The Upper Bounds of the Numerical Radius on Hilbert C*-Modules
Abstract
:1. Introduction
- (1)
- , , ,
- (2)
- , , ,
- (3)
- , .
2. Preliminaries
3. The Upper Bounds of the Numerical Radius on Hilbert C*-Modules
4. The Upper Bounds of the Numerical Radius for a Product of Bounded Adjointable Operators on Hilbert C*-Modules
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaplansky, I. Modules over operator algebras. Am. J. Math. 1953, 75, 839–858. [Google Scholar] [CrossRef]
- Paschke, W.L. Inner product modules over B*-algebras. Trans. Am. Math. Soc. 1973, 182, 443–468. [Google Scholar] [CrossRef]
- Rieffel, M.A. Induced representations of C*-algebras. Adv. Math. 1974, 13, 176–257. [Google Scholar] [CrossRef]
- Connes, A. Noncommutative Geometry; Academic Press: New York, NY, USA, 1994. [Google Scholar]
- Jensen, K.K.; Thomsen, K. Elements of KK-Theory; Birkhauser: Basel, Switzerland, 1991. [Google Scholar]
- Woronowicz, S.L. Compact Quantum Groups; North-Holland: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Watatani, Y. Index for C*-subalgebras. Mem. Am. Math. Soc. 1990, 83, 6–10. [Google Scholar] [CrossRef]
- Speicher, R. Combinationatorial theory of the free product with amalgamation and operator-valued free probability theory. Mem. Amer. Math. Soc. 1998, 132, 627. [Google Scholar]
- Skeide, M. Hilbert modules in quantum electro dynamics and quantum probability. Commum. Math. Phys. 1998, 192, 569–604. [Google Scholar] [CrossRef]
- Skeide, M. Generalised matrix C*-algebras and representations of Hilbert modules. Math. Proc. R. Ir. Acad. 2000, 100, 11–38. [Google Scholar]
- Skeide, M. Quantum stochastic calculus on full Fock modules. J. Funct. Anal. 2000, 173, 401–452. [Google Scholar] [CrossRef]
- Zhang, L. Hilbert C*-Modules and Quantum Markov Semigroups; Springer Nature: Singapore, 2024. [Google Scholar]
- Bhunia, P.; Sahoo, S. Schatten p-Norm and Numerical Radius Inequalities with Applications. Results Math. 2025, 80, 1–23. [Google Scholar] [CrossRef]
- Gao, M.; Wu, D.; Chen, A. Generalized Upper Bounds Estimation of Numerical Radius and Norm for the Sum of Operators. Mediterr. J. Math. 2023, 20, 210–225. [Google Scholar] [CrossRef]
- Goldberg, M.; Tadmor, E. On the numerical radius and its applications. Linear Algebra Appl. 1982, 42, 263–284. [Google Scholar] [CrossRef]
- Ighachane, M.; Akkouchi, M. A new generalization of two refined Young inequalities and applications. Moroc. J. Pure Appl. Anal. 2020, 6, 155–167. [Google Scholar] [CrossRef]
- Nayak, R.K. Advancement of Numerical Radius Inequalities of Operators and Product of Operators. Iran. J. Sci. 2024, 48, 649–657. [Google Scholar] [CrossRef]
- Fakri, M.S.; Kamel, M.A. Numerical radius inequalities for Hilbert C*-modules. Math. Bohem. 2022, 147, 547–566. [Google Scholar]
- Mehrazin, M.; Amyari, M.; Omidvar, M.E. A new type of numerical radius of operators on Hilbert C* -module. Rend. Circ. Mat. Palermo Ser. 2020, 69, 29–37. [Google Scholar] [CrossRef]
- Mabrouk, M.; Zamani, A. An extension of the a-numerical radius on C*-algebras. Banach J. Math. Anal. 2023, 17, 42–65. [Google Scholar] [CrossRef]
- Nikoufar, I.; Baghernezhad Shayan, Z. Some operator ineaualities in Hilbert C*-modules via the operator perspective. J. Algebraic Syst. 2025, 13, 89–103. [Google Scholar]
- Rashid, M.H.; Salameh, W.M.M. Inequalities for the Euclidean Operator Radius of n-Tuple Operators and Operator Matrices in Hilbert C*-Modules. Symmetry 2024, 16, 647. [Google Scholar] [CrossRef]
- Rashid, M.M. Some inequalities for the numerical radius and spectral norm for operators in Hilbert C*-modules space. Tamkang J. Math. 2025, 56, 37–54. [Google Scholar] [CrossRef]
- Zamani, A. New estimates for numerical radius in C*-algebras. arXiv 2024, arXiv:2405.16212. [Google Scholar]
- Zamani, A. Refinements of the Cauchy–Schwarz inequality in pre-Hilbert C*-modules and their applications. Ann. Funct. Anal. 2023, 14, 75–91. [Google Scholar] [CrossRef]
- Bhunia, P.; Feki, K.; Paul, K. A-Numerical radius orthogonality and parallelism of semi-Hilbertian space operators and their applications. Bull. Iran. Math. Soc. 2021, 47, 435–457. [Google Scholar] [CrossRef]
- Feki, K. Spectral radius of semi-Hilbertian space operators and its applications. Ann. Funct. Anal. 2023, 11, 929–946. [Google Scholar] [CrossRef]
- Feki, K. Further improvements of generalized numerical radius inequalities for semi-Hilbertian space operators. Miskolc Math. Notes 2022, 23, 651–665. [Google Scholar] [CrossRef]
- Buzano, M.L. Generalizzazione della diseguaglianza di Cauchy-Schwarz. Rend. Semin. Mat. Univ. Politec. Torino 1971, 31, 405–409. [Google Scholar]
- Al-Manasrah, Y.; Kittaneh, F. A generalization of two refined Young inequalities. Positivity 2015, 19, 757–768. [Google Scholar] [CrossRef]
- Aujla, J.S.; Silva, F.C. Weak majorization inequalities and convex functions. Linear Algebra Appl. 2003, 369, 217–233. [Google Scholar] [CrossRef]
- Nayak, R.K. Enhancement of the Cauchy-Schwarz Inequality and Its Implications for Numerical Radius Inequalities. arXiv 2024, arXiv:2405.19698. [Google Scholar]
- Al-Dolat, M.; Jaradat, I. A refinement of the Cauchy-Schwarz inequality accompanied by new numerical radius upper bounds. Filomat 2023, 37, 971–977. [Google Scholar] [CrossRef]
- El-Haddad, M.; Kittaneh, F. Numerical radius inequalities for Hilbert space operators II. Stud. Math. 2007, 182, 133–140. [Google Scholar] [CrossRef]
- Kittaneh, F.; Moradi, H.R. Cauchy-Schwarz type inequalities and applications to numerical radius inequalities. Math. Ineq. Appl. 2020, 23, 1117–1125. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wu, D.; Chen, A. The Upper Bounds of the Numerical Radius on Hilbert C*-Modules. Axioms 2025, 14, 199. https://doi.org/10.3390/axioms14030199
Liu J, Wu D, Chen A. The Upper Bounds of the Numerical Radius on Hilbert C*-Modules. Axioms. 2025; 14(3):199. https://doi.org/10.3390/axioms14030199
Chicago/Turabian StyleLiu, Jing, Deyu Wu, and Alatancang Chen. 2025. "The Upper Bounds of the Numerical Radius on Hilbert C*-Modules" Axioms 14, no. 3: 199. https://doi.org/10.3390/axioms14030199
APA StyleLiu, J., Wu, D., & Chen, A. (2025). The Upper Bounds of the Numerical Radius on Hilbert C*-Modules. Axioms, 14(3), 199. https://doi.org/10.3390/axioms14030199