Three Kinds of Denting Points and Their Further Applications in Banach Spaces
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Preliminaries
3.2. Results and Discussion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rieffel, M.A. Dentable subsets of Banach spaces with applications to a Radon-Nikodým theorem. In Proceedings of the Functional Analysis, Irvine, CA, USA, 28 March–1 April 1966; Academic Press: London, UK; Thompson, MB, Cananda; Washington, DC, USA, 1966; pp. 71–77. [Google Scholar]
- Krein, M.; Milman, D. On extreme points of regular convex sets. Stud. Math. 1940, 9, 33–138. [Google Scholar] [CrossRef]
- Phelps, R.R. Lectures on Choquet’s Theorem, 2nd ed.; Lecture Notes in Mathematics; Springer: Berlin, Germany, 1997; Volume 1757. [Google Scholar]
- Bishop, E.; Phelps, R.R. A proof that every Banach space is subreflexive. Bull. Am. Math. Soc. 1961, 67, 97–98. [Google Scholar] [CrossRef]
- Efimov, N.V.; Stechkin, S.B. Аппрoксимативная нoминальнoсть и целесooбразные мнoжества. Издательствo Академии Наук СССР 1961, 140, 522–524. [Google Scholar]
- Fan, K.; Glicksburg, I. Some geometric properties of the spheres in a normed linear space. Duke Math. J. 1958, 25, 553–568. [Google Scholar] [CrossRef]
- Huff, R. Dentabiltiy and the Radon-Nikodým Property. Duke Math. J. 1974, 41, 111–114. [Google Scholar] [CrossRef]
- Edelstein, M. Concerning Dentability. Pac. J. Math. 1973, 46, 111–114. [Google Scholar] [CrossRef]
- Khurana, S.S. Barycenters, Pinnacle Points and Denting Points. Trans. J. AMS 1973, 180, 197–503. [Google Scholar] [CrossRef]
- Maynard, H.B. A geometrical characterization of Banach spaces with the Radon-Nikodým property. Trans. Am. Math. Soc. 1973, 185, 493–500. [Google Scholar] [CrossRef]
- Diestel, J. Geometry of Banach Spaces-Selected Topics; Springer: Berlin, Germany, 1975. [Google Scholar]
- Lindenstrauss, J.; Tzafriri, L. Classical Banach Spaces. I; Ergebnisse der Mathematik und ihrer Grenzgebiete; Springer: Berlin/Heidelberg, Germany, 1977; Volume 92. [Google Scholar]
- Hagler, J.; Sullivan, F. Smoothness and weak∗ sequence compactness. Proc. Am. Math. Soc. 1980, 78, 497–503. [Google Scholar]
- Chen, D.J.; Hu, Z.B.; Lin, B.-L. Balls intersection properties of Banach Spaces. Bull. Aust. Math. Soc. 1992, 45, 333–342. [Google Scholar] [CrossRef]
- Lin, B.-L.; Zhang, W. Some Geometric Properties Related to Uniformly Convexity of Banach Spaces. In Function Spaces; CRC Press: Boca Raton, FL, USA, 2020; pp. 281–291. [Google Scholar]
- Wu, C.X.; Li, Y.J. Dentability and extreme points. Northeast. J. Math. 1993, 9, 305–307. [Google Scholar]
- Troyanski, S.L. On some generalizations of denting points. Isr. J. Math. 1994, 88, 175–188. [Google Scholar] [CrossRef]
- Hu, Z.B.; Lin, B.-L. A characterization of weak∗ denting points in Lp(μ,X)∗. J. Math. 1994, 24, 997–1008. [Google Scholar]
- Wang, X.X.; Cui, Y.A.; Shang, S.Q. Several new classes of Denting points in Banach spaces. Adv. Math. (China) 2018, 47, 906–912. [Google Scholar]
- Shang, S.Q.; Cui, Y.A. Approximative Compactness and Radon-Nikodym Property in w∗ nearly dentable Banach spaces and applications. J. Funct. Spaces 2015, 2015, 277355713. [Google Scholar] [CrossRef]
- Shang, S.Q.; Cui, Y.A.; Fu, Y.Q. Dentable point and strongly smoothness and approximation compactness in Banach spaces. Acta Math. Sin. (Chin.) 2010, 53, 1217–1224. [Google Scholar]
- Shang, S.Q.; Cui, Y.A.; Fu, Y.Q. Nearly dentability and approximative compactness and continuity of metric projector in Banach spaces. Sci. Sin. Math. (Chin.) 2011, 41, 815–825. [Google Scholar]
- Shang, S.Q. Nearly dentability and continuity of the set-valued metric generalized inverse in Banach spaces. Ann. Funct. Anal. 2016, 426, 508–520. [Google Scholar] [CrossRef]
- García-Castaño, F.; Melguizo Padial, M.A.; Parzanese, G. Denting points of convex sets and weak property (π) of cones in locally convex spaces. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Matemáticas 2021, 115, 110. [Google Scholar] [CrossRef]
- Laiyou, B.; Wulede, S. Weak-star dentability, quasi-weak-star near dentability and continuity of metric projector in Banach spaces. Oper. Matrices 2022, 16, 1027–1039. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Zhou, J. Three kinds of dentabilities in Banach spaces and their applications. Aata Math. Sci. 2024, 44B, 445–454. [Google Scholar] [CrossRef]
- Huff, R. Banach spaces which are nearly uniformly convex. Rocky Mt. J. Math. 1980, 10, 743–749. [Google Scholar] [CrossRef]
- Wu, C.X.; Li, Y.J. Strong convexity in Banach spaces. J. Math. (PRC) 1993, 13, 105–108. [Google Scholar]
- Zhang, Z.H.; Liu, C.Y.; Zhou, Y. Geometry of Banach Spaces and Best Approximation; Science Press: Beijing, China, 2016. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Cui, Y.; Niu, Y. Three Kinds of Denting Points and Their Further Applications in Banach Spaces. Axioms 2025, 14, 306. https://doi.org/10.3390/axioms14040306
Wang X, Cui Y, Niu Y. Three Kinds of Denting Points and Their Further Applications in Banach Spaces. Axioms. 2025; 14(4):306. https://doi.org/10.3390/axioms14040306
Chicago/Turabian StyleWang, Xiaoxia, Yunan Cui, and Yaoming Niu. 2025. "Three Kinds of Denting Points and Their Further Applications in Banach Spaces" Axioms 14, no. 4: 306. https://doi.org/10.3390/axioms14040306
APA StyleWang, X., Cui, Y., & Niu, Y. (2025). Three Kinds of Denting Points and Their Further Applications in Banach Spaces. Axioms, 14(4), 306. https://doi.org/10.3390/axioms14040306