 1 b 1 c 3 ) n + 1 ( 1 a 1 b 3 ) n c 3 , 2 a 3 = b 1 c 3 ( 1 a 1 b 3 ) n + 1 ( 1 c 1 a 3 ) n + 1 ( 1 b 1 c 3 ) n a 3 , 2 b 3 = c 1 a 3 ( 1 b 1 c 3 ) n + 1 ( 1 a 1 b 3 ) n + 1 ( 1 c 1 a 3 ) n b 3 ,
2 c 2 = a 0 b 2 ( 1 c 0 a 2 ) n + 1 ( 1 b 0 c 2 ) n + 1 ( 1 a 0 b 2 ) n c 3 , 2 a 2 = b 0 c 2 ( 1 a 0 b 2 ) n + 1 ( 1 c 0 a 2 ) n + 1 ( 1 b 0 c 2 ) n a 2 , 2 b 2 = c 0 a 2 ( 1 b 0 c 2 ) n + 1 ( 1 a 0 b 2 ) n + 1 ( 1 c 0 a 2 ) n b 2 .
Then, assume that a 1 b 3 = c 1 a 3 = b 1 c 3 = a 0 b 2 = c 0 a 2 = b 0 c 2 = 2 .
So, we see from the form of the solution of system (32) that
X 12 n 3 = a 3 , Y 12 n 3 = b 3 , Z 12 n 3 = c 3 , X 12 n 2 = a 2 , Y 12 n 2 = b 2 , Z 12 n 2 = c 2 , X 12 n 1 = a 1 , Y 12 n 1 = b 1 , Z 12 n 1 = c 1 , X 12 n = a 0 , Y 12 n = b 0 , Z 12 n = c 0 , X 12 n + 1 = 2 b 1 , Y 12 n + 1 = 2 c 1 , Z 12 n + 1 = 2 a 1 , X 12 n + 2 = 2 b 0 , Y 12 n + 2 = 2 c 0 , Z 12 n + 2 = 2 a 0 , X 12 n + 3 = c 1 , Y 12 n + 3 = a 1 , Z 12 n + 3 = b 1 , X 12 n + 4 = c 0 , Y 12 n + 4 = a 0 , Z 12 n + 4 = b 0 , X 12 n + 5 = b 3 , Y 12 n + 5 = c 3 , Z 12 n + 5 = a 3 , X 12 n + 6 = b 2 , Y 12 n + 6 = c 2 , Z 12 n + 6 = a 2 , X 12 n + 7 = 2 c 3 , Y 12 n + 7 = 2 a 3 , Z 12 n + 7 = 2 b 3 , X 12 n + 8 = 2 c 2 , Y 12 n + 8 = 2 a 2 , Z 12 n + 8 = 2 b 2 .
Therefore, we have a periodic solution of period twelve. The proof is complete. □

2.4. The Fourth Case

This section is designed to discuss the form of solutions of the following system
X n + 1 = Z n 1 X n 3 Y n 1 ( 1 + Z n 1 X n 3 ) , Y n + 1 = X n 1 Y n 3 Z n 1 ( 1 + X n 1 Y n 3 ) , Z n + 1 = Y n 1 Z n 3 X n 1 ( 1 Y n 1 Z n 3 ) ,
where n = 0 , 1 , 2 , . . . and the initial conditions are arbitrary nonzero real numbers.
Theorem 5. 
Assume that { X n , Y n , Z n } are solutions of system (48). Then, for n 0 , the solutions of system (48) can take the following form:
X 12 n 3 = a 3 i = 0 n 1 ( 1 + ( 2 i + 2 ) a 1 b 3 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) c 1 a 3 ) ( 1 + ( 2 i + 2 ) b 1 c 3 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) a 1 b 3 ) ( 1 + ( 2 i + 1 ) c 1 a 3 ) ( 1 + ( 2 i + 1 ) b 1 c 3 ) , Y 12 n 3 = b 3 i = 0 n 1 ( 1 + ( 2 i + 2 ) c 1 a 3 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) a 1 b 3 ) ( 1 + ( 2 i + 2 ) b 1 c 3 ) i = 0 n 1 ( 1 + ( 2 i 1 ) b 1 c 3 ) ( 1 + ( 2 i + 1 ) a 1 b 3 ) ( 1 + ( 2 i + 3 ) c 1 a 3 ) , Z 12 n 3 = c 3 i = 0 n 1 ( 1 + ( 2 i + 2 ) c 1 a 3 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) a 1 b 3 ) ( 1 + ( 2 i + 2 ) b 1 c 3 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) c 1 a 3 ) ( 1 + ( 2 i + 1 ) b 1 c 3 ) ( 1 + ( 2 i + 1 ) a 1 b 3 ) ,
X 12 n 2 = a 2 i = 0 n 1 ( 1 + ( 2 i + 2 ) a 0 b 2 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) c 0 a 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) a 0 b 2 ) ( 1 + ( 2 i + 1 ) c 0 a 2 ) ( 1 + ( 2 i + 1 ) b 0 c 2 ) , Y 12 n 2 = b 2 i = 0 n 1 ( 1 + ( 2 i + 2 ) c 0 a 2 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) a 0 b 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) i = 0 n 1 ( 1 + ( 2 i 1 ) b 0 c 2 ) ( 1 + ( 2 i + 1 ) a 0 b 2 ) ( 1 + ( 2 i + 3 ) c 0 a 2 ) , Z 12 n 2 = c 2 i = 0 n 1 ( 1 + ( 2 i + 2 ) c 0 a 2 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) a 0 b 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) c 0 a 2 ) ( 1 + ( 2 i + 1 ) b 0 c 2 ) ( 1 + ( 2 i + 1 ) a 0 b 2 ) ,
X 12 n 1 = a 1 i = 0 n 1 ( 1 + ( 2 i 1 ) b 1 c 3 ) ( 1 + ( 2 i + 1 ) a 1 b 3 ) ( 1 + ( 2 i + 3 ) c 1 a 3 ) i = 0 n 1 ( 1 + ( 2 i + 2 ) c 1 a 3 ) ( 1 + ( 2 i + 2 ) a 1 b 3 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) b 1 c 3 ) , Y 12 n 1 = b 1 i = 0 n 1 ( 1 + ( 2 i + 1 ) c 1 a 3 ) ( 1 + ( 2 i + 1 ) b 1 c 3 ) ( 1 + ( 2 i + 1 ) a 1 b 3 ) i = 0 n 1 ( 1 + ( 2 i + 2 ) c 1 a 3 ) ( 1 + ( 2 i + 2 ) b 1 c 3 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) a 1 b 3 ) , Z 12 n 1 = c 1 i = 0 n 1 ( 1 + ( 2 i + 1 ) a 1 b 3 ) ( 1 + ( 2 i + 1 ) c 1 a 3 ) ( 1 + ( 2 i + 1 ) b 1 c 3 ) i = 0 n 1 ( 1 + ( 2 i + 2 ) a 1 b 3 ) ( 1 + ( 2 i + 2 ) c 1 a 3 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) b 1 c 3 ) ,
X 12 n = a 0 i = 0 n 1 ( 1 + ( 2 i 1 ) b 0 c 2 ) ( 1 + ( 2 i + 1 ) a 0 b 2 ) ( 1 + ( 2 i + 3 ) c 0 a 2 ) i = 0 n 1 ( 1 + ( 2 i + 2 ) c 0 a 2 ) ( 1 + ( 2 i + 2 ) a 0 b 2 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) b 0 c 2 ) , Y 12 n = b 0 i = 0 n 1 ( 1 + ( 2 i + 1 ) c 0 a 2 ) ( 1 + ( 2 i + 1 ) b 0 c 2 ) ( 1 + ( 2 i + 1 ) a 0 b 2 ) i = 0 n 1 ( 1 + ( 2 i + 2 ) c 0 a 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) a 0 b 2 ) , Z 12 n = c 0 i = 0 n 1 ( 1 + ( 2 i + 1 ) a 0 b 2 ) ( 1 + ( 2 i + 1 ) c 0 a 2 ) ( 1 + ( 2 i + 1 ) b 0 c 2 ) i = 0 n 1 ( 1 + ( 2 i + 2 ) a 0 b 2 ) ( 1 + ( 2 i + 2 ) c 0 a 2 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) b 0 c 2 ) ,
X 12 n + 1 = c 1 a 3 i = 0 n 1 ( 1 + ( 2 i + 2 ) c 1 a 3 ) ( 1 + ( 2 i + 2 ) b 1 c 3 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) a 1 b 3 ) b 1 i = 0 n ( 1 + ( 2 i + 1 ) c 1 a 3 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) b 1 c 3 ) ( 1 + ( 2 i + 1 ) a 1 b 3 ) , Y 12 n + 1 = a 1 b 3 i = 0 n 1 ( 1 + ( 2 i + 2 ) a 1 b 3 ) ( 1 + ( 2 i + 2 ) c 1 a 3 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) b 1 c 3 ) c 1 i = 0 n ( 1 + ( 2 i + 1 ) a 1 b 3 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) c 1 a 3 ) ( 1 + ( 2 i + 1 ) b 1 c 3 ) , Z 12 n + 1 = b 1 c 3 i = 0 n 1 ( 1 + ( 2 i + 2 ) c 1 a 3 ) ( 1 + ( 2 i + 2 ) a 1 b 3 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) b 1 c 3 ) a 1 i = 0 n ( 1 + ( 2 i + 1 ) b 1 c 3 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) a 1 b 3 ) ( 1 + ( 2 i + 1 ) c 1 a 3 ) ,
X 12 n + 2 = c 0 a 2 i = 0 n 1 ( 1 + ( 2 i + 2 ) c 0 a 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) a 0 b 2 ) b 0 i = 0 n ( 1 + ( 2 i + 1 ) c 0 a 2 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) b 0 c 2 ) ( 1 + ( 2 i + 1 ) a 0 b 2 ) , Y 12 n + 2 = a 0 b 2 i = 0 n 1 ( 1 + ( 2 i + 2 ) a 0 b 2 ) ( 1 + ( 2 i + 2 ) c 0 a 2 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) b 0 c 2 ) c 0 i = 0 n ( 1 + ( 2 i + 1 ) a 0 b 2 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) c 0 a 2 ) ( 1 + ( 2 i + 1 ) b 0 c 2 ) , Z 12 n + 2 = b 0 c 2 i = 0 n 1 ( 1 + ( 2 i + 2 ) c 0 a 2 ) ( 1 + ( 2 i + 2 ) a 0 b 2 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) b 0 c 2 ) a 0 i = 0 n ( 1 + ( 2 i + 1 ) b 0 c 2 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) a 0 b 2 ) ( 1 + ( 2 i + 1 ) c 0 a 2 ) ,
X 12 n + 3 = c 1 c 3 b 1 i = 0 n ( 1 + ( 2 i + 1 ) a 1 b 3 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) c 1 a 3 ) ( 1 + ( 2 i + 1 ) b 1 c 3 ) a 1 b 3 i = 0 n 1 ( 1 + ( 2 i + 2 ) a 1 b 3 ) ( 1 + ( 2 i + 2 ) c 1 a 3 ) ( 1 + ( 2 i + 2 ) b 1 c 3 ) , Y 12 n + 3 = a 1 a 3 c 1 i = 0 n ( 1 + ( 2 i 1 ) b 1 c 3 ) i = 0 n 1 ( 1 + ( 2 i + 3 ) c 1 a 3 ) ( 1 + ( 2 i + 1 ) a 1 b 3 ) b 1 a 3 i = 0 n ( 1 + ( 2 i + 2 ) c 1 a 3 ) i = 0 n 1 ( 1 + ( 2 i + 2 ) a 1 b 3 ) , Z 12 n + 3 = b 1 b 3 a 1 i = 0 n ( 1 + ( 2 i + 1 ) c 1 a 3 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) b 1 c 3 ) ( 1 + ( 2 i + 1 ) a 1 b 3 ) c 1 a 3 i = 0 n 1 ( 1 + ( 2 i + 2 ) c 1 a 3 ) ( 1 + ( 2 i + 2 ) b 1 c 3 ) ( 1 + ( 2 i + 2 ) a 1 b 3 ) ,
X 12 n + 4 = c 0 c 2 b 0 i = 0 n ( 1 + ( 2 i + 1 ) a 0 b 2 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) c 0 a 2 ) ( 1 + ( 2 i + 1 ) b 0 c 2 ) a 0 b 2 i = 0 n 1 ( 1 + ( 2 i + 2 ) a 0 b 2 ) ( 1 + ( 2 i + 2 ) c 0 a 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) , Y 12 n + 4 = a 0 a 2 c 0 i = 0 n ( 1 + ( 2 i 1 ) b 0 c 2 ) i = 0 n 1 ( 1 + ( 2 i + 3 ) c 0 a 2 ) ( 1 + ( 2 i + 1 ) a 0 b 2 ) b 0 a 2 i = 0 n ( 1 + ( 2 i + 2 ) c 0 a 2 ) i = 0 n 1 ( 1 + ( 2 i + 2 ) a 0 b 2 ) , Z 12 n + 4 = b 0 b 2 a 0 i = 0 n ( 1 + ( 2 i + 1 ) c 0 a 2 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) b 0 c 2 ) ( 1 + ( 2 i + 1 ) a 0 b 2 ) c 0 a 2 i = 0 n 1 ( 1 + ( 2 i + 2 ) c 0 a 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) ( 1 + ( 2 i + 2 ) a 0 b 2 ) ,
X 12 n + 5 = b 1 b 3 c 3 i = 0 n ( 1 + ( 2 i + 2 ) c 1 a 3 ) i = 0 n 1 ( 1 + ( 2 i + 2 ) a 1 b 3 ) c 1 a 3 i = 0 n ( 1 + ( 2 i 1 ) b 1 c 3 ) ( 1 + ( 2 i + 1 ) a 1 b 3 ) i = 0 n 1 ( 1 + ( 2 i + 3 ) c 1 a 3 ) , Y 12 n + 5 = c 1 c 3 a 3 i = 0 n 1 ( 1 + ( 2 i + 2 ) c 1 a 3 ) ( 1 + ( 2 i + 2 ) b 1 c 3 ) ( 1 + ( 2 i + 2 ) a 1 b 3 ) a 1 b 3 i = 0 n ( 1 + ( 2 i + 1 ) c 1 a 3 ) ( 1 + ( 2 i + 1 ) b 1 c 3 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) a 1 b 3 ) , Z 12 n + 5 = a 1 a 3 b 3 i = 0 n 1 ( 1 + ( 2 i + 2 ) a 1 b 3 ) ( 1 + ( 2 i + 2 ) c 1 a 3 ) ( 1 + ( 2 i + 2 ) b 1 c 3 ) b 1 c 3 i = 0 n ( 1 + ( 2 i + 1 ) a 1 b 3 ) ( 1 + ( 2 i + 1 ) c 1 a 3 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) b 1 c 3 ) ,
X 12 n + 6 = b 0 b 2 c 2 i = 0 n ( 1 + ( 2 i + 2 ) c 0 a 2 ) i = 0 n 1 ( 1 + ( 2 i + 2 ) a 0 b 2 ) c 0 a 2 i = 0 n ( 1 + ( 2 i 1 ) b 0 c 2 ) ( 1 + ( 2 i + 1 ) a 0 b 2 ) i = 0 n 1 ( 1 + ( 2 i + 3 ) c 0 a 2 ) , Y 12 n + 6 = c 0 c 2 a 2 i = 0 n 1 ( 1 + ( 2 i + 2 ) c 0 a 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) ( 1 + ( 2 i + 2 ) a 0 b 2 ) a 0 b 2 i = 0 n ( 1 + ( 2 i + 1 ) c 0 a 2 ) ( 1 + ( 2 i + 1 ) b 0 c 2 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) a 0 b 2 ) , Z 12 n + 6 = a 0 a 2 b 2 i = 0 n 1 ( 1 + ( 2 i + 2 ) a 0 b 2 ) ( 1 + ( 2 i + 2 ) c 0 a 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) b 0 c 2 i = 0 n ( 1 + ( 2 i + 1 ) a 0 b 2 ) ( 1 + ( 2 i + 1 ) c 0 a 2 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) b 0 c 2 ) ,
X 12 n + 7 = a 1 b 3 i = 0 n ( 1 + ( 2 i + 1 ) c 1 a 3 ) ( 1 + ( 2 i + 1 ) b 1 c 3 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) a 1 b 3 ) c 3 i = 0 n ( 1 + ( 2 i + 2 ) c 1 a 3 ) i = 0 n 1 ( 1 + ( 2 i + 2 ) b 1 c 3 ) ( 1 + ( 2 i + 2 ) a 1 b 3 ) , Y 12 n + 7 = b 1 c 3 i = 0 n ( 1 + ( 2 i + 1 ) a 1 b 3 ) ( 1 + ( 2 i + 1 ) c 1 a 3 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) b 1 c 3 ) a 3 i = 0 n ( 1 + ( 2 i + 2 ) a 1 b 3 ) i = 0 n 1 ( 1 + ( 2 i + 2 ) c 1 a 3 ) ( 1 + ( 2 i + 2 ) b 1 c 3 ) , Z 12 n + 7 = c 1 a 3 i = 0 n ( 1 + ( 2 i 1 ) b 1 c 3 ) ( 1 + ( 2 i + 1 ) a 1 b 3 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) c 1 a 3 ) b 3 i = 0 n ( 1 + ( 2 i + 2 ) c 1 a 3 ) i = 0 n 1 ( 1 + ( 2 i + 2 ) a 1 b 3 ) ( 1 + ( 2 i + 2 ) b 1 c 3 ) ,
X 12 n + 8 = a 0 b 2 i = 0 n ( 1 + ( 2 i + 1 ) c 0 a 2 ) ( 1 + ( 2 i + 1 ) b 0 c 2 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) a 0 b 2 ) c 2 i = 0 n ( 1 + ( 2 i + 2 ) c 0 a 2 ) i = 0 n 1 ( 1 + ( 2 i + 2 ) b 0 c 2 ) ( 1 + ( 2 i + 2 ) a 0 b 2 ) , Y 12 n + 8 = b 0 c 2 i = 0 n ( 1 + ( 2 i + 1 ) a 0 b 2 ) ( 1 + ( 2 i + 1 ) c 0 a 2 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) b 0 c 2 ) a 2 i = 0 n ( 1 + ( 2 i + 2 ) a 0 b 2 ) i = 0 n 1 ( 1 + ( 2 i + 2 ) c 0 a 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) , Z 12 n + 8 = c 0 a 2 i = 0 n ( 1 + ( 2 i 1 ) b 0 c 2 ) ( 1 + ( 2 i + 1 ) a 0 b 2 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) c 0 a 2 ) b 2 i = 0 n ( 1 + ( 2 i + 2 ) c 0 a 2 ) i = 0 n 1 ( 1 + ( 2 i + 2 ) a 0 b 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) ,
where X 0 = a 0 , X 1 = a 1 , X 2 = a 2 , Y 0 = b 0 , Y 1 = b 1 , Y 2 = b 2 , Z 0 = c 0 , Z 1 = c 1 and Z 2 = c 2 .
Proof. 
We apply the same approach used in Theorem 1. See Appendix B. □

2.5. The Fifth Case

In this section, we explore the solution formulas of the following system:
X n + 1 = Z n 1 X n 3 Y n 1 ( 1 + Z n 1 X n 3 ) , Y n + 1 = X n 1 Y n 3 Z n 1 ( 1 + X n 1 Y n 3 ) , Z n + 1 = Y n 1 Z n 3 X n 1 ( 1 + Y n 1 Z n 3 ) ,
where n = 0 , 1 , 2 , . . . and the initial conditions are arbitrary nonzero real numbers.
Theorem 6. 
Assume that { X n , Y n , Z n } are solutions of system (61). Then, for n 0 , the solutions of system (61) can be formed as follows:
X 12 n 3 = a 3 ( 1 + a 1 b 3 ) n ( 1 + c 1 a 3 ) n ( 1 + b 1 c 3 ) n , Y 12 n 3 = b 3 ( 1 + b 1 c 3 ) n ( 1 + a 1 b 3 ) n ( 1 + c 1 a 3 ) n , Z 12 n 3 = c 3 ( 1 + c 1 a 3 ) n ( 1 + b 1 c 3 ) n ( 1 + a 1 b 3 ) n ,
X 12 n 2 = a 2 ( 1 + a 0 b 2 ) n ( 1 + c 0 a 2 ) n ( 1 + b 0 c 2 ) n , Y 12 n 2 = b 2 ( 1 + b 0 c 2 ) n ( 1 + a 0 b 2 ) n ( 1 + c 0 a 2 ) n , Z 12 n 2 = c 2 ( 1 + c 0 a 2 ) n ( 1 + b 0 c 2 ) n ( 1 + a 0 b 2 ) n ,
X 12 n 1 = a 1 ( 1 + b 1 c 3 ) n ( 1 + a 1 b 3 ) n ( 1 + c 1 a 3 ) n , Y 12 n 1 = b 1 ( 1 + c 1 a 3 ) n ( 1 + b 1 c 3 ) n ( 1 + a 1 b 3 ) n , Z 12 n 1 = c 1 ( 1 + a 1 b 3 ) n ( 1 + c 1 a 3 ) n ( 1 + b 1 c 3 ) n ,
X 12 n = a 0 ( 1 + b 0 c 2 ) n ( 1 + a 0 b 2 ) n ( 1 + c 0 a 2 ) n , Y 12 n = b 0 ( 1 + c 0 a 2 ) n ( 1 + b 0 c 2 ) n ( 1 + a 0 b 2 ) n , Z 12 n = c 0 ( 1 + a 0 b 2 ) n ( 1 + c 0 a 2 ) n ( 1 + b 0 c 2 ) n ,
X 12 n + 1 = c 1 a 3 b 1 ( 1 + c 1 a 3 ) n + 1 ( 1 + b 1 c 3 ) n ( 1 + a 1 b 3 ) n , Y 12 n + 1 = a 1 b 3 c 1 ( 1 + a 1 b 3 ) n + 1 ( 1 + c 1 a 3 ) n ( 1 + b 1 c 3 ) n , Z 12 n + 1 = b 1 c 3 a 1 ( 1 + b 1 c 3 ) n + 1 ( 1 + a 1 b 3 ) n ( 1 + c 1 a 3 ) n ,
X 12 n + 2 = c 0 a 2 b 0 ( 1 + c 0 a 2 ) n + 1 ( 1 + b 0 c 2 ) n ( 1 + a 0 b 2 ) n , Y 12 n + 2 = a 0 b 2 c 0 ( 1 + a 0 b 2 ) n + 1 ( 1 + c 0 a 2 ) n ( 1 + b 0 c 2 ) n , Z 12 n + 2 = b 0 c 2 a 0 ( 1 + b 0 c 2 ) n + 1 ( 1 + a 0 b 2 ) n ( 1 + c 0 a 2 ) n ,
X 12 n + 3 = c 1 c 3 b 1 ( 1 + a 1 b 3 ) n + 1 ( 1 + c 1 a 3 ) n ( 1 + b 1 c 3 ) n a 1 b 3 , Y 12 n + 3 = a 1 a 3 c 1 ( 1 + b 1 c 3 ) n + 1 ( 1 + a 1 b 3 ) n ( 1 + c 1 a 3 ) n b 1 c 3 , Z 12 n + 3 = b 1 b 3 a 1 ( 1 + c 1 a 3 ) n + 1 ( 1 + b 1 c 3 ) n ( 1 + a 1 b 3 ) n c 1 a 3 ,
X 12 n + 4 = c 0 c 2 b 0 ( 1 + a 0 b 2 ) n + 1 ( 1 + c 0 a 2 ) n ( 1 + b 0 c 2 ) n a 0 b 2 , Y 12 n + 4 = a 0 a 2 c 0 ( 1 + b 0 c 2 ) n + 1 ( 1 + a 0 b 2 ) n ( 1 + c 0 a 2 ) n b 0 c 2 , Z 12 n + 4 = b 0 b 2 a 0 ( 1 + c 0 a 2 ) n + 1 ( 1 + b 0 c 2 ) n ( 1 + a 0 b 2 ) n c 0 a 2 ,
X 12 n + 5 = b 1 b 3 c 3 c 1 a 3 ( 1 + b 1 c 3 ) n + 1 ( 1 + a 1 b 3 ) n + 1 ( 1 + c 1 a 3 ) n , Y 12 n + 5 = c 1 c 3 a 3 a 1 b 3 ( 1 + c 1 a 3 ) n + 1 ( 1 + b 1 c 3 ) n + 1 ( 1 + a 1 b 3 ) n , Z 12 n + 5 = a 1 a 3 b 3 b 1 c 3 ( 1 + a 1 b 3 ) n + 1 ( 1 + c 1 a 3 ) n + 1 ( 1 + b 1 c 3 ) n ,
X 12 n + 6 = b 0 b 2 c 2 c 0 a 2 ( 1 + b 0 c 2 ) n + 1 ( 1 + a 0 b 2 ) n + 1 ( 1 + c 0 a 2 ) n , Y 12 n + 6 = c 0 c 2 a 2 a 0 b 2 ( 1 + c 0 a 2 ) n + 1 ( 1 + b 0 c 2 ) n + 1 ( 1 + a 0 b 2 ) n , Z 12 n + 6 = a 0 a 2 b 2 b 0 c 2 ( 1 + a 0 b 2 ) n + 1 ( 1 + c 0 a 2 ) n + 1 ( 1 + b 0 c 2 ) n ,
X 12 n + 7 = a 1 b 3 ( 1 + c 1 a 3 ) n + 1 ( 1 + b 1 c 3 ) n + 1 ( 1 + a 1 b 3 ) n c 3 , Y 12 n + 7 = b 1 c 3 ( 1 + a 1 b 3 ) n + 1 ( 1 + c 1 a 3 ) n + 1 ( 1 + b 1 c 3 ) n a 3 , Z 12 n + 7 = c 1 a 3 ( 1 + b 1 c 3 ) n + 1 ( 1 + a 1 b 3 ) n + 1 ( 1 + c 1 a 3 ) n b 3 ,
X 12 n + 8 = a 0 b 2 ( 1 + c 0 a 2 ) n + 1 ( 1 + b 0 c 2 ) n + 1 ( 1 + a 0 b 2 ) n c 3 , Y 12 n + 8 = b 0 c 2 ( 1 + a 0 b 2 ) n + 1 ( 1 + c 0 a 2 ) n + 1 ( 1 + b 0 c 2 ) n a 2 , Z 12 n + 8 = c 0 a 2 ( 1 + b 0 c 2 ) n + 1 ( 1 + a 0 b 2 ) n + 1 ( 1 + c 0 a 2 ) n b 2 .
Proof. 
Readers can verify this proof by applying the same methodology as Theorem 2. □
Theorem 7. 
The system of nonlinear difference Equation (61) has a periodic solution of period twelve iff a 1 b 3 = c 1 a 3 = b 1 c 3 = a 0 b 2 = c 0 a 2 = b 0 c 2 = 2 and it will take the following form
{ X n } = { a 3 , a 2 , a 1 , a 0 , 2 b 1 , 2 b 0 , c 1 , c 0 , b 3 , b 2 , 2 c 3 , 2 c 2 , . . . } ,
{ Y n } = { b 3 , b 2 , b 1 , b 0 , 2 c 1 , 2 c 0 , a 1 , a 0 , c 3 , c 2 , 2 a 3 , 2 a 2 , . . . } ,
{ Z n } = { c 3 , c 2 , c 1 , c 0 , 2 a 1 , 2 a 0 , b 1 , b 0 , a 3 , a 2 , 2 b 3 , 2 b 2 , . . . } .
Proof. 
We let the readers establish this and can be demonstrated by applying the same methodology as Theorem 4. □

2.6. The Sixth Case

This section is assigned to investigate the solution forms of the following system:
X n + 1 = Z n 1 X n 3 Y n 1 ( 1 Z n 1 X n 3 ) , Y n + 1 = X n 1 Y n 3 Z n 1 ( 1 X n 1 Y n 3 ) , Z n + 1 = Y n 1 Z n 3 X n 1 ( 1 Y n 1 Z n 3 ) ,
where n = 0 , 1 , 2 , . . . and the initial conditions are arbitrary nonzero real numbers.
Theorem 8. 
Assume that { X n , Y n , Z n } are solutions of system (77). Then, for n 0 , the solutions of system (77) can be formed as follows:
X 12 n 3 = a 3 i = 0 n 1 ( 1 ( 6 i + 2 ) b 1 c 3 ) ( 1 ( 6 i + 4 ) a 1 b 3 ) i = 0 n 2 ( 1 ( 6 i + 6 ) c 1 a 3 ) i = 0 n 1 ( 1 ( 6 i + 1 ) a 1 b 3 ) ( 1 ( 6 i + 3 ) c 1 a 3 ) ( 1 ( 6 i + 5 ) b 1 c 3 ) , Y 12 n 3 = b 3 i = 0 n 1 ( 1 ( 6 i + 2 ) c 1 a 3 ) ( 1 ( 6 i + 4 ) b 1 c 3 ) i = 0 n 2 ( 1 ( 6 i + 6 ) a 1 b 3 ) i = 0 n 1 ( 1 ( 6 i + 1 ) b 1 c 3 ) ( 1 ( 6 i + 3 ) a 1 b 3 ) ( 1 ( 6 i + 5 ) c 1 a 3 ) , Z 12 n 3 = c 3 i = 0 n 1 ( 1 ( 6 i + 2 ) a 1 b 3 ) ( 1 ( 6 i + 4 ) c 1 a 3 ) i = 0 n 2 ( 1 ( 6 i + 6 ) b 1 c 3 ) i = 0 n 1 ( 1 ( 6 i + 1 ) c 1 a 3 ) ( 1 ( 6 i + 3 ) b 1 c 3 ) ( 1 ( 6 i + 5 ) a 1 b 3 ) ,
X 12 n 2 = a 2 i = 0 n 1 ( 1 ( 6 i + 2 ) b 0 c 2 ) ( 1 ( 6 i + 4 ) a 0 b 2 ) i = 0 n 2 ( 1 ( 6 i + 6 ) c 0 a 2 ) i = 0 n 1 ( 1 ( 6 i + 1 ) a 0 b 2 ) ( 1 ( 6 i + 3 ) c 0 a 2 ) ( 1 ( 6 i + 5 ) b 0 c 2 ) , Y 12 n 2 = b 2 i = 0 n 1 ( 1 ( 6 i + 2 ) c 0 a 2 ) ( 1 ( 6 i + 4 ) b 0 c 2 ) i = 0 n 2 ( 1 ( 6 i + 6 ) a 0 b 2 ) i = 0 n 1 ( 1 ( 6 i + 1 ) b 0 c 2 ) ( 1 ( 6 i + 3 ) a 0 b 2 ) ( 1 ( 6 i + 5 ) c 0 a 2 ) , Z 12 n 2 = c 2 i = 0 n 1 ( 1 ( 6 i + 2 ) a 0 b 2 ) ( 1 ( 6 i + 4 ) c 0 a 2 ) i = 0 n 2 ( 1 ( 6 i + 6 ) b 0 c 2 ) i = 0 n 1 ( 1 ( 6 i + 1 ) c 0 a 2 ) ( 1 ( 6 i + 3 ) b 0 c 2 ) ( 1 ( 6 i + 5 ) a 0 b 2 ) ,
X 12 n 1 = a 1 i = 0 n 1 ( 1 ( 6 i + 1 ) b 1 c 3 ) ( 1 ( 6 i + 3 ) a 1 b 3 ) ( 1 ( 6 i + 5 ) c 1 a 3 ) ( 1 ( 6 i + 2 ) c 1 a 3 ) ( 1 ( 6 i + 4 ) b 1 c 3 ) ( 1 ( 6 i + 6 ) a 1 b 3 ) , Y 12 n 1 = b 1 i = 0 n 1 ( 1 ( 6 i + 1 ) c 1 a 3 ) ( 1 ( 6 i + 3 ) b 1 c 3 ) ( 1 ( 6 i + 5 ) a 1 b 3 ) ( 1 ( 6 i + 2 ) a 1 b 3 ) ( 1 ( 6 i + 4 ) c 1 a 3 ) ( 1 ( 6 i + 6 ) b 1 c 3 ) , Z 12 n 1 = c 1 i = 0 n 1 ( 1 ( 6 i + 1 ) a 1 b 3 ) ( 1 + ( 6 i + 3 ) c 1 a 3 ) ( 1 ( 6 i + 5 ) b 1 c 3 ) ( 1 ( 6 i + 2 ) b 1 c 3 ) ( 1 ( 6 i + 4 ) a 1 b 3 ) ( 1 ( 6 i + 6 ) c 1 a 3 ) ,
X 12 n = a 0 i = 0 n 1 ( 1 ( 6 i + 1 ) b 0 c 2 ) ( 1 ( 6 i + 3 ) a 0 b 2 ) ( 1 ( 6 i + 5 ) c 0 a 2 ) ( 1 ( 6 i + 2 ) c 0 a 2 ) ( 1 ( 6 i + 4 ) b 0 c 2 ) ( 1 ( 6 i + 6 ) a 0 b 2 ) , Y 12 n = b 0 i = 0 n 1 ( 1 ( 6 i + 1 ) c 0 a 2 ) ( 1 ( 6 i + 3 ) b 0 c 2 ) ( 1 ( 6 i + 5 ) a 0 b 2 ) ( 1 ( 6 i + 2 ) a 0 b 2 ) ( 1 ( 6 i + 4 ) c 0 a 2 ) ( 1 ( 6 i + 6 ) b 0 c 2 ) , Z 12 n = c 0 i = 0 n 1 ( 1 ( 6 i + 1 ) a 0 b 2 ) ( 1 ( 6 i + 3 ) c 0 a 2 ) ( 1 ( 6 i + 5 ) b 0 c 2 ) ( 1 ( 6 i + 2 ) b 0 c 2 ) ( 1 ( 6 i + 4 ) a 0 b 2 ) ( 1 ( 6 i + 6 ) c 0 a 2 ) ,
X 12 n + 1 = c 1 a 3 i = 0 n 1 ( 1 ( 6 i + 2 ) a 1 b 3 ) ( 1 ( 6 i + 4 ) c 1 a 3 ) ( 1 ( 6 i + 6 ) b 1 c 3 ) b 1 i = 0 n ( 1 ( 6 i + 1 ) c 1 a 3 ) i = 0 n 1 ( 1 ( 6 i + 3 ) b 1 c 3 ) ( 1 ( 6 i + 5 ) a 1 b 3 ) , Y 12 n + 1 = a 1 b 3 i = 0 n 1 ( 1 ( 6 i + 2 ) b 1 c 3 ) ( 1 ( 6 i + 4 ) a 1 b 3 ) ( 1 ( 6 i + 6 ) c 1 a 3 ) c 1 i = 0 n ( 1 ( 6 i + 1 ) a 1 b 3 ) i = 0 n 1 ( 1 ( 6 i + 3 ) c 1 a 3 ) ( 1 ( 6 i + 5 ) b 1 c 3 ) , Z 12 n + 1 = b 1 c 3 i = 0 n 1 ( 1 ( 6 i + 2 ) c 1 a 3 ) ( 1 ( 6 i + 4 ) b 1 c 3 ) ( 1 ( 6 i + 6 ) a 1 b 3 ) a 1 i = 0 n ( 1 ( 6 i + 1 ) b 1 c 3 ) i = 0 n 1 ( 1 ( 6 i + 3 ) a 1 b 3 ) ( 1 ( 6 i + 5 ) c 1 a 3 ) ,
X 12 n + 2 = c 0 a 2 i = 0 n 1 ( 1 ( 6 i + 2 ) a 0 b 2 ) ( 1 ( 6 i + 4 ) c 0 a 2 ) ( 1 ( 6 i + 6 ) b 0 c 2 ) b 0 i = 0 n ( 1 ( 6 i + 1 ) c 0 a 2 ) i = 0 n 1 ( 1 ( 6 i + 3 ) b 0 c 2 ) ( 1 ( 6 i + 5 ) a 0 b 2 ) , Y 12 n + 2 = a 0 b 2 i = 0 n 1 ( 1 ( 6 i + 2 ) b 0 c 2 ) ( 1 ( 6 i + 4 ) a 0 b 2 ) ( 1 ( 6 i + 6 ) c 0 a 2 ) c 0 i = 0 n ( 1 ( 6 i + 1 ) a 0 b 2 ) i = 0 n 1 ( 1 ( 6 i + 3 ) c 0 a 2 ) ( 1 ( 6 i + 5 ) b 0 c 2 ) , Z 12 n + 2 = b 0 c 2 i = 0 n 1 ( 1 ( 6 i + 2 ) c 0 a 2 ) ( 1 ( 6 i + 4 ) b 0 c 2 ) ( 1 ( 6 i + 6 ) a 0 b 2 ) a 0 i = 0 n ( 1 ( 6 i + 1 ) b 0 c 2 ) i = 0 n 1 ( 1 ( 6 i + 3 ) a 0 b 2 ) ( 1 ( 6 i + 5 ) c 0 a 2 ) ,
X 12 n + 3 = b 1 c 3 c 1 i = 0 n ( 1 ( 6 i + 1 ) a 1 b 3 ) i = 0 n 1 ( 1 ( 6 i + 3 ) c 1 a 3 ) ( 1 ( 6 i + 5 ) b 1 c 3 ) a 1 b 3 i = 0 n ( 1 ( 6 i + 2 ) b 1 c 3 ) i = 0 n 1 ( 1 ( 6 i + 4 ) a 1 b 3 ) ( 1 ( 6 i + 6 ) c 1 a 3 ) , Y 12 n + 3 = c 1 a 3 a 1 i = 0 n ( 1 ( 6 i + 1 ) b 1 c 3 ) i = 0 n 1 ( 1 ( 6 i + 3 ) a 1 b 3 ) ( 1 ( 6 i + 5 ) c 1 a 3 ) b 1 c 3 i = 0 n ( 1 ( 6 i + 2 ) c 1 a 3 ) i = 0 n 1 ( 1 ( 6 i + 4 ) b 1 c 3 ) ( 1 ( 6 i + 6 ) a 1 b 3 ) , Z 12 n + 3 = a 1 b 3 b 1 i = 0 n ( 1 ( 6 i + 1 ) c 1 a 3 ) i = 0 n 1 ( 1 ( 6 i + 3 ) b 1 c 3 ) ( 1 ( 6 i + 5 ) a 1 b 3 ) c 1 a 3 i = 0 n ( 1 ( 6 i + 2 ) a 1 b 3 ) i = 0 n 1 ( 1 ( 6 i + 4 ) c 1 a 3 ) ( 1 ( 6 i + 6 ) b 1 c 3 ) ,
X 12 n + 4 = b 0 c 2 c 0 i = 0 n ( 1 ( 6 i + 1 ) a 0 b 2 ) i = 0 n 1 ( 1 ( 6 i + 3 ) c 0 a 2 ) ( 1 ( 6 i + 5 ) b 0 c 2 ) a 0 b 2 i = 0 n ( 1 ( 6 i + 2 ) b 0 c 2 ) i = 0 n 1 ( 1 ( 6 i + 4 ) a 0 b 2 ) ( 1 ( 6 i + 6 ) c 0 a 2 ) , Y 12 n + 4 = c 0 a 2 a 0 i = 0 n ( 1 ( 6 i + 1 ) b 0 c 2 ) i = 0 n 1 ( 1 ( 6 i + 3 ) a 0 b 2 ) ( 1 ( 6 i + 5 ) c 0 a 2 ) b 0 c 2 i = 0 n ( 1 ( 6 i + 2 ) c 0 a 2 ) i = 0 n 1 ( 1 ( 6 i + 4 ) b 0 c 2 ) ( 1 ( 6 i + 6 ) a 0 b 2 ) , Z 12 n + 4 = a 0 b 2 b 0 i = 0 n ( 1 ( 6 i + 1 ) c 0 a 2 ) i = 0 n 1 ( 1 ( 6 i + 3 ) b 0 c 2 ) ( 1 ( 6 i + 5 ) a 0 b 2 ) c 0 a 2 i = 0 n ( 1 ( 6 i + 2 ) a 0 b 2 ) i = 0 n 1 ( 1 ( 6 i + 4 ) c 0 a 2 ) ( 1 ( 6 i + 6 ) b 0 c 2 ) ,
X 12 n + 5 = b 3 b 1 c 3 i = 0 n ( 1 ( 6 i + 2 ) c 1 a 3 ) i = 0 n 1 ( 1 ( 6 i + 4 ) b 1 c 3 ) ( 1 ( 6 i + 6 ) a 1 b 3 ) c 1 a 3 i = 0 n ( 1 ( 6 i + 1 ) b 1 c 3 ) ( 1 ( 6 i + 3 ) a 1 b 3 ) i = 0 n 1 ( 1 ( 6 i + 5 ) c 1 a 3 ) , Y 12 n + 5 = c 3 c 1 a 3 i = 0 n ( 1 ( 6 i + 2 ) a 1 b 3 ) i = 0 n 1 ( 1 ( 6 i + 4 ) c 1 a 3 ) ( 1 ( 6 i + 6 ) b 1 c 3 ) a 1 b 3 i = 0 n ( 1 ( 6 i + 1 ) c 1 a 3 ) ( 1 ( 6 i + 3 ) b 1 c 3 ) i = 0 n 1 ( 1 ( 6 i + 5 ) a 1 b 3 ) , Z 12 n + 5 = a 3 a 1 b 3 i = 0 n ( 1 ( 6 i + 2 ) b 1 c 3 ) i = 0 n 1 ( 1 ( 6 i + 4 ) a 1 b 3 ) ( 1 ( 6 i + 6 ) c 1 a 3 ) b 1 c 3 i = 0 n ( 1 ( 6 i + 1 ) a 1 b 3 ) ( 1 ( 6 i + 3 ) c 1 a 3 ) i = 0 n 1 ( 1 ( 6 i + 5 ) b 1 c 3 ) ,
X 12 n + 6 = b 2 b 0 c 2 i = 0 n ( 1 ( 6 i + 2 ) c 0 a 2 ) i = 0 n 1 ( 1 ( 6 i + 4 ) b 0 c 2 ) ( 1 ( 6 i + 6 ) a 0 b 2 ) c 0 a 2 i = 0 n ( 1 ( 6 i + 1 ) b 0 c 2 ) ( 1 ( 6 i + 3 ) a 0 b 2 ) i = 0 n 1 ( 1 ( 6 i + 5 ) c 0 a 2 ) , Y 12 n + 6 = c 2 c 0 a 2 i = 0 n ( 1 ( 6 i + 2 ) a 0 b 2 ) i = 0 n 1 ( 1 ( 6 i + 4 ) c 0 a 2 ) ( 1 ( 6 i + 6 ) b 0 c 2 ) a 0 b 2 i = 0 n ( 1 ( 6 i + 1 ) c 0 a 2 ) ( 1 ( 6 i + 3 ) b 0 c 2 ) i = 0 n 1 ( 1 ( 6 i + 5 ) a 0 b 2 ) , Z 12 n + 6 = a 2 a 0 b 2 i = 0 n ( 1 ( 6 i + 2 ) b 0 c 2 ) i = 0 n 1 ( 1 ( 6 i + 4 ) a 0 b 2 ) ( 1 ( 6 i + 6 ) c 0 a 2 ) b 0 c 2 i = 0 n ( 1 ( 6 i + 1 ) a 0 b 2 ) ( 1 ( 6 i + 3 ) c 0 a 2 ) i = 0 n 1 ( 1 ( 6 i + 5 ) b 0 c 2 ) ,
X 12 n + 7 = a 1 b 3 i = 0 n ( 1 ( 6 i + 1 ) c 1 a 3 ) ( 1 ( 6 i + 3 ) b 1 c 3 ) i = 0 n 1 ( 1 ( 6 i + 5 ) a 1 b 3 ) c 3 i = 0 n ( 1 ( 6 i + 2 ) a 1 b 3 ) ( 1 ( 6 i + 4 ) c 1 a 3 ) i = 0 n 1 ( 1 ( 6 i + 6 ) b 1 c 3 ) , Y 12 n + 7 = b 1 c 3 i = 0 n ( 1 ( 6 i + 1 ) a 1 b 3 ) ( 1 ( 6 i + 3 ) c 1 a 3 ) i = 0 n 1 ( 1 ( 6 i + 5 ) b 1 c 3 ) a 3 i = 0 n ( 1 ( 6 i + 2 ) b 1 c 3 ) ( 1 ( 6 i + 4 ) a 1 b 3 ) i = 0 n 1 ( 1 ( 6 i + 6 ) c 1 a 3 ) , Z 12 n + 7 = c 1 a 3 i = 0 n ( 1 ( 6 i + 1 ) b 1 c 3 ) ( 1 ( 6 i + 3 ) a 1 b 3 ) i = 0 n 1 ( 1 ( 6 i + 5 ) c 1 a 3 ) b 3 i = 0 n ( 1 ( 6 i + 2 ) c 1 a 3 ) ( 1 ( 6 i + 4 ) b 1 c 3 ) i = 0 n 1 ( 1 ( 6 i + 6 ) a 1 b 3 ) ,
X 12 n + 8 = a 0 b 2 i = 0 n ( 1 ( 6 i + 1 ) c 0 a 2 ) ( 1 ( 6 i + 3 ) b 0 c 2 ) i = 0 n 1 ( 1 ( 6 i + 5 ) a 0 b 2 ) c 2 i = 0 n ( 1 ( 6 i + 2 ) a 0 b 2 ) ( 1 ( 6 i + 4 ) c 0 a 2 ) i = 0 n 1 ( 1 ( 6 i + 6 ) b 0 c 2 ) , Y 12 n + 8 = b 0 c 2 i = 0 n ( 1 ( 6 i + 1 ) a 0 b 2 ) ( 1 ( 6 i + 3 ) c 0 a 2 ) i = 0 n 1 ( 1 ( 6 i + 5 ) b 0 c 2 ) a 2 i = 0 n ( 1 ( 6 i + 2 ) b 0 c 2 ) ( 1 ( 6 i + 4 ) a 0 b 2 ) i = 0 n 1 ( 1 ( 6 i + 6 ) c 0 a 2 ) , Z 12 n + 8 = c 0 a 2 i = 0 n ( 1 ( 6 i + 1 ) b 0 c 2 ) ( 1 ( 6 i + 3 ) a 0 b 2 ) i = 0 n 1 ( 1 ( 6 i + 5 ) c 0 a 2 ) b 2 i = 0 n ( 1 ( 6 i + 2 ) c 0 a 2 ) ( 1 ( 6 i + 4 ) b 0 c 2 ) i = 0 n 1 ( 1 ( 6 i + 6 ) a 0 b 2 ) ,
where X 0 = a 0 , X 1 = a 1 , X 2 = a 2 , Y 0 = b 0 , Y 1 = b 1 , Y 2 = b 2 , Z 0 = c 0 , Z 1 = c 1 and Z 2 = c 2 .
Proof. 
We let the readers prove this and can be demonstrated by applying the same methodology as Theorem 1. □

3. Numerical Simulations

In this section, we present several intriguing numerical examples that confirm our previous theoretical results and strengthen the validity of our proofs. Furthermore, these examples illustrate the behavior of different solutions to the nonlinear systems discussed in the previous sections. All plots (Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6 and Figure 7) in this section are created using MATLAB (R2024b).
Example 1. 
This example illustrates the boundedness of the solution for the first system (4) with the initial values X 3 = 0.2 , X 2 = 1.4 , X 1 = 0.3 , X 0 = 0.5 , Y 3 = 0.2 , Y 2 = 0.9 , Y 1 = 1 , Y 0 = 0.8 , Z 3 = 0.1 , Z 2 = 1 , Z 1 = 0.5 and Z 0 = 9.5 . It is clear that system (4) is bounded from above by two and zero from below.
Example 2. 
The solution of the second system (19) is depicted in this example with initial values X 3 = 1.5 , X 2 = 0.9 , X 1 = 2 , X 0 = 1 , Y 3 = 7 , Y 2 = 3.8 , Y 1 = 0.33 , Y 0 = 5 , Z 3 = 2 , Z 2 = 6 , Z 1 = 9 and Z 0 = 3.5 .
Example 3. 
We show the behavior of the third system (32) in this example with random initial values X 3 = 7 , X 2 = 5.2 , X 1 = 1 , X 0 = 2 , Y 3 = 0.7 , Y 2 = 0.22 , Y 1 = 10 , Y 0 = 6.5 , Z 3 = 8 , Z 2 = 6 , Z 1 = 1.9 and Z 0 = 9.5 .
Example 4. 
This example shows that the third system (32) has a periodic solution of period twelve when the condition of Theorem 4 is satisfied.
Example 5. 
The behavior of system (48) is represented in example (5) with initial conditions X 3 = 9 , X 2 = 4 , X 1 = 3 , X 0 = 5 , Y 3 = 1 , Y 2 = 3 , Y 1 = 1 , Y 0 = 6 , Z 3 = 4 , Z 2 = 2 , Z 1 = 7 and Z 0 = 2 .
Example 6. 
This example shows the dynamics of system (61) under the initial values X 3 = 0.22 , X 2 = 9 , X 1 = 2 , X 0 = 1 , Y 3 = 7 , Y 2 = 3.8 , Y 1 = 1 , Y 0 = 0.5 , Z 3 = 4 , Z 2 = 6 , Z 1 = 0.3 and Z 0 = 5 .
Example 7. 
For the sixth system (77), consider that the initial conditions are X 3 = 9 , X 2 = 4 , X 1 = 3 , X 0 = 1 , Y 3 = 4 , Y 2 = 8 , Y 1 = 1 , Y 0 = 5 , Z 3 = 3 , Z 2 = 6 , Z 1 = 1.5 and Z 0 = 1 .

4. Conclusions

The quest for solvability often revolves around deriving general formulas that can be applied. Although these formulas can sometimes become quite complex, we have used the iteration method to derive a solution formula for a nonlinear system involved in recursive relations. First, we obtained the general solution form for the system (4) and established that the solution is bounded. Subsequently, we formed the expressions of solutions for systems (19), (32), (48), (61) and (77). Furthermore, we discovered that nonlinear systems (32) and (61) exhibit periodic behavior with a period of twelve cycles. Finally, we present some illustrative numerical examples to corroborate our findings.

Author Contributions

Methodology, T.D.A. and J.G.A.-J.; software, J.G.A.-J.; formal analysis, T.D.A. and J.G.A.-J.; writing, review, and editing, T.D.A. and J.G.A.-J. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

The original contributions presented in this study are included in the article. Further inquiries can be directed to the corresponding author.

Acknowledgments

The authors would like to acknowledge Deanship of Graduate Studies and Scientific Research, Taif University for funding this work.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Appendix A. Proof of Theorem 3

It is evident that the results are true for n = 0 . Now for n > 0 , suppose the results hold for n 1 and they are expressed as follows:
X 12 n 15 = a 3 ( 1 a 1 b 3 ) n 1 ( 1 c 1 a 3 ) n 1 ( 1 b 1 c 3 ) n 1 , Y 12 n 15 = b 3 ( 1 b 1 c 3 ) n 1 ( 1 a 1 b 3 ) n 1 ( 1 c 1 a 3 ) n 1 , Z 12 n 15 = c 3 ( 1 c 1 a 3 ) n 1 ( 1 b 1 c 3 ) n 1 ( 1 a 1 b 3 ) n 1 ,
X 12 n 14 = a 2 ( 1 a 0 b 2 ) n 1 ( 1 c 0 a 2 ) n 1 ( 1 b 0 c 2 ) n 1 , Y 12 n 14 = b 2 ( 1 b 0 c 2 ) n 1 ( 1 a 0 b 2 ) n 1 ( 1 c 0 a 2 ) n 1 , Z 12 n 14 = c 2 ( 1 c 0 a 2 ) n 1 ( 1 b 0 c 2 ) n 1 ( 1 a 0 b 2 ) n 1 ,
X 12 n 13 = a 1 ( 1 b 1 c 3 ) n 1 ( 1 a 1 b 3 ) n 1 ( 1 c 1 a 3 ) n 1 , Y 12 n 13 = b 1 ( 1 c 1 a 3 ) n 1 ( 1 b 1 c 3 ) n 1 ( 1 a 1 b 3 ) n 1 , Z 12 n 13 = c 1 ( 1 a 1 b 3 ) n 1 ( 1 c 1 a 3 ) n 1 ( 1 b 1 c 3 ) n 1 ,
X 12 n 12 = a 0 ( 1 b 0 c 2 ) n 1 ( 1 a 0 b 2 ) n 1 ( 1 c 0 a 2 ) n 1 , Y 12 n 12 = b 0 ( 1 c 0 a 2 ) n 1 ( 1 b 0 c 2 ) n 1 ( 1 a 0 b 2 ) n 1 , Z 12 n 12 = c 0 ( 1 a 0 b 2 ) n 1 ( 1 c 0 a 2 ) n 1 ( 1 b 0 c 2 ) n 1 ,
X 12 n 11 = c 1 a 3 b 1 ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n 1 ( 1 a 1 b 3 ) n 1 , Y 12 n 11 = a 1 b 3 c 1 ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n 1 ( 1 b 1 c 3 ) n 1 , Z 12 n 11 = b 1 c 3 a 1 ( 1 b 1 c 3 ) n ( 1 a 1 b 3 ) n 1 ( 1 c 1 a 3 ) n 1 ,
X 12 n 10 = c 0 a 2 b 0 ( 1 c 0 a 2 ) n ( 1 b 0 c 2 ) n 1 ( 1 a 0 b 2 ) n 1 , Y 12 n 10 = a 0 b 2 c 0 ( 1 a 0 b 2 ) n ( 1 c 0 a 2 ) n 1 ( 1 b 0 c 2 ) n 1 , Z 12 n 10 = b 0 c 2 a 0 ( 1 b 0 c 2 ) n ( 1 a 0 b 2 ) n 1 ( 1 c 0 a 2 ) n 1 ,
X 12 n 9 = c 1 c 3 b 1 ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n 1 ( 1 b 1 c 3 ) n 1 a 1 b 3 , Y 12 n 9 = a 1 a 3 c 1 ( 1 b 1 c 3 ) n ( 1 a 1 b 3 ) n 1 ( 1 c 1 a 3 ) n 1 b 1 c 3 , Z 12 n 9 = b 1 b 3 a 1 ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n 1 ( 1 a 1 b 3 ) n 1 c 1 a 3 ,
X 12 n 8 = c 0 c 2 b 0 ( 1 a 0 b 2 ) n ( 1 c 0 a 2 ) n 1 ( 1 b 0 c 2 ) n 1 a 0 b 2 , Y 12 n 8 = a 0 a 2 c 0 ( 1 b 0 c 2 ) n ( 1 a 0 b 2 ) n 1 ( 1 c 0 a 2 ) n 1 b 0 c 2 , Z 12 n 8 = b 0 b 2 a 0 ( 1 c 0 a 2 ) n ( 1 b 0 c 2 ) n 1 ( 1 a 0 b 2 ) n 1 c 0 a 2 ,
X 12 n 7 = b 1 b 3 c 3 c 1 a 3 ( 1 b 1 c 3 ) n ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n 1 , Y 12 n 7 = c 1 c 3 a 3 a 1 b 3 ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n ( 1 a 1 b 3 ) n 1 , Z 12 n 7 = a 1 a 3 b 3 b 1 c 3 ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n 1 ,
X 12 n 6 = b 0 b 2 c 2 c 0 a 2 ( 1 b 0 c 2 ) n ( 1 a 0 b 2 ) n ( 1 c 0 a 2 ) n 1 , Y 12 n 6 = c 0 c 2 a 2 a 0 b 2 ( 1 c 0 a 2 ) n ( 1 b 0 c 2 ) n ( 1 a 0 b 2 ) n 1 , Z 12 n 6 = a 0 a 2 b 2 b 0 c 2 ( 1 a 0 b 2 ) n ( 1 c 0 a 2 ) n ( 1 b 0 c 2 ) n 1 ,
X 12 n 5 = a 1 b 3 ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n ( 1 a 1 b 3 ) n 1 c 3 , Y 12 n 5 = b 1 c 3 ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n 1 a 3 , Z 12 n 5 = c 1 a 3 ( 1 b 1 c 3 ) n ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n 1 b 3 ,
X 12 n 4 = a 0 b 2 ( 1 c 0 a 2 ) n ( 1 b 0 c 2 ) n ( 1 a 0 b 2 ) n 1 c 3 , Y 12 n 4 = b 0 c 2 ( 1 a 0 b 2 ) n ( 1 c 0 a 2 ) n ( 1 b 0 c 2 ) n 1 a 2 , Z 12 n 4 = c 0 a 2 ( 1 b 0 c 2 ) n ( 1 a 0 b 2 ) n ( 1 c 0 a 2 ) n 1 b 2 .
Now for the first relation, substituting 12 n 3 into system (32), we obtain
X 12 n 3 = Z 12 n 5 X 12 n 7 Y 12 n 5 ( 1 Z 12 n 5 X 12 n 7 ) , X 12 n 3 = b 1 c 3 b 1 c 3 ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n 1 a 3 ( 1 b 1 c 3 ) , X 12 n 3 = a 3 ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n .
For equation Y 12 n 3 ,
Y 12 n 3 = X 12 n 5 Y 12 n 7 Z 12 n 5 ( 1 X 12 n 5 Y 12 n 7 ) , Y 12 n 3 = c 1 a 3 c 1 a 3 ( 1 b 1 c 3 ) n ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n 1 b 3 ( 1 c 1 a 3 ) , Y 12 n 3 = b 3 ( 1 b 1 c 3 ) n ( 1 a 1 b 3 ) n ( 1 c 1 a 3 ) n .
Now for Z 12 n 3 , we have from (32)
Z 12 n 3 = Y 12 n 5 Z 12 n 7 X 12 n 5 ( 1 Y 12 n 5 Z 12 n 7 ) , Z 12 n 3 = a 1 b 3 a 1 b 3 ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n ( 1 a 1 b 3 ) n 1 c 3 ( 1 a 1 b 3 ) .
Hence,
Z 12 n 3 = c 3 ( 1 c 1 a 3 ) n ( 1 b 1 c 3 ) n ( 1 a 1 b 3 ) n .
In a similar way, other relations can be proven. The proof is complete.

Appendix B. Proof of Theorem 5

For n = 0 , the results are obviously true. Now for n > 0 , assume that the results hold for n 1 and they are provided in the form of
X 12 n 15 = a 3 i = 0 n 2 ( 1 + ( 2 i + 2 ) a 1 b 3 ) i = 0 n 3 ( 1 + ( 2 i + 2 ) c 1 a 3 ) ( 1 + ( 2 i + 2 ) b 1 c 3 ) i = 0 n 2 ( 1 + ( 2 i + 1 ) a 1 b 3 ) ( 1 + ( 2 i + 1 ) c 1 a 3 ) ( 1 + ( 2 i + 1 ) b 1 c 3 ) , Y 12 n 15 = b 3 i = 0 n 2 ( 1 + ( 2 i + 2 ) c 1 a 3 ) i = 0 n 3 ( 1 + ( 2 i + 2 ) a 1 b 3 ) ( 1 + ( 2 i + 2 ) b 1 c 3 ) i = 0 n 2 ( 1 + ( 2 i 1 ) b 1 c 3 ) ( 1 + ( 2 i + 1 ) a 1 b 3 ) ( 1 + ( 2 i + 3 ) c 1 a 3 ) , Z 12 n 15 = c 3 i = 0 n 2 ( 1 + ( 2 i + 2 ) c 1 a 3 ) i = 0 n 3 ( 1 + ( 2 i + 2 ) a 1 b 3 ) ( 1 + ( 2 i + 2 ) b 1 c 3 ) i = 0 n 2 ( 1 + ( 2 i + 1 ) c 1 a 3 ) ( 1 + ( 2 i + 1 ) b 1 c 3 ) ( 1 + ( 2 i + 1 ) a 1 b 3 ) ,
X 12 n 14 = a 2 i = 0 n 2 ( 1 + ( 2 i + 2 ) a 0 b 2 ) i = 0 n 3 ( 1 + ( 2 i + 2 ) c 0 a 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) i = 0 n 2 ( 1 + ( 2 i + 1 ) a 0 b 2 ) ( 1 + ( 2 i + 1 ) c 0 a 2 ) ( 1 + ( 2 i + 1 ) b 0 c 2 ) , Y 12 n 14 = b 2 i = 0 n 2 ( 1 + ( 2 i + 2 ) c 0 a 2 ) i = 0 n 3 ( 1 + ( 2 i + 2 ) a 0 b 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) i = 0 n 2 ( 1 + ( 2 i 1 ) b 0 c 2 ) ( 1 + ( 2 i + 1 ) a 0 b 2 ) ( 1 + ( 2 i + 3 ) c 0 a 2 ) , Z 12 n 14 = c 2 i = 0 n 2 ( 1 + ( 2 i + 2 ) c 0 a 2 ) i = 0 n 3 ( 1 + ( 2 i + 2 ) a 0 b 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) i = 0 n 2 ( 1 + ( 2 i + 1 ) c 0 a 2 ) ( 1 + ( 2 i + 1 ) b 0 c 2 ) ( 1 + ( 2 i + 1 ) a 0 b 2 ) ,
X 12 n 13 = a 1 i = 0 n 2 ( 1 + ( 2 i 1 ) b 1 c 3 ) ( 1 + ( 2 i + 1 ) a 1 b 3 ) ( 1 + ( 2 i + 3 ) c 1 a 3 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) c 1 a 3 ) ( 1 + ( 2 i + 2 ) a 1 b 3 ) i = 0 n 3 ( 1 + ( 2 i + 2 ) b 1 c 3 ) , Y 12 n 13 = b 1 i = 0 n 2 ( 1 + ( 2 i + 1 ) c 1 a 3 ) ( 1 + ( 2 i + 1 ) b 1 c 3 ) ( 1 + ( 2 i + 1 ) a 1 b 3 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) c 1 a 3 ) ( 1 + ( 2 i + 2 ) b 1 c 3 ) i = 0 n 3 ( 1 + ( 2 i + 2 ) a 1 b 3 ) , Z 12 n 13 = c 1 i = 0 n 2 ( 1 + ( 2 i + 1 ) a 1 b 3 ) ( 1 + ( 2 i + 1 ) c 1 a 3 ) ( 1 + ( 2 i + 1 ) b 1 c 3 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) a 1 b 3 ) ( 1 + ( 2 i + 2 ) c 1 a 3 ) i = 0 n 3 ( 1 + ( 2 i + 2 ) b 1 c 3 ) ,
X 12 n 12 = a 0 i = 0 n 2 ( 1 + ( 2 i 1 ) b 0 c 2 ) ( 1 + ( 2 i + 1 ) a 0 b 2 ) ( 1 + ( 2 i + 3 ) c 0 a 2 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) c 0 a 2 ) ( 1 + ( 2 i + 2 ) a 0 b 2 ) i = 0 n 3 ( 1 + ( 2 i + 2 ) b 0 c 2 ) , Y 12 n 12 = b 0 i = 0 n 2 ( 1 + ( 2 i + 1 ) c 0 a 2 ) ( 1 + ( 2 i + 1 ) b 0 c 2 ) ( 1 + ( 2 i + 1 ) a 0 b 2 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) c 0 a 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) i = 0 n 3 ( 1 + ( 2 i + 2 ) a 0 b 2 ) , Z 12 n 12 = c 0 i = 0 n 2 ( 1 + ( 2 i + 1 ) a 0 b 2 ) ( 1 + ( 2 i + 1 ) c 0 a 2 ) ( 1 + ( 2 i + 1 ) b 0 c 2 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) a 0 b 2 ) ( 1 + ( 2 i + 2 ) c 0 a 2 ) i = 0 n 3 ( 1 + ( 2 i + 2 ) b 0 c 2 ) ,
X 12 n 11 = c 1 a 3 i = 0 n 2 ( 1 + ( 2 i + 2 ) c 1 a 3 ) ( 1 + ( 2 i + 2 ) b 1 c 3 ) i = 0 n 3 ( 1 + ( 2 i + 2 ) a 1 b 3 ) b 1 i = 0 n 1 ( 1 + ( 2 i + 1 ) c 1 a 3 ) i = 0 n 2 ( 1 + ( 2 i + 1 ) b 1 c 3 ) ( 1 + ( 2 i + 1 ) a 1 b 3 ) , Y 12 n 11 = a 1 b 3 i = 0 n 2 ( 1 + ( 2 i + 2 ) a 1 b 3 ) ( 1 + ( 2 i + 2 ) c 1 a 3 ) i = 0 n 3 ( 1 + ( 2 i + 2 ) b 1 c 3 ) c 1 i = 0 n 1 ( 1 + ( 2 i + 1 ) a 1 b 3 ) i = 0 n 2 ( 1 + ( 2 i + 1 ) c 1 a 3 ) ( 1 + ( 2 i + 1 ) b 1 c 3 ) , Z 12 n 11 = b 1 c 3 i = 0 n 2 ( 1 + ( 2 i + 2 ) c 1 a 3 ) ( 1 + ( 2 i + 2 ) a 1 b 3 ) i = 0 n 3 ( 1 + ( 2 i + 2 ) b 1 c 3 ) a 1 i = 0 n 1 ( 1 + ( 2 i + 1 ) b 1 c 3 ) i = 0 n 2 ( 1 + ( 2 i + 1 ) a 1 b 3 ) ( 1 + ( 2 i + 1 ) c 1 a 3 ) ,
X 12 n 10 = c 0 a 2 i = 0 n 2 ( 1 + ( 2 i + 2 ) c 0 a 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) i = 0 n 3 ( 1 + ( 2 i + 2 ) a 0 b 2 ) b 0 i = 0 n 1 ( 1 + ( 2 i + 1 ) c 0 a 2 ) i = 0 n 2 ( 1 + ( 2 i + 1 ) b 0 c 2 ) ( 1 + ( 2 i + 1 ) a 0 b 2 ) , Y 12 n 10 = a 0 b 2 i = 0 n 2 ( 1 + ( 2 i + 2 ) a 0 b 2 ) ( 1 + ( 2 i + 2 ) c 0 a 2 ) i = 0 n 3 ( 1 + ( 2 i + 2 ) b 0 c 2 ) c 0 i = 0 n 1 ( 1 + ( 2 i + 1 ) a 0 b 2 ) i = 0 n 2 ( 1 + ( 2 i + 1 ) c 0 a 2 ) ( 1 + ( 2 i + 1 ) b 0 c 2 ) , Z 12 n 10 = b 0 c 2 i = 0 n 2 ( 1 + ( 2 i + 2 ) c 0 a 2 ) ( 1 + ( 2 i + 2 ) a 0 b 2 ) i = 0 n 3 ( 1 + ( 2 i + 2 ) b 0 c 2 ) a 0 i = 0 n 1 ( 1 + ( 2 i + 1 ) b 0 c 2 ) i = 0 n 2 ( 1 + ( 2 i + 1 ) a 0 b 2 ) ( 1 + ( 2 i + 1 ) c 0 a 2 ) ,
X 12 n 9 = c 1 c 3 b 1 i = 0 n 1 ( 1 + ( 2 i + 1 ) a 1 b 3 ) i = 0 n 2 ( 1 + ( 2 i + 1 ) c 1 a 3 ) ( 1 + ( 2 i + 1 ) b 1 c 3 ) a 1 b 3 i = 0 n 2 ( 1 + ( 2 i + 2 ) a 1 b 3 ) ( 1 + ( 2 i + 2 ) c 1 a 3 ) ( 1 + ( 2 i + 2 ) b 1 c 3 ) , Y 12 n 9 = a 1 a 3 c 1 i = 0 n 1 ( 1 + ( 2 i 1 ) b 1 c 3 ) i = 0 n 2 ( 1 + ( 2 i + 3 ) c 1 a 3 ) ( 1 + ( 2 i + 1 ) a 1 b 3 ) b 1 a 3 i = 0 n 1 ( 1 + ( 2 i + 2 ) c 1 a 3 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) a 1 b 3 ) , Z 12 n 9 = b 1 b 3 a 1 i = 0 n 1 ( 1 + ( 2 i + 1 ) c 1 a 3 ) i = 0 n 2 ( 1 + ( 2 i + 1 ) b 1 c 3 ) ( 1 + ( 2 i + 1 ) a 1 b 3 ) c 1 a 3 i = 0 n 2 ( 1 + ( 2 i + 2 ) c 1 a 3 ) ( 1 + ( 2 i + 2 ) b 1 c 3 ) ( 1 + ( 2 i + 2 ) a 1 b 3 ) ,
X 12 n 8 = c 0 c 2 b 0 i = 0 n 1 ( 1 + ( 2 i + 1 ) a 0 b 2 ) i = 0 n 2 ( 1 + ( 2 i + 1 ) c 0 a 2 ) ( 1 + ( 2 i + 1 ) b 0 c 2 ) a 0 b 2 i = 0 n 2 ( 1 + ( 2 i + 2 ) a 0 b 2 ) ( 1 + ( 2 i + 2 ) c 0 a 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) , Y 12 n 8 = a 0 a 2 c 0 i = 0 n 1 ( 1 + ( 2 i 1 ) b 0 c 2 ) i = 0 n 2 ( 1 + ( 2 i + 3 ) c 0 a 2 ) ( 1 + ( 2 i + 1 ) a 0 b 2 ) b 0 a 2 i = 0 n 1 ( 1 + ( 2 i + 2 ) c 0 a 2 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) a 0 b 2 ) , Z 12 n 8 = b 0 b 2 a 0 i = 0 n 1 ( 1 + ( 2 i + 1 ) c 0 a 2 ) i = 0 n 2 ( 1 + ( 2 i + 1 ) b 0 c 2 ) ( 1 + ( 2 i + 1 ) a 0 b 2 ) c 0 a 2 i = 0 n 2 ( 1 + ( 2 i + 2 ) c 0 a 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) ( 1 + ( 2 i + 2 ) a 0 b 2 ) ,
X 12 n 7 = b 1 b 3 c 3 i = 0 n 1 ( 1 + ( 2 i + 2 ) c 1 a 3 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) a 1 b 3 ) c 1 a 3 i = 0 n 1 ( 1 + ( 2 i 1 ) b 1 c 3 ) ( 1 + ( 2 i + 1 ) a 1 b 3 ) i = 0 n 2 ( 1 + ( 2 i + 3 ) c 1 a 3 ) , Y 12 n 7 = c 1 c 3 a 3 i = 0 n 2 ( 1 + ( 2 i + 2 ) c 1 a 3 ) ( 1 + ( 2 i + 2 ) b 1 c 3 ) ( 1 + ( 2 i + 2 ) a 1 b 3 ) a 1 b 3 i = 0 n 1 ( 1 + ( 2 i + 1 ) c 1 a 3 ) ( 1 + ( 2 i + 1 ) b 1 c 3 ) i = 0 n 2 ( 1 + ( 2 i + 1 ) a 1 b 3 ) , Z 12 n 7 = a 1 a 3 b 3 i = 0 n 2 ( 1 + ( 2 i + 2 ) a 1 b 3 ) ( 1 + ( 2 i + 2 ) c 1 a 3 ) ( 1 + ( 2 i + 2 ) b 1 c 3 ) b 1 c 3 i = 0 n 1 ( 1 + ( 2 i + 1 ) a 1 b 3 ) ( 1 + ( 2 i + 1 ) c 1 a 3 ) i = 0 n 2 ( 1 + ( 2 i + 1 ) b 1 c 3 ) ,
X 12 n 6 = b 0 b 2 c 2 i = 0 n 1 ( 1 + ( 2 i + 2 ) c 0 a 2 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) a 0 b 2 ) c 0 a 2 i = 0 n 1 ( 1 + ( 2 i 1 ) b 0 c 2 ) ( 1 + ( 2 i + 1 ) a 0 b 2 ) i = 0 n 2 ( 1 + ( 2 i + 3 ) c 0 a 2 ) , Y 12 n 6 = c 0 c 2 a 2 i = 0 n 2 ( 1 + ( 2 i + 2 ) c 0 a 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) ( 1 + ( 2 i + 2 ) a 0 b 2 ) a 0 b 2 i = 0 n 1 ( 1 + ( 2 i + 1 ) c 0 a 2 ) ( 1 + ( 2 i + 1 ) b 0 c 2 ) i = 0 n 2 ( 1 + ( 2 i + 1 ) a 0 b 2 ) , Z 12 n 6 = a 0 a 2 b 2 i = 0 n 2 ( 1 + ( 2 i + 2 ) a 0 b 2 ) ( 1 + ( 2 i + 2 ) c 0 a 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) b 0 c 2 i = 0 n 1 ( 1 + ( 2 i + 1 ) a 0 b 2 ) ( 1 + ( 2 i + 1 ) c 0 a 2 ) i = 0 n 2 ( 1 + ( 2 i + 1 ) b 0 c 2 ) ,
X 12 n 5 = a 1 b 3 i = 0 n 1 ( 1 + ( 2 i + 1 ) c 1 a 3 ) ( 1 + ( 2 i + 1 ) b 1 c 3 ) i = 0 n 2 ( 1 + ( 2 i + 1 ) a 1 b 3 ) c 3 i = 0 n 1 ( 1 + ( 2 i + 2 ) c 1 a 3 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) b 1 c 3 ) ( 1 + ( 2 i + 2 ) a 1 b 3 ) , Y 12 n 5 = b 1 c 3 i = 0 n 1 ( 1 + ( 2 i + 1 ) a 1 b 3 ) ( 1 + ( 2 i + 1 ) c 1 a 3 ) i = 0 n 2 ( 1 + ( 2 i + 1 ) b 1 c 3 ) a 3 i = 0 n 1 ( 1 + ( 2 i + 2 ) a 1 b 3 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) c 1 a 3 ) ( 1 + ( 2 i + 2 ) b 1 c 3 ) , Z 12 n 5 = c 1 a 3 i = 0 n 1 ( 1 + ( 2 i 1 ) b 1 c 3 ) ( 1 + ( 2 i + 1 ) a 1 b 3 ) i = 0 n 2 ( 1 + ( 2 i + 1 ) c 1 a 3 ) b 3 i = 0 n 1 ( 1 + ( 2 i + 2 ) c 1 a 3 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) a 1 b 3 ) ( 1 + ( 2 i + 2 ) b 1 c 3 ) ,
X 12 n 4 = a 0 b 2 i = 0 n 1 ( 1 + ( 2 i + 1 ) c 0 a 2 ) ( 1 + ( 2 i + 1 ) b 0 c 2 ) i = 0 n 2 ( 1 + ( 2 i + 1 ) a 0 b 2 ) c 2 i = 0 n 1 ( 1 + ( 2 i + 2 ) c 0 a 2 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) b 0 c 2 ) ( 1 + ( 2 i + 2 ) a 0 b 2 ) , Y 12 n 4 = b 0 c 2 i = 0 n 1 ( 1 + ( 2 i + 1 ) a 0 b 2 ) ( 1 + ( 2 i + 1 ) c 0 a 2 ) i = 0 n 2 ( 1 + ( 2 i + 1 ) b 0 c 2 ) a 2 i = 0 n 1 ( 1 + ( 2 i + 2 ) a 0 b 2 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) c 0 a 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) , Z 12 n 4 = c 0 a 2 i = 0 n 1 ( 1 + ( 2 i 1 ) b 0 c 2 ) ( 1 + ( 2 i + 1 ) a 0 b 2 ) i = 0 n 2 ( 1 + ( 2 i + 1 ) c 0 a 2 ) b 2 i = 0 n 1 ( 1 + ( 2 i + 2 ) c 0 a 2 ) i = 0 n 2 ( 1 + ( 2 i + 2 ) a 0 b 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) .
Now, we will demonstrate the relation.
Substituting 12 n into system (48), we obtain
X 12 n + 8 = Z 12 n + 6 X 12 n + 4 Y 12 n + 6 ( 1 + Z 12 n + 6 X 12 n + 4 ) , = c 0 a 2 ( 1 + ( 2 i + 1 ) c 0 a 2 ) c 0 c 2 a 2 i = 0 n 1 ( 1 + ( 2 i + 2 ) c 0 a 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) ( 1 + ( 2 i + 2 ) a 0 b 2 ) a 0 b 2 i = 0 n ( 1 + ( 2 i + 1 ) c 0 a 2 ) ( 1 + ( 2 i + 1 ) b 0 c 2 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) a 0 b 2 ) ( 1 + c 0 a 2 ( 1 + ( 2 i + 1 ) c 0 a 2 ) ) ,
then,
X 12 n + 8 = a 0 b 2 i = 0 n ( 1 + ( 2 i + 1 ) c 0 a 2 ) ( 1 + ( 2 i + 1 ) b 0 c 2 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) a 0 b 2 ) c 2 i = 0 n ( 1 + ( 2 i + 2 ) c 0 a 2 ) i = 0 n 1 ( 1 + ( 2 i + 2 ) b 0 c 2 ) ( 1 + ( 2 i + 2 ) a 0 b 2 ) .
For equation Y 12 n + 8 , we obtain from (48)
Y 12 n + 8 = X 12 n + 6 Y 12 n + 4 Z 12 n + 6 ( 1 + X 12 n + 6 Y 12 n + 4 ) , = a 0 b 2 ( 1 + ( 2 i + 1 ) a 0 b 2 ) a 0 a 2 b 2 i = 0 n 1 ( 1 + ( 2 i + 2 ) a 0 b 2 ) ( 1 + ( 2 i + 2 ) c 0 a 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) b 0 c 2 i = 0 n ( 1 + ( 2 i + 1 ) a 0 b 2 ) ( 1 + ( 2 i + 1 ) c 0 a 2 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) b 0 c 2 ) ( 1 + a 0 b 2 ( 1 + ( 2 i + 1 ) a 0 b 2 ) ) ,
then,
Y 12 n + 8 = b 0 c 2 i = 0 n ( 1 + ( 2 i + 1 ) a 0 b 2 ) ( 1 + ( 2 i + 1 ) c 0 a 2 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) b 0 c 2 ) a 2 i = 0 n ( 1 + ( 2 i + 2 ) a 0 b 2 ) i = 0 n 1 ( 1 + ( 2 i + 2 ) c 0 a 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) .
Also, for equation Z 12 n + 8 , we obtain from (48)
Z 12 n + 8 = Y 12 n + 6 Z 12 n + 4 X 12 n + 6 ( 1 Y 12 n + 6 Z 12 n + 4 ) , = b 0 c 2 ( 1 + ( 2 i + 1 ) b 0 c 2 ) b 0 b 2 c 2 i = 0 n ( 1 + ( 2 i + 2 ) c 0 a 2 ) i = 0 n 1 ( 1 + ( 2 i + 2 ) a 0 b 2 ) c 0 a 2 i = 0 n ( 1 + ( 2 i 1 ) b 0 c 2 ) ( 1 + ( 2 i + 1 ) a 0 b 2 ) i = 0 n 1 ( 1 + ( 2 i + 3 ) c 0 a 2 ) ( 1 b 0 c 2 ( 1 + ( 2 i + 1 ) b 0 c 2 ) ) ,
then,
Z 12 n + 8 = c 0 a 2 i = 0 n ( 1 + ( 2 i 1 ) b 0 c 2 ) ( 1 + ( 2 i + 1 ) a 0 b 2 ) i = 0 n 1 ( 1 + ( 2 i + 1 ) c 0 a 2 ) b 2 i = 0 n ( 1 + ( 2 i + 2 ) c 0 a 2 ) i = 0 n 1 ( 1 + ( 2 i + 2 ) a 0 b 2 ) ( 1 + ( 2 i + 2 ) b 0 c 2 ) .
Similarly, we can prove the remaining relations. The proof is complete.

References

  1. Althagafi, H. Dynamics of difference systems: A mathematical study with applications to neural systems. AIMS Math. 2025, 10, 2869–2890. [Google Scholar] [CrossRef]
  2. Alharbi, T.D.; Hasan, M.R. On the Dynamics of Some Higher-Order Nonlinear Difference Equations. Mathematics 2024, 12, 3810. [Google Scholar] [CrossRef]
  3. Ahlbrandt, C.D.; Peterson, A.C. Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. [Google Scholar]
  4. Khan, A.Q.; Ayesha, Y.; Alsaadi, A. Discrete Hepatitis C virus model with local dynamics, chaos and bifurcations. AIMS Math. 2024, 9, 28643–28670. [Google Scholar] [CrossRef]
  5. Lei, C.; Han, X. Codimension-two bifurcation analysis of a discrete predator–prey system with fear effect and Allee effect. Nonlinear Anal. Model. Control. 2025, 30, 386–404. [Google Scholar] [CrossRef]
  6. Elsayed, E.M.; Alshareef, A.; Alzahrani, F. Qualitative behavior and solution of a system of three-dimensional rational difference equations. Math. Methods Appl. Sci. 2022, 45, 5456–5470. [Google Scholar] [CrossRef]
  7. Gümüş, M.; Abo-Zeid, R. Qualitative study of a third order rational system of difference equations. Math. Moravica 2021, 25, 81–97. [Google Scholar] [CrossRef]
  8. El-Dessoky, M.M.; Elsayed, E.M.; Elabbasy, E.M.; Asiri, A. Expressions of The Solutions of Some Systems of Difference Equations. J. Comput. Anal. Appl. 2019, 27, 1161–1172. [Google Scholar]
  9. Halim, Y. Global Character of Systems of Rational Difference Equations. Electron. J. Math. Anal. Appl. 2015, 3, 204–214. [Google Scholar]
  10. Elsayed, E.M.; Al-Juaid, J.G.; Malaikah, H. On the Solutions of Systems of Rational Difference Equations. J. Progress. Res. Math. 2022, 9, 1987–1997. [Google Scholar] [CrossRef]
  11. Elsayed, E.M.; Al-Juaid, J.G. The Form of Solutions and Periodic Nature for Some System of Difference Equations. Fundam. J. Math. Appl. 2023, 6, 24–34. [Google Scholar] [CrossRef]
  12. Alharbi, T.D.; Elsayed, E.M. The solution expressions and the periodicity solutions of some nonlinear discrete systems. Pan-Am. J. Math. 2023, 2, 3. [Google Scholar] [CrossRef] [PubMed]
  13. Kara, M. Solvability of a Three-Dimensional System of Nonlinear Difference Equations. Math. Sci. Appl. E-Notes 2022, 10, 1–15. [Google Scholar] [CrossRef]
  14. Khaliq, A.; Ibrahim, F.T.; Alotaibi, A.M.; Shoaib, M.; El-Moneam, M. Dynamical Analysis of Discrete-Time Two-Predators One-Prey Lotka–Volterra Model. Mathematics 2022, 10, 4015. [Google Scholar] [CrossRef]
  15. Taskara, N.; Buyuk, H. On The Solutions of Three-Dimensional Difference Equation Systems Via Pell Numbers. Eur. J. Sci. TechnoL. 2022, 34, 433–440. [Google Scholar] [CrossRef]
  16. Almatra, M.B.; Elsayed, E.M. Solutions And Formulae For Some Systems Of Difference Equations. MathLAB J. 2018, 1. [Google Scholar]
  17. Edelstein-Keshet, L. Mathematical Models in Biology; Society for Industrial and Applied Mathematics: Montreal, QC, Canada, 2005; pp. 40–41. [Google Scholar]
  18. Kocic, V.L.; Ladas, G. Global Behavior of Nonlinear Difference Equations of Higher Order with Applications; Kluwer Academic Publishers: London, UK; Springer: New York, NY, USA, 1993. [Google Scholar]
Figure 1. Plot of the first system (4).
Figure 1. Plot of the first system (4).
Axioms 14 00371 g001
Figure 2. Plot of the second system (19).
Figure 2. Plot of the second system (19).
Axioms 14 00371 g002
Figure 3. Plot of the third system (32).
Figure 3. Plot of the third system (32).
Axioms 14 00371 g003
Figure 4. Plot of the Third System (32).
Figure 4. Plot of the Third System (32).
Axioms 14 00371 g004
Figure 5. Plot of the Fourth System (48).
Figure 5. Plot of the Fourth System (48).
Axioms 14 00371 g005
Figure 6. Plot of the fifth system (61).
Figure 6. Plot of the fifth system (61).
Axioms 14 00371 g006
Figure 7. Plot of the sixth system (77).
Figure 7. Plot of the sixth system (77).
Axioms 14 00371 g007
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Alharbi, T.D.; AL-Juaid, J.G. On the Dynamics of Some Three-Dimensional Systems of Difference Equations. Axioms 2025, 14, 371. https://doi.org/10.3390/axioms14050371

AMA Style

Alharbi TD, AL-Juaid JG. On the Dynamics of Some Three-Dimensional Systems of Difference Equations. Axioms. 2025; 14(5):371. https://doi.org/10.3390/axioms14050371

Chicago/Turabian Style

Alharbi, Turki D., and Jawharah G. AL-Juaid. 2025. "On the Dynamics of Some Three-Dimensional Systems of Difference Equations" Axioms 14, no. 5: 371. https://doi.org/10.3390/axioms14050371

APA Style

Alharbi, T. D., & AL-Juaid, J. G. (2025). On the Dynamics of Some Three-Dimensional Systems of Difference Equations. Axioms, 14(5), 371. https://doi.org/10.3390/axioms14050371

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop