A Penalized Orthogonal Kriging Method for Selecting a Global Trend
Abstract
:1. Introduction
2. Penalized Orthogonal Kriging Model
2.1. Orthogonal Kriging Model
2.2. Penalized Orthogonal Kriging Model
Algorithm 1: IRLARS algorithm for POK. |
Step 0: Set up initial values for , , and , and let the counter . While none of the termination conditions is satisfied, do Step 1: Decompose , update , and . The optimal penalty parameters and are obtained by cross-validation. Thus, Step 4: The POK predictor is obtained by substituting the estimated parameters into (4). |
3. Numerical Simulation Study
4. Real Data Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sacks, J.; Schiller, S.B.; Welch, W.J. Designs for computer experiments. Technometrics 1989, 31, 41–47. [Google Scholar] [CrossRef]
- Sacks, J.; Welch, W.J.; Mitchell, T.J.; Wynn, H.P. Design and analysis of computer experiments. Stat. Sci. 1989, 4, 409–423. [Google Scholar] [CrossRef]
- Krige, D.G. A statistical approach to some basic mine valuation problems on the Witwatersrand. J. S. Afr. Inst. Min. Metall. 1951, 52, 119–139. [Google Scholar]
- Laslett, G.M. Kriging and splines: An empirical comparison of their predictive performance in some applications. J. Am. Stat. Assoc. 1994, 89, 391–400. [Google Scholar] [CrossRef]
- Simpson, T.W.; Mauery, T.M.; Korte, J.J.; Mistree, F. Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA J. 2001, 39, 2233–2241. [Google Scholar] [CrossRef]
- Martin, J.D.; Simpson, T.W. Use of kriging models to approximate deterministic computer models. AIAA J. 2005, 43, 853–863. [Google Scholar] [CrossRef]
- Qian, Z.; Seepersad, C.C.; Joseph, V.R.; Allen, J.K.; Wu, C. Building surrogate models based on detailed and approximate simulations. J. Mech. Des. 2006, 128, 668–677. [Google Scholar] [CrossRef]
- Welch, W.J.; Buck, R.J.; Sacks, J.; Wynn, H.P.; Mitchell, T.J.; Morris, M.D. Screening, predicting, and computer experiments. Technometrics 1992, 34, 15–25. [Google Scholar] [CrossRef]
- Linkletter, C.; Bingham, D.; Hengartner, N.; Higdon, D.; Ye, K.Q. Variable selection for Gaussian process models in computer experiments. Technometrics 2006, 48, 478–490. [Google Scholar] [CrossRef]
- Joseph, V.R. Limit kriging. Technometrics 2006, 48, 458–466. [Google Scholar] [CrossRef]
- Li, R.; Sudjianto, A. Analysis of computer experiments using penalized likelihood in Gaussian Kriging models. Technometrics 2005, 47, 111–120. [Google Scholar] [CrossRef]
- Hung, Y. Penalized blind kriging in computer experiments. Stat. Sin. 2011, 21, 1171–1190. [Google Scholar] [CrossRef]
- Žilinskas, A. Axiomatic approach to statistical models and their use in multimodal optimization theory. Math. Program. 1982, 22, 104–116. [Google Scholar] [CrossRef]
- Žilinskas, A. On similarities between two models of global optimization: Statistical models and radial basis functions. J. Glob. Optim. 2010, 48, 173–182. [Google Scholar] [CrossRef]
- Park, I. Lasso Kriging for efficiently selecting a global trend model. Struct. Multidiscip. Optim. 2021, 64, 1527–1543. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, Z.; Li, M.; Li, X. Modified Penalized Blind Kriging for efficiently selecting a global trend model. J. Stat. Comput. Simul. 2023, 93, 3052–3066. [Google Scholar] [CrossRef]
- Hodges, J.S.; Reich, B.J. Adding spatially-correlated errors can mess up the fixed effect you love. Am. Stat. 2010, 64, 325–334. [Google Scholar] [CrossRef]
- Paciorek, C.J. The importance of scale for spatial-confounding bias and precision of spatial regression estimators. Stat. Sci. 2010, 25, 107. [Google Scholar] [CrossRef]
- Tuo, R.; Wu, C.J. Efficient calibration for imperfect computer models. Ann. Stat. 2015, 43, 2331–2352. [Google Scholar] [CrossRef]
- Reich, B.J.; Hodges, J.S.; Zadnik, V. Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models. Biometrics 2006, 62, 1197–1206. [Google Scholar] [CrossRef]
- Hughes, J.; Haran, M. Dimension reduction and alleviation of confounding for spatial generalized linear mixed models. J. R. Stat. Soc. Ser. B 2013, 75, 139–159. [Google Scholar] [CrossRef]
- Hanks, E.M.; Schliep, E.M.; Hooten, M.B.; Hoeting, J.A. Restricted spatial regression in practice: Geostatistical models, confounding, and robustness under model misspecification. Environmetrics 2015, 26, 243–254. [Google Scholar] [CrossRef]
- Plumlee, M.; Joseph, V.R. Orthogonal gaussian process models. Stat. Sin. 2018, 28, 601–619. [Google Scholar] [CrossRef]
- Wang, J.; He, J.; Liang, H.; Li, X. Optimal model average prediction in orthogonal kriging models. J. Syst. Sci. Complex. 2024, 37, 1080–1099. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Zhang, C.H. Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 2010, 38, 894–942. [Google Scholar] [CrossRef]
- Morris, M.D.; Ylvisaker, M.D. Bayesian design and analysis of computer experiments: Use of derivatives in surface prediction. Technometrics 1993, 35, 243–255. [Google Scholar] [CrossRef]
- Fang, K.T.; Li, R.; Sudjianto, A. Design and Modeling for Computer Experiments; Chapman and Hall/CRC: Boca Raton, FL, USA, 2005. [Google Scholar]
Sample Size | Method | MPBK.L | MPBK.MCP | MPBK.EN | POK.L | POK.MCP | POK.EN |
---|---|---|---|---|---|---|---|
N = 50 | AEIR (%) | 91.93 | 99.62 | 80.12 | 90.55 | 99.90 | 79.28 |
IEIR (%) | 55.45 | 99.45 | 14.70 | 54.45 | 99.90 | 18.17 | |
MS | 8.78 | 11.94 | 5.69 | 8.70 | 11.99 | 5.85 | |
MRMSPE () | 5.77 | 5.85 | 5.63 | 5.72 | 5.79 | 5.61 | |
SDRMSPE () | 0.39 | 0.39 | 0.38 | 0.33 | 0.37 | 0.34 | |
N = 80 | AEIR (%) | 92.80 | 99.32 | 82.18 | 92.10 | 99.80 | 81.75 |
IEIR (%) | 53.52 | 99.25 | 11.17 | 53.20 | 99.80 | 13.35 | |
MS | 8.78 | 11.91 | 5.60 | 8.72 | 11.98 | 5.71 | |
MRMSPE () | 5.47 | 5.51 | 5.39 | 5.40 | 5.45 | 5.33 | |
SDRMSPE () | 0.57 | 0.57 | 0.58 | 0.22 | 0.56 | 0.22 | |
N = 100 | AEIR (%) | 93.12 | 99.70 | 82.92 | 92.77 | 100.00 | 82.72 |
IEIR (%) | 54.07 | 99.70 | 10.05 | 53.07 | 99.98 | 11.58 | |
MS | 8.83 | 11.96 | 5.58 | 8.75 | 11.99 | 5.66 | |
MRMSPE () | 5.38 | 5.40 | 5.31 | 5.33 | 5.35 | 5.27 | |
SDRMSPE () | 0.44 | 0.44 | 0.44 | 0.20 | 0.19 | 0.19 |
Sample Size | Method | MPBK.L | MPBK.MCP | MPBK.EN | POK.L | POK.MCP | POK.EN |
---|---|---|---|---|---|---|---|
N = 50 | MS | 7.03 | 8.00 | 7.94 | 5.51 | 8.00 | 7.99 |
MRMSPE | 11.47 | 11.48 | 11.48 | 6.30 | 4.63 | 4.62 | |
SDRMSPE | 0.64 | 0.63 | 0.63 | 1.14 | 1.11 | 1.10 | |
N = 80 | MS | 7.02 | 8.00 | 7.94 | 5.54 | 8.00 | 8.00 |
MRMSPE | 11.07 | 11.08 | 11.08 | 2.98 | 2.16 | 2.15 | |
SDRMSPE | 0.48 | 0.47 | 0.48 | 0.57 | 0.25 | 0.25 | |
N = 100 | MS | 7.02 | 8.00 | 7.94 | 5.54 | 8.00 | 7.99 |
MRMSPE | 10.95 | 10.96 | 10.95 | 2.38 | 1.82 | 1.81 | |
SDRMSPE | 0.46 | 0.46 | 0.47 | 0.36 | 0.19 | 0.19 |
Method | MPBK.L | MPBK.MCP | MPBK.EN | OPBK.L | OPBK.MCP | OPBK.EN |
---|---|---|---|---|---|---|
MS | 22.26 | 54.40 | 23.80 | 22.60 | 66.60 | 32.80 |
MRMSPE | 0.93 | 1.24 | 0.91 | 0.37 | 0.98 | 0.38 |
SDRMSPE | 0.65 | 0.32 | 0.63 | 0.21 | 0.41 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Gao, G.; Zhao, J.; Li, X. A Penalized Orthogonal Kriging Method for Selecting a Global Trend. Axioms 2025, 14, 339. https://doi.org/10.3390/axioms14050339
Zhang X, Gao G, Zhao J, Li X. A Penalized Orthogonal Kriging Method for Selecting a Global Trend. Axioms. 2025; 14(5):339. https://doi.org/10.3390/axioms14050339
Chicago/Turabian StyleZhang, Xituo, Guoxing Gao, Jianxin Zhao, and Xinmin Li. 2025. "A Penalized Orthogonal Kriging Method for Selecting a Global Trend" Axioms 14, no. 5: 339. https://doi.org/10.3390/axioms14050339
APA StyleZhang, X., Gao, G., Zhao, J., & Li, X. (2025). A Penalized Orthogonal Kriging Method for Selecting a Global Trend. Axioms, 14(5), 339. https://doi.org/10.3390/axioms14050339