Three Kinds of Denting Points and Their Further Applications in Banach Spaces
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Preliminaries
3.2. Results and Discussion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rieffel, M.A. Dentable subsets of Banach spaces with applications to a Radon-Nikodým theorem. In Proceedings of the Functional Analysis, Irvine, CA, USA, 28 March–1 April 1966; Academic Press: London, UK; Thompson, MB, Cananda; Washington, DC, USA, 1966; pp. 71–77. [Google Scholar]
- Krein, M.; Milman, D. On extreme points of regular convex sets. Stud. Math. 1940, 9, 33–138. [Google Scholar] [CrossRef]
- Phelps, R.R. Lectures on Choquet’s Theorem, 2nd ed.; Lecture Notes in Mathematics; Springer: Berlin, Germany, 1997; Volume 1757. [Google Scholar]
- Bishop, E.; Phelps, R.R. A proof that every Banach space is subreflexive. Bull. Am. Math. Soc. 1961, 67, 97–98. [Google Scholar] [CrossRef]
- Efimov, N.V.; Stechkin, S.B. Аппрoксимативная нoминальнoсть и целесooбразные мнoжества. Издательствo Академии Наук СССР 1961, 140, 522–524. [Google Scholar]
- Fan, K.; Glicksburg, I. Some geometric properties of the spheres in a normed linear space. Duke Math. J. 1958, 25, 553–568. [Google Scholar] [CrossRef]
- Huff, R. Dentabiltiy and the Radon-Nikodým Property. Duke Math. J. 1974, 41, 111–114. [Google Scholar] [CrossRef]
- Edelstein, M. Concerning Dentability. Pac. J. Math. 1973, 46, 111–114. [Google Scholar] [CrossRef]
- Khurana, S.S. Barycenters, Pinnacle Points and Denting Points. Trans. J. AMS 1973, 180, 197–503. [Google Scholar] [CrossRef]
- Maynard, H.B. A geometrical characterization of Banach spaces with the Radon-Nikodým property. Trans. Am. Math. Soc. 1973, 185, 493–500. [Google Scholar] [CrossRef]
- Diestel, J. Geometry of Banach Spaces-Selected Topics; Springer: Berlin, Germany, 1975. [Google Scholar]
- Lindenstrauss, J.; Tzafriri, L. Classical Banach Spaces. I; Ergebnisse der Mathematik und ihrer Grenzgebiete; Springer: Berlin/Heidelberg, Germany, 1977; Volume 92. [Google Scholar]
- Hagler, J.; Sullivan, F. Smoothness and weak∗ sequence compactness. Proc. Am. Math. Soc. 1980, 78, 497–503. [Google Scholar]
- Chen, D.J.; Hu, Z.B.; Lin, B.-L. Balls intersection properties of Banach Spaces. Bull. Aust. Math. Soc. 1992, 45, 333–342. [Google Scholar] [CrossRef]
- Lin, B.-L.; Zhang, W. Some Geometric Properties Related to Uniformly Convexity of Banach Spaces. In Function Spaces; CRC Press: Boca Raton, FL, USA, 2020; pp. 281–291. [Google Scholar]
- Wu, C.X.; Li, Y.J. Dentability and extreme points. Northeast. J. Math. 1993, 9, 305–307. [Google Scholar]
- Troyanski, S.L. On some generalizations of denting points. Isr. J. Math. 1994, 88, 175–188. [Google Scholar] [CrossRef]
- Hu, Z.B.; Lin, B.-L. A characterization of weak∗ denting points in Lp(μ,X)∗. J. Math. 1994, 24, 997–1008. [Google Scholar]
- Wang, X.X.; Cui, Y.A.; Shang, S.Q. Several new classes of Denting points in Banach spaces. Adv. Math. (China) 2018, 47, 906–912. [Google Scholar]
- Shang, S.Q.; Cui, Y.A. Approximative Compactness and Radon-Nikodym Property in w∗ nearly dentable Banach spaces and applications. J. Funct. Spaces 2015, 2015, 277355713. [Google Scholar] [CrossRef]
- Shang, S.Q.; Cui, Y.A.; Fu, Y.Q. Dentable point and strongly smoothness and approximation compactness in Banach spaces. Acta Math. Sin. (Chin.) 2010, 53, 1217–1224. [Google Scholar]
- Shang, S.Q.; Cui, Y.A.; Fu, Y.Q. Nearly dentability and approximative compactness and continuity of metric projector in Banach spaces. Sci. Sin. Math. (Chin.) 2011, 41, 815–825. [Google Scholar]
- Shang, S.Q. Nearly dentability and continuity of the set-valued metric generalized inverse in Banach spaces. Ann. Funct. Anal. 2016, 426, 508–520. [Google Scholar] [CrossRef]
- García-Castaño, F.; Melguizo Padial, M.A.; Parzanese, G. Denting points of convex sets and weak property (π) of cones in locally convex spaces. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Matemáticas 2021, 115, 110. [Google Scholar] [CrossRef]
- Laiyou, B.; Wulede, S. Weak-star dentability, quasi-weak-star near dentability and continuity of metric projector in Banach spaces. Oper. Matrices 2022, 16, 1027–1039. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Zhou, J. Three kinds of dentabilities in Banach spaces and their applications. Aata Math. Sci. 2024, 44B, 445–454. [Google Scholar] [CrossRef]
- Huff, R. Banach spaces which are nearly uniformly convex. Rocky Mt. J. Math. 1980, 10, 743–749. [Google Scholar] [CrossRef]
- Wu, C.X.; Li, Y.J. Strong convexity in Banach spaces. J. Math. (PRC) 1993, 13, 105–108. [Google Scholar]
- Zhang, Z.H.; Liu, C.Y.; Zhou, Y. Geometry of Banach Spaces and Best Approximation; Science Press: Beijing, China, 2016. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Cui, Y.; Niu, Y. Three Kinds of Denting Points and Their Further Applications in Banach Spaces. Axioms 2025, 14, 306. https://doi.org/10.3390/axioms14040306
Wang X, Cui Y, Niu Y. Three Kinds of Denting Points and Their Further Applications in Banach Spaces. Axioms. 2025; 14(4):306. https://doi.org/10.3390/axioms14040306
Chicago/Turabian StyleWang, Xiaoxia, Yunan Cui, and Yaoming Niu. 2025. "Three Kinds of Denting Points and Their Further Applications in Banach Spaces" Axioms 14, no. 4: 306. https://doi.org/10.3390/axioms14040306
APA StyleWang, X., Cui, Y., & Niu, Y. (2025). Three Kinds of Denting Points and Their Further Applications in Banach Spaces. Axioms, 14(4), 306. https://doi.org/10.3390/axioms14040306