Next Article in Journal
Analysis of Screen Generic Lightlike Submanifolds in an Indefinite Kaehler Statistical Manifold Endowed with a Quarter-Symmetric Non-Metric Connection
Previous Article in Journal
Recent Results on Large Gaps Between Primes
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Upper Bounds of the Numerical Radius on Hilbert C*-Modules

1
School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China
2
School of Mathematical Sciences, Baotou Teachers’ College, Baotou 014030, China
3
School of Mathematical Sciences, Inner Mongolia Normal University, Hohhot 010022, China
*
Author to whom correspondence should be addressed.
Axioms 2025, 14(3), 199; https://doi.org/10.3390/axioms14030199
Submission received: 12 January 2025 / Revised: 27 February 2025 / Accepted: 4 March 2025 / Published: 7 March 2025

Abstract

:
In this paper, we give the generalized Cauchy–Schwarz inequality and an extension of Buzano inequality on quasi-Hilbert C*-modules. Additionally, the upper bounds of the numerical radius of bounded adjointable operators on Hilbert C*-modules are improved. Lastly, we obtain the upper bounds of the numerical radius for the product of bounded adjointable operators on Hilbert C*-modules.

1. Introduction

The Hilbert C*-module serves as a prevalent instrument within the realms of operator and operator algebra theory. Moreover, the theory of Hilbert C*-modules is a captivating subject independently. This is because the Hilbert C*-module is associated with the theory of operator algebra and assimilates various concepts. Hilbert C*-modules initially emerged in the work of Kaplansky, I. [1]. Kaplansky, I. employed Hilbert C*-modules to demonstrate that derivations of type I AW*-algebras are internal. Subsequently, the theory of Hilbert C*-modules was broadened to general C*-algebras and Hilbert spaces by Paschke, W.L. [2] and Rieffel, M.A. [3]. Paschke, W.L. and Rieffel, M.A. utilized Hilbert C*-modules to prove that induced representations of C*-algebras are connected to Morita equivalence. Since then, Hilbert C*-module theory has flourished. Hilbert C*-modules are the main tools of noncommutative geometry [4], KK-theory [5], quantum group theory [6], generalized index theory [7], operator-valued free probability theory [8], and quantum probability theory [9,10,11,12]. Hilbert C*-module theory is developed in the application process. Hilbert C*-modules serve to generalize the structure of the Hilbert space. Hilbert C*-modules achieve this generalization by redefining the inner product such that its values lie within a C*-algebra. The values of the inner product within a Hilbert space belong to the complex number field. That is to say, Hilbert C*-modules are the consequence of integrating the concepts of Hilbert spaces and C*-algebras. Additionally, it can be stated that Hilbert spaces and C*-algebras can be considered as special cases of Hilbert C*-modules. Consequently, the theory that serves as the foundation for Hilbert C*-modules arises from the intersection between the theoretical frameworks of Hilbert spaces and those of C*-algebras.
The investigation into the numerical range and numerical radius has a long and remarkable history. The concept of the numerical range originated from the Rayleigh quotients utilized in the 19th century and has developed to be applied in numerous modern fields. These fields cover multiple aspects. For example, in functional analysis, it is used for norm estimation and the determination of bounds. In operator theory, especially in the context of differential operators, it plays a role. In numerical analysis, it is related to the convergence rate of algorithms. In quantum computing, it is applied to quantum error correction. In quantum information theory, it is involved in the study of quantum channels. And in quantum control, it is used for optimizing witnesses. The numerical radius represents the radius of the smallest disk centered at the origin that encloses the closure of the numerical range. The numerical radius also serves as a valuable tool for characterizing the numerical range. Furthermore, the numerical radius plays a highly significant role in the stability theory of the finite difference approximate solutions for the hyperbolic initial value problem. In the context of researching inequalities within the fields of operator theory and matrix analysis, the study of inequalities related to the numerical radius is one of the most crucial topics (see [13,14,15,16,17]). Recently, many scholars have studied properties of the numerical range and the numerical radius for bounded adjointable operators on Hilbert C*-modules (see [1,2,18,19,20,21,22,23,24,25]).
Let us recall the definition of a Hilbert C*-module over a C*-algebra A (as shown in [1]).
Let A be a C*-algebra. A semi-inner product A-module is a linear space E which is a right A-module with the compatible scalar multiplication of
λ ( x a ) = ( λ x ) a = x ( λ a ) f o r a l l x E , a A , a n d λ C
together with a map · , · E : E × E A , which has the following properties:
(1)
x , α y + β z E = α x , y E + β x , z E , x , y , z E , α , β C ,
(2)
x , y a E = x , y E a , x , y E , a A ,
(3)
x , y E * = y , x E , x , y E .
For every x E , we put x E = x , x E 1 2 . A semi-inner product space E, which satisfies
x E = 0 x = 0 ,
is called an inner product A-module. A complete inner-product A-module is called a Hilbert C*-module.
If A degenerates into the complex field C , then the Hilbert C*-module E becomes a Hilbert space. Thus, the Hilbert space can be regarded as a special case of the Hilbert C*-module. If A degenerates into the complex field C and the inequality (1) is not satisfied, then the Hilbert C*-module E is a semi-Hilbert space (see [26,27,28]).
Suppose that E and F are Hilbert C*-modules. We define L ( E , F ) to be the set of all maps t : E F for which there is a map t * : F E such that t x , y E = x , t * y E , for all x E , y F . It is known that t must be a bounded A-linear map (that is, t is a bounded linear map and t ( x a ) = ( t x ) a for all x E and a A ). If E = F , then L ( E ) is a C*-algebra together with the operator norm. A state on a C*-algebra A is a positive linear functional on A of norm one. We denote the state space of A by S ( A ) .
In [29], Buzano, M.L. proved the Buzano inequality
φ ( x , e E ) φ ( e , y E ) 1 2 ( φ ( x , x E ) φ ( y , y E ) ) 1 2 + φ ( x , y E ) ,
where x , y , e E and φ S ( A ) with φ ( e 2 ) = 1 . If we take e = φ 1 2 ( y , y E ) y in (2), we get a Cauchy–Schwarz inequality as follows:
φ ( x , y E ) 2 φ ( x , x E ) φ ( y , y E ) .
For t L ( E ) , let W A ( t ) , ω A ( t ) , t denote the numerical range, numerical radius, and operator norm, respectively, namely
W A ( t ) = { φ ( x , t x E ) : x E , φ S ( A ) , φ ( x 2 ) = 1 } , ω A ( t ) = sup { φ ( x , t x E ) : x E , φ S ( A ) , φ ( x 2 ) = 1 } , t = sup { φ ( x , t y E ) : x , y E , φ S ( A ) , φ ( x 2 ) = φ ( y 2 ) = 1 } ,
where x = x , x E 1 2 , y = y , y E 1 2 .
In [19], Mehrazin, M. obtained that if t L ( E ) , then
1 2 t ω A ( t ) t .
The inequality is sharp, ω A ( t ) = t , if t is a self-adjoint element of L ( E ) .
Mehrazin, M. also improved the inequality (4). It has been shown that
1 4 t * t + t t * ω A 2 ( t ) 1 2 t * t + t t * .
In [18], Fakri, M.S. generalized the second inequality in (5). It is well known that if t L ( E ) and r 1 , then
ω A 2 r ( t ) 1 2 t 2 r + t * 2 r .
And they also obtained the upper bound of the numerical radius for the product of two bounded adjointable operators on Hilbert C*-modules.
ω A 2 r ( s * t ) 1 2 t 4 r + s 4 r r 1 ,
where t = ( t * t ) 1 2 is the absolute value of t L ( E ) .
In Section 2, we give the generalized inequality (2) and the extension inequality (3). In Section 3, we present the upper bounds of the numerical radius of the bounded adjointable operators on Hilbert C*-modules. And, our bounds refine and generalize the existing related upper bounds, as shown in Remark 6 in the text. In Section 4, we obtain the upper bounds of the numerical radius of the product of two bounded adjointable operators on Hilbert C*-modules. And, our bounds refine inequality (7), as shown in Remark 8 in the text.

2. Preliminaries

To establish our principal results, we require the following series of lemmas.
Lemma 1
([18]). Let t L ( E ) , t 0 and x E . Then, for every φ S ( A ) with φ ( x 2 ) = 1 ,
( a ) φ r ( x , t x E ) φ ( x , t r x E ) , r 1 . ( b ) φ r ( x , t x E ) φ ( x , t r x E ) , 0 < r 1 .
Lemma 2
([30]). If a , b > 0 and 0 α 1 , then, for m = 1 , 2 , 3 , we have
( a α b ( 1 α ) ) m + r 0 m ( a m 2 b m 2 ) 2 ( α a + ( 1 α ) b ) m ,
where r 0 = min α , 1 α . In particular, if α = 1 2 , then,
( a 1 2 b 1 2 ) m + ( 1 2 ) m ( a m 2 b m 2 ) 2 ( a + b 2 ) m .
Lemma 3
([31]). Let f be a non-negative convex function on [ 0 , ) and let t , s L ( E ) be positive operators. Then,
f ( t + s 2 ) f ( t ) + f ( s ) 2 .
In particular, if r 1 , then,
( t + s 2 ) r t r + s r 2 .
Lemma 4
([24]). Let D be a subset of R and let f , g : D [ 0 , ) be a mapping such that f ( β ) + g ( β ) = 1 for all β D . Let E be a pre-Hilbert C*-module and φ S ( A ) . If x , y , e E such that φ ( e 2 ) = 1 , then for any r 1 and α C 0 , we have
φ ( x , e E ) φ ( e , y E ) 2 r max { 1 , α 1 2 } α 2 ( φ ( x , x E ) φ ( y , y E ) ) r + g ( β ) α 2 φ ( x , y E ) ( φ ( x , e E ) φ ( e , y E ) ) r 1 2 + f ( β ) + 2 max 1 , α 1 α 2 ( φ ( x , x E ) φ ( y , y E ) ) r 2 φ ( x , y E ) ( φ ( x , e E ) φ ( e , y E ) ) r 1 .
Remark 1.
If we take r = 1 and α = 2 in Lemma 4, then,
φ ( x , e E ) φ ( e , y E ) 2 1 4 φ ( x , x E ) φ ( y , y E ) + g ( β ) 4 φ ( x , y E ) 2 + f ( β ) + 2 4 ( φ ( x , x E ) φ ( y , y E ) ) 1 2 φ ( x , y E ) .
Remark 2.
When the Hilbert C*-module space degenerates to a Hilbert space, let r = 1 , α = 2 , g ( t ) = h ( t ) 2 ( h ( t ) + 1 ) and f ( t ) = h ( t ) + 2 2 ( h ( t ) + 1 ) in Remark 1, where h : ( 0 , 1 ) R + . Then,
x , e e , y 2 1 4 x 2 y 2 + h ( t ) 8 ( h ( t ) + 1 ) x , y 2 + 5 h ( t ) + 6 8 ( h ( t ) + 1 ) x y x , y .
Moreover,
x , e e , y 2 1 4 x 2 y 2 + h ( t ) 8 ( h ( t ) + 1 ) x , y 2 + 5 h ( t ) + 6 8 ( h ( t ) + 1 ) x y x , y 1 4 x 2 y 2 + h ( t ) 8 ( h ( t ) + 1 ) x 2 y 2 + 5 h ( t ) + 6 8 ( h ( t ) + 1 ) x y x , y 3 h ( t ) + 2 8 ( h ( t ) + 1 ) x 2 y 2 + 5 h ( t ) + 6 8 ( h ( t ) + 1 ) x y x , y ,
which imply that inequality (8) refines Lemma 2.20 of [32], namely
x , e e , y 2 3 h ( t ) + 2 8 ( h ( t ) + 1 ) x 2 y 2 + 5 h ( t ) + 6 8 ( h ( t ) + 1 ) x y x , y .
Lemma 5
([24]). Let D be a subset of R and let f , g : D [ 0 , ) be a mapping such that f ( β ) + g ( β ) = 1 for all β D . Let E be a pre-Hilbert C*-module and φ S ( A ) . If x , y E , then for any r 1 and α C 0 , we have
( 1 g ( β ) α 2 ) φ ( x , y E ) 2 r max { 1 , α 1 2 } α 2 ( φ ( x , x E ) φ ( y , y E ) ) r + f ( β ) + 2 max 1 , α 1 α 2 ( φ ( x , x E ) φ ( y , y E ) ) r 2 φ ( x , y E ) r .
Remark 3.
If we take r = 1 and α = 2 in Lemma 5, then,
φ ( x , y E ) 2 1 4 g ( β ) φ ( x , x E ) φ ( y , y E ) + f ( β ) + 2 4 g ( β ) ( φ ( x , x E ) φ ( y , y E ) ) 1 2 φ ( x , y E ) .

3. The Upper Bounds of the Numerical Radius on Hilbert C*-Modules

In this section, we present a general upper bound for the numerical radius of bounded adjointable operators on Hilbert C*-modules with different parameters. Furthermore, when the Hilbert C*-module space degenerates to a Hilbert space and the parameter takes a special value, the inequality of the numerical radius of the bounded linear operator in the Hilbert space is improved.
Theorem 1.
Let t L ( E ) and let D be a subset of R . Let f , g : D [ 0 , ) be a mapping such that f ( β ) + g ( β ) = 1 for all β D . Then, for m = 1 , 2 , 3 , , we have
ω A 4 m ( t ) 1 8 t 4 m + t * 4 m + g ( β ) 4 ω A 2 m ( t 2 ) + f ( β ) + 2 8 t 2 m + t * 2 m ω A m ( t 2 ) i n f φ ( x 2 ) = 1 γ ( x ) ,
where
γ ( x ) = ( 1 2 ) m + 2 ( φ m ( x , t 2 x E ) φ m ( x , t * 2 x E ) ) 2 .
Proof. 
If we take x = t * x , e = x and y = t x in Remark 1, then,
φ ( x , t x E ) 4 1 4 φ ( t x , t x E ) φ ( t * x , t * x E ) + g ( β ) 4 φ ( t * x , t x E ) 2 + f ( β ) + 2 4 ( φ ( t x , t x E ) φ ( t * x , t * x E ) ) 1 2 φ ( t * x , t x E ) ( by Remark 1 ) = 1 4 φ ( x , t 2 x E ) φ ( x , t * 2 x E ) + g ( β ) 4 φ ( x , t 2 x E ) 2 + f ( β ) + 2 4 ( φ ( x , t 2 x E ) φ ( x , t * 2 x E ) ) 1 2 φ ( x , t 2 x E ) .
Further,
φ ( x , t x E ) 4 m [ 1 4 φ ( x , t 2 x E ) φ ( x , t * 2 x E ) + g ( β ) 4 φ ( x , t 2 x E ) 2 + f ( β ) + 2 4 ( φ ( x , t 2 x E ) φ ( x , t * 2 x E ) ) 1 2 φ ( x , t 2 x E ) ] m 1 4 ( φ ( x , t 2 x E ) φ ( x , t * 2 x E ) ) m + g ( β ) 4 φ ( x , t 2 x E ) 2 m + f ( β ) + 2 4 ( φ ( x , t 2 x E ) φ ( x , t * 2 x E ) ) m 2 φ ( x , t 2 x E ) m . ( by Lemma 3 )
Employing the generalization of Young inequality in Lemma 2, we have
φ ( x , t x E ) 4 m 1 4 [ ( φ 2 ( x , t 2 x E ) + φ 2 ( x , t * 2 x E ) 2 ) m ( 1 2 ) m ( φ m ( x , t 2 x E ) φ m ( x , t * 2 x E ) ) 2 ] + g ( β ) 4 φ ( x , t 2 x E ) 2 m + f ( β ) + 2 4 · ( φ ( x , t 2 x E ) + φ ( x , t * 2 x E ) 2 ) m φ ( x , t 2 x E ) m ( by Lemma 2 , AM-GM inequality ) 1 4 [ φ 2 m ( x , t 2 x E ) + φ 2 m ( x , t * 2 x E ) 2 ( 1 2 ) m ( φ m ( x , t 2 x E ) φ m ( x , t * 2 x E ) ) 2 ] + g ( β ) 4 φ ( x , t 2 x E ) 2 m + f ( β ) + 2 4 · φ m ( x , t 2 x E ) + φ m ( x , t * 2 x E ) 2 φ ( x , t 2 x E ) m ( by Lemma 3 ) 1 4 [ φ ( x , ( t 4 m + t * 4 m ) x E ) 2 ( 1 2 ) m ( φ m ( x , t 2 x E ) φ m ( x , t * 2 x E ) ) 2 ] + g ( β ) 4 φ ( x , t 2 x E ) 2 m + f ( β ) + 2 8 · φ ( x , ( t 2 m + t * 2 m ) x E ) φ ( x , t 2 x E ) m . ( by Lemma 1 )
Therefore,
φ ( x , t x E ) 4 m 1 8 t 4 m + t * 4 m + g ( β ) 4 ω A 2 m ( t 2 ) + f ( β ) + 2 8 t 2 m + t * 2 m ω A m ( t 2 ) ( 1 2 ) m + 2 ( φ m ( x , t 2 x E ) φ m ( x , t * 2 x E ) ) 2 .
Now, by taking supremum over all x E and φ S ( A ) with φ ( x 2 ) = 1 ,
ω A 4 m ( t ) 1 8 t 4 m + t * 4 m + g ( β ) 4 ω A 2 m ( t 2 ) + f ( β ) + 2 8 t 2 m + t * 2 m ω A m ( t 2 ) i n f φ ( x 2 ) = 1 γ ( x ) ,
where
γ ( x ) = ( 1 2 ) m + 2 ( φ m ( x , t 2 x E ) φ m ( x , t * 2 x E ) ) 2 .
Remark 4.
When the Hilbert C* -module space degenerates to a Hilbert space, let α = 2 , m = 1 , g ( λ ) = λ λ + 1 and f ( λ ) = 1 λ + 1 in Theorem 1, where λ 0 . Then,
ω 4 ( t ) 1 8 t 4 + t * 4 + λ 4 ( λ + 1 ) ω 2 ( t 2 ) + 2 λ + 3 8 ( λ + 1 ) t 2 + t * 2 ω ( t 2 ) i n f x 2 = 1 γ ( x ) ,
where
γ ( x ) = 1 8 ( x , t 2 x x , t * 2 x ) 2 .
Moreover,
ω 4 ( t ) 1 8 t 4 + t * 4 + λ 4 ( λ + 1 ) ω 2 ( t 2 ) + 2 λ + 3 8 ( λ + 1 ) t 2 + t * 2 ω ( t 2 ) i n f x 2 = 1 γ ( x ) ( by inequality ( 7 ) ) 1 8 t 4 + t * 4 + λ 8 ( λ + 1 ) t 4 + t * 4 + 2 λ + 3 8 ( λ + 1 ) t 2 + t * 2 ω ( t 2 ) i n f x 2 = 1 γ ( x ) = 2 λ + 1 8 ( λ + 1 ) t 4 + t * 4 + 2 λ + 3 8 ( λ + 1 ) t 2 + t * 2 ω ( t 2 ) i n f x 2 = 1 γ ( x ) ,
which imply that inequality (11) refines Theorem 2.9 of [33], namely
ω 4 ( t ) 2 λ + 1 8 ( λ + 1 ) t 4 + t * 4 + 2 λ + 3 8 ( λ + 1 ) t 2 + t * 2 ω ( t 2 ) , λ 0 .
Next, we will present Example 1 and Example 2 to illustrate the effectiveness of the results in Remark 4.
Example 1.
Consider γ ( x ) in the above Remark 4, namely
γ ( x ) = 1 8 ( x , t 2 x x , t * 2 x ) 2 .
Let t = 0 1 0 0 0 2 0 0 0 , then t 2 = 0 0 0 0 1 0 0 0 4 , t * 2 = 1 0 0 0 4 0 0 0 0 , t 2 = 0 0 2 0 0 0 0 0 0 ,
t 4 = 0 0 0 0 1 0 0 0 16 , t * 4 = 1 0 0 0 16 0 0 0 0 . Let λ = 1 , then,
1.5625 = ω 4 ( t ) 1 8 t 4 + t * 4 + 1 8 ω 2 ( t 2 ) + 5 16 t 2 + t * 2 ω ( t 2 ) i n f x 2 = 1 γ ( x ) = 3.8125 ,
where
i n f x = 1 γ ( x ) = 0 .
In [33], we have
1.5625 = ω 4 ( t ) 3 16 t 4 + t * 4 + 5 16 t 2 + t * 2 ω ( t 2 ) = 4.75 .
Example 2.
Consider γ ( x ) in the above Remark 4, namely
γ ( x ) = 1 8 ( x , t 2 x x , t * 2 x ) 2 .
Let t = 0 0 0 I 0 0 0 2 I 0 , then t * = 0 I 0 0 0 2 I 0 0 0 , t 2 = 0 0 0 0 0 0 2 I 0 0 , t 2 = I 0 0 0 4 I 0 0 0 0 , t * 2 = 0 0 0 0 I 0 0 0 4 I , t 4 = I 0 0 0 16 I 0 0 0 0 , t * 4 = 0 0 0 0 I 0 0 0 16 I , where I is the identity operator in an infinite dimensional Hilbert space. Let λ = 1 , then,
1 = ω 4 ( t ) 1 8 t 4 + t * 4 + 1 8 ω 2 ( t 2 ) + 5 16 t 2 + t * 2 ω ( t 2 ) i n f x 2 = 1 γ ( x ) = 3.8125 ,
where
i n f x = 1 γ ( x ) = 0 .
In [33], we have
1 = ω 4 ( t ) 3 16 t 4 + t * 4 + 5 16 t 2 + t * 2 ω ( t 2 ) = 4.75 .
Remark 5.
By the above example, when i n f x = 1 γ ( x ) = 0 holds, the inequality of Theorem 1 also improves Theorem 2.9 of [33]. When i n f x = 1 γ ( x ) > 0 holds, we take m = 1 and t as a uniformly hyponormal operator ( t * t t t * M > 0 ) [14] in Theorem 1.
Theorem 2.
Let t L ( E ) and let D be a subset of R . Let f , g : D [ 0 , ) be a mapping such that f ( β ) + g ( β ) = 1 for all β D . Then, for r 1 and α C 0 , we have
ω A 4 r ( t ) max { 1 , α 1 2 } 4 α 2 t 4 r + t * 4 r + max { 1 , α 1 2 } 2 α 2 ω A ( t 2 r t * 2 r ) + g ( β ) α 2 ω A 2 ( t 2 ) ω A 4 ( r 1 ) ( t ) + f ( β ) + 2 max 1 , α 1 2 α 2 t 2 r + t * 2 r ω A ( t 2 ) ω A 2 ( r 1 ) ( t ) .
Proof. 
If we take x = t * x , e = x and y = t x in Lemma 4, then,
φ ( x , t x E ) 4 r max { 1 , α 1 2 } α 2 ( φ ( x , t 2 x E ) φ ( x , t * 2 x E ) ) r + g ( β ) α 2 φ ( x , t 2 x E ) 2 φ ( x , t x E ) 4 ( r 1 ) + f ( β ) + 2 max 1 , α 1 α 2 ( φ ( x , t 2 x E ) φ ( x , t * 2 x ) ) r 2 φ ( x , t 2 x E ) φ ( x , t x E ) 2 ( r 1 ) ( by Lemma 4 ) max { 1 , α 1 2 } α 2 φ ( x , t 2 r x E ) φ ( x , t * 2 r x E ) + g ( β ) α 2 φ ( x , t 2 x E ) 2 φ ( x , t x E ) 4 ( r 1 ) + f ( β ) + 2 max 1 , α 1 α 2 ( φ ( x , t 2 r x E ) φ ( x , t * 2 r x E ) ) 1 2 φ ( x , t 2 x E ) φ ( x , t x E ) 2 ( r 1 ) ( by Lemma 1 ) = max { 1 , α 1 2 } α 2 φ ( t 2 r x , x E ) φ ( x , t * 2 r x E ) + g ( β ) α 2 φ ( x , t 2 x E ) 2 φ ( x , t x E ) 4 ( r 1 ) + f ( β ) + 2 max 1 , α 1 α 2 ( φ ( x , t 2 r x E ) φ ( x , t * 2 r x E ) ) 1 2 φ ( x , t 2 x E ) φ ( x , t x E ) 2 ( r 1 ) .
By employing the Buzano inequality (2), we have
max { 1 , α 1 2 } 2 α 2 ( ( φ ( t 2 r x , t 2 r x E ) φ ( t * 2 r x , t * 2 r x E ) ) 1 2 + φ ( t 2 r x , t * 2 r x E ) ) + g ( β ) α 2 φ ( x , t 2 x E ) 2 φ ( x , t x E ) 4 ( r 1 ) + f ( β ) + 2 max 1 , α 1 α 2 ( φ ( x , t 2 r x E ) φ ( x , t * 2 r x E ) ) 1 2 φ ( x , t 2 x E ) φ ( x , t x E ) 2 ( r 1 ) ( by inequality ( 2 ) ) max { 1 , α 1 2 } 4 α 2 φ ( x , ( t 4 r + t * 4 r ) x E ) + max { 1 , α 1 2 } 2 α 2 φ ( x , t 2 r t * 2 r x E ) + g ( β ) α 2 φ ( x , t 2 x E ) 2 φ ( x , t x E ) 4 ( r 1 ) + f ( β ) + 2 max 1 , α 1 2 α 2 φ ( x , ( t 2 r + t * 2 r ) x E ) φ ( x , t 2 x E ) φ ( x , t x E ) 2 ( r 1 ) . ( by AM-GM inequality )
Therefore,
φ ( x , t x E ) 4 r max { 1 , α 1 2 } 4 α 2 t 4 r + t * 4 r + max { 1 , α 1 2 } 2 α 2 ω A ( t 2 r t * 2 r ) + g ( β ) α 2 ω A 2 ( t 2 ) ω A 4 ( r 1 ) ( t ) + f ( β ) + 2 max 1 , α 1 2 α 2 t 2 r + t * 2 r ω A ( t 2 ) ω A 2 ( r 1 ) ( t ) .
Now, by taking supremum over all x E and φ S ( A ) with φ ( x 2 ) = 1 ,
ω A 4 r ( t ) max { 1 , α 1 2 } 4 α 2 t 4 r + t * 4 r + max { 1 , α 1 2 } 2 α 2 ω A ( t 2 r t * 2 r ) + g ( β ) α 2 ω A 2 ( t 2 ) ω A 4 ( r 1 ) ( t ) + f ( β ) + 2 max 1 , α 1 2 α 2 t 2 r + t * 2 r ω A ( t 2 ) ω A 2 ( r 1 ) ( t ) .
Remark 6.
When the Hilbert C*-module space degenerates to a Hilbert space, let α = 2 in Theorem 2. Then, we will obtain
ω 4 r ( t ) 1 16 t 4 r + t * 4 r + 1 8 ω ( t 2 r t * 2 r ) + g ( β ) 4 ω 2 ( t 2 ) ω 4 ( r 1 ) ( t ) + f ( β ) + 2 8 t 2 r + t * 2 r ω ( t 2 ) ω 2 ( r 1 ) ( t ) .
Moreover,
ω 4 r ( t ) 1 16 t 4 r + t * 4 r + 1 8 ω ( t 2 r t * 2 r ) + g ( β ) 4 ω 2 ( t 2 ) ω 4 ( r 1 ) ( t ) + f ( β ) + 2 8 t 2 r + t * 2 r ω ( t 2 ) ω 2 ( r 1 ) ( t ) 1 16 t 4 r + t * 4 r + 1 8 ω ( t * 2 r t 2 r ) + g ( β ) 4 ω 4 r ( t ) + f ( β ) + 2 8 t 2 r + t * 2 r ω 2 r ( t ) ( by ω ( t n ) ω n ( t ) , n N + ) 1 16 t 4 r + t * 4 r + 1 16 t 4 r + t * 4 r + g ( β ) 8 t 4 r + t * 4 r + f ( β ) + 2 16 t 2 r + t * 2 r 2 ( by inequality ( 6 ) , inequality ( 7 ) ) g ( β ) + 1 8 t 4 r + t * 4 r + f ( β ) + 2 8 t 4 r + t * 4 r ( by Lemma 3 ) = 1 2 t 4 r + t * 4 r ,
which imply that inequality (12) refines Theorem 2 of [34], namely
ω 2 r ( t ) 1 2 t 2 r + t * 2 r , r 1 .

4. The Upper Bounds of the Numerical Radius for a Product of Bounded Adjointable Operators on Hilbert C*-Modules

In this section, we provide the upper bounds of the numerical radius of the product of two adjointable operators on Hilbert C*-modules. And, our bounds refine inequality (7).
Theorem 3.
Let t , s L ( E ) and let D be a subset of R . Let f , g : D [ 0 , ) be a mapping such that f ( β ) + g ( β ) = 1 for all β D . Then, for m = 1 , 2 , 3 , , we have
ω A 2 m ( s * t ) 1 2 ( 4 g ( β ) ) t 4 m + s 4 m + f ( β ) + 2 2 ( 4 g ( β ) ) t 2 m + s 2 m ω A m ( s * t ) i n f φ ( x 2 ) = 1 γ ( x ) ,
where
γ ( x ) = 1 ( 4 g ( β ) ) ( 1 2 ) m ( φ m ( x , t 2 x E ) φ m ( x , s 2 x E ) ) 2 .
Proof. 
If we take x = s x and y = t x in Remark 3, then,
φ ( x , s * t x E ) 2 1 4 g ( β ) φ ( x , t 2 x E ) φ ( x , s 2 x E ) + f ( β ) + 2 4 g ( β ) ( φ ( x , t 2 x E ) φ ( x , s 2 x E ) ) 1 2 φ ( x , s * t x E ) . ( by Remark 3 )
Further,
φ ( x , s * t x E ) 2 m [ 1 4 g ( β ) φ ( x , t 2 x E ) φ ( x , s 2 x E ) + f ( β ) + 2 4 g ( β ) ( φ ( x , t 2 x E ) φ ( x , s 2 x E ) ) 1 2 φ ( x , s * t x E ) ] m 1 4 g ( β ) ( φ ( x , t 2 x E ) φ ( x , s 2 x E ) ) m + f ( β ) + 2 4 g ( β ) ( φ ( x , t 2 x E ) φ ( x , s 2 x E ) ) m 2 φ ( x , s * t x E ) m . ( by Lemma 3 )
By employing the generalization of Young inequality in Lemma 2, we have
φ ( x , s * t x E ) 2 m 1 4 g ( β ) [ ( φ 2 ( x , t 2 x E ) + φ 2 ( x , s 2 x E ) 2 ) m ( 1 2 ) m ( φ m ( x , t 2 x E ) φ m ( x , s 2 x E ) ) 2 ] + f ( β ) + 2 4 g ( β ) · ( φ ( x , t 2 x E ) + φ ( x , s 2 x E ) 2 ) m φ ( x , s * t x E ) m ( by Lemma 2 , AM-GM inequality )
1 4 g ( β ) [ φ 2 m ( x , t 2 x E ) + φ 2 m ( x , s 2 x E ) 2 ( 1 2 ) m ( φ m ( x , t 2 x E ) φ m ( x , s 2 x E ) ) 2 ] + f ( β ) + 2 4 g ( β ) · φ m ( x , t 2 x E ) + φ m ( x , s 2 x E ) 2 φ ( x , s * t x E ) m ( by Lemma 3 ) 1 4 g ( β ) [ φ ( x , ( t 4 m + s 4 m ) x E ) 2 ( 1 2 ) m ( φ m ( x , t 2 x E ) φ m ( x , s 2 x E ) ) 2 ] + f ( β ) + 2 4 g ( β ) · φ ( x , ( t 2 m + s 2 m ) x E ) 2 φ ( x , s * t x E ) m . ( by Lemma 1 )
Therefore,
φ ( x , s * t x E ) 2 m 1 2 ( 4 g ( β ) ) t 4 m + s 4 m + f ( β ) + 2 2 ( 4 g ( β ) ) t 2 m + s 2 m ω A m ( s * t ) 1 ( 4 g ( β ) ) ( 1 2 ) m ( φ m ( x , t 2 x E ) φ m ( x , s 2 x E ) ) 2 .
Now, by taking supremum over all x E and φ S ( A ) with φ ( x 2 ) = 1 ,
ω A 2 m ( s * t ) 1 2 ( 4 g ( β ) ) t 4 m + s 4 m + f ( β ) + 2 2 ( 4 g ( β ) ) t 2 m + s 2 m ω A m ( s * t ) i n f φ ( x 2 ) = 1 γ ( x ) ,
where
γ ( x ) = 1 ( 4 g ( β ) ) ( 1 2 ) m ( φ m ( x , t 2 x E ) φ m ( x , s 2 x E ) ) 2 .
Remark 7.
When the Hilbert C*-module space degenerates to a Hilbert space, let α = 2 , m = 1 , g ( β ) = 1 and f ( β ) = 0 in Theorem 3. Then, we observe that
ω 2 ( s * t ) 1 6 t 4 + s 4 + 1 3 t 2 + s 2 ω ( s * t ) i n f x = 1 γ ( x ) ,
where
γ ( x ) = 1 6 ( ( x , t 2 x ) ( x , s 2 x ) ) 2 .
And this inequality refines Theorem 1 of [35], namely
ω 2 ( s * t ) 1 6 t 4 + s 4 + 1 3 t 2 + s 2 ω ( s * t ) .
Next, we will give an example to show that there exists t , s L ( E ) such that inf x = 1 γ ( x ) 0 .
Example 3.
Consider γ ( x ) in the above Remark 7, namely
γ ( x ) = 1 6 ( ( x , t 2 x ) ( x , s 2 x ) ) 2 .
Let t = 2 0 0 2 , s = 1 0 0 1 . Then,
2 = ω 2 ( s * t ) 1 6 t 4 + s 4 + 1 3 t 2 + s 2 ω ( s * t ) i n f x = 1 γ ( x ) 2.0808 ,
where
inf x = 1 γ ( x ) = 1 6 0 .
In [35], we have
2 = ω 2 ( s * t ) 1 6 t 4 + s 4 + 1 3 t 2 + s 2 ω ( s * t ) 2.2475 .
Theorem 4.
Let t , s L ( E ) and let D be a subset of R . Let f , g : D [ 0 , ) be a mapping such that f ( β ) + g ( β ) = 1 for all β D . Then, for r 1 , α C 0 and α 2 g ( β ) , we have
ω A 2 r ( s * t ) max { 1 , α 1 2 } 2 ( α 2 g ( β ) ) t 4 r + s 4 r + f ( β ) + 2 max 1 , α 1 2 ( α 2 g ( β ) ) t 2 r + s 2 r ω A r ( s * t ) .
Proof. 
If we take x = s x and y = t x in Lemma 5, then,
( 1 g ( β ) α 2 ) φ ( x , s * t x E ) 2 r max { 1 , α 1 2 } α 2 ( φ ( x , t 2 x E ) φ ( x , s 2 x E ) ) r + f ( β ) + 2 max 1 , α 1 α 2 ( φ ( x , t 2 x E ) φ ( x , s 2 x E ) ) r 2 φ ( x , s * t x E ) r ( by Lemma 5 ) max { 1 , α 1 2 } α 2 φ ( x , t 2 r x E ) φ ( x , s 2 r x E ) + f ( β ) + 2 max 1 , α 1 α 2 ( φ ( x , t 2 r x E ) φ ( x , s 2 r x E ) ) 1 2 φ ( x , s * t x E ) r ( by Lemma 1 ) max { 1 , α 1 2 } 2 α 2 ( φ 2 ( x , t 2 r x E ) + φ 2 ( x , s 2 r x E ) ) + f ( β ) + 2 max 1 , α 1 2 α 2 ( φ ( x , t 2 r x E ) + φ ( x , s 2 r x E ) ) φ ( x , s * t x E ) r ( by AM-GM inequality ) max { 1 , α 1 2 } 2 α 2 φ ( x , ( t 4 r + s 4 r ) x E ) + f ( β ) + 2 max 1 , α 1 2 α 2 φ ( x , ( t 2 r + s 2 r ) x E ) φ ( x , s * t x , x E ) r . ( by Lemma 1 )
Thus,
( 1 g ( β ) α 2 ) φ ( x , s * t x E ) 2 r max { 1 , α 1 2 } 2 α 2 t 4 r + s 4 r + f ( β ) + 2 max 1 , α 1 2 α 2 t 2 r + s 2 r ω A r ( s * t ) .
Now, by taking supremum over all x E and φ S ( A ) with φ ( x 2 ) = 1 ,
ω A 2 r ( s * t ) max { 1 , α 1 2 } 2 ( α 2 g ( β ) ) t 4 r + s 4 r + f ( β ) + 2 max 1 , α 1 2 ( α 2 g ( β ) ) t 2 r + s 2 r ω A r ( s * t ) .
Remark 8.
Let α = 2 in Theorem 4. Then, we observe that
ω A 2 r ( s * t ) 1 2 ( 4 g ( β ) ) t 4 r + s 4 r + f ( β ) + 2 2 ( 4 g ( β ) ) t 2 r + s 2 r ω A r ( s * t ) .
Moreover,
ω A 2 r ( s * t ) 1 2 ( 4 g ( β ) ) t 4 r + s 4 r + f ( β ) + 2 2 ( 4 g ( β ) ) t 2 r + s 2 r ω A r ( s * t ) ( by inequality ( 7 ) ) 1 2 ( 4 g ( β ) ) t 4 r + s 4 r + f ( β ) + 2 4 ( 4 g ( β ) ) t 2 r + s 2 r 2 ( by Lemma 3 ) 1 2 ( 4 g ( β ) ) t 4 r + s 4 r + f ( β ) + 2 2 ( 4 g ( β ) ) t 4 r + s 4 r = 1 2 t 4 r + s 4 r ,
which shows that inequality (13) refines inequality (7), namely
ω A 2 r ( s * t ) 1 2 t 4 r + s 4 r , r 1 .

Author Contributions

J.L. wrote the main manuscript text. D.W. and A.C. are primarily responsible for proposing concepts, revising manuscripts, and securing funding. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the NNSFs of China (Grant Nos. 11561048, 11761029), the NSFs of Inner Mongolia (Grant Nos. 2022ZD05, 2023MS01011), the Key Laboratory of Infinite-Dimensional Hamilton System and Its Algorithm Application (Inner Mongolia Normal University), the Ministry of Education (Grant No. 2023KFZD01), and the PIRTU of Inner Mongolia (NMGIRT2317).

Informed Consent Statement

Not applicable.

Data Availability Statement

The original contributions presented in the study are included in the article. Further inquiries can be directed to the corresponding author.

Acknowledgments

The authors are very grateful to the anonymous referees for their valuable suggestions and comments which have greatly improved this paper.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Kaplansky, I. Modules over operator algebras. Am. J. Math. 1953, 75, 839–858. [Google Scholar] [CrossRef]
  2. Paschke, W.L. Inner product modules over B*-algebras. Trans. Am. Math. Soc. 1973, 182, 443–468. [Google Scholar] [CrossRef]
  3. Rieffel, M.A. Induced representations of C*-algebras. Adv. Math. 1974, 13, 176–257. [Google Scholar] [CrossRef]
  4. Connes, A. Noncommutative Geometry; Academic Press: New York, NY, USA, 1994. [Google Scholar]
  5. Jensen, K.K.; Thomsen, K. Elements of KK-Theory; Birkhauser: Basel, Switzerland, 1991. [Google Scholar]
  6. Woronowicz, S.L. Compact Quantum Groups; North-Holland: Amsterdam, The Netherlands, 1998. [Google Scholar]
  7. Watatani, Y. Index for C*-subalgebras. Mem. Am. Math. Soc. 1990, 83, 6–10. [Google Scholar] [CrossRef]
  8. Speicher, R. Combinationatorial theory of the free product with amalgamation and operator-valued free probability theory. Mem. Amer. Math. Soc. 1998, 132, 627. [Google Scholar]
  9. Skeide, M. Hilbert modules in quantum electro dynamics and quantum probability. Commum. Math. Phys. 1998, 192, 569–604. [Google Scholar] [CrossRef]
  10. Skeide, M. Generalised matrix C*-algebras and representations of Hilbert modules. Math. Proc. R. Ir. Acad. 2000, 100, 11–38. [Google Scholar]
  11. Skeide, M. Quantum stochastic calculus on full Fock modules. J. Funct. Anal. 2000, 173, 401–452. [Google Scholar] [CrossRef]
  12. Zhang, L. Hilbert C*-Modules and Quantum Markov Semigroups; Springer Nature: Singapore, 2024. [Google Scholar]
  13. Bhunia, P.; Sahoo, S. Schatten p-Norm and Numerical Radius Inequalities with Applications. Results Math. 2025, 80, 1–23. [Google Scholar] [CrossRef]
  14. Gao, M.; Wu, D.; Chen, A. Generalized Upper Bounds Estimation of Numerical Radius and Norm for the Sum of Operators. Mediterr. J. Math. 2023, 20, 210–225. [Google Scholar] [CrossRef]
  15. Goldberg, M.; Tadmor, E. On the numerical radius and its applications. Linear Algebra Appl. 1982, 42, 263–284. [Google Scholar] [CrossRef]
  16. Ighachane, M.; Akkouchi, M. A new generalization of two refined Young inequalities and applications. Moroc. J. Pure Appl. Anal. 2020, 6, 155–167. [Google Scholar] [CrossRef]
  17. Nayak, R.K. Advancement of Numerical Radius Inequalities of Operators and Product of Operators. Iran. J. Sci. 2024, 48, 649–657. [Google Scholar] [CrossRef]
  18. Fakri, M.S.; Kamel, M.A. Numerical radius inequalities for Hilbert C*-modules. Math. Bohem. 2022, 147, 547–566. [Google Scholar]
  19. Mehrazin, M.; Amyari, M.; Omidvar, M.E. A new type of numerical radius of operators on Hilbert C* -module. Rend. Circ. Mat. Palermo Ser. 2020, 69, 29–37. [Google Scholar] [CrossRef]
  20. Mabrouk, M.; Zamani, A. An extension of the a-numerical radius on C*-algebras. Banach J. Math. Anal. 2023, 17, 42–65. [Google Scholar] [CrossRef]
  21. Nikoufar, I.; Baghernezhad Shayan, Z. Some operator ineaualities in Hilbert C*-modules via the operator perspective. J. Algebraic Syst. 2025, 13, 89–103. [Google Scholar]
  22. Rashid, M.H.; Salameh, W.M.M. Inequalities for the Euclidean Operator Radius of n-Tuple Operators and Operator Matrices in Hilbert C*-Modules. Symmetry 2024, 16, 647. [Google Scholar] [CrossRef]
  23. Rashid, M.M. Some inequalities for the numerical radius and spectral norm for operators in Hilbert C*-modules space. Tamkang J. Math. 2025, 56, 37–54. [Google Scholar] [CrossRef]
  24. Zamani, A. New estimates for numerical radius in C*-algebras. arXiv 2024, arXiv:2405.16212. [Google Scholar]
  25. Zamani, A. Refinements of the Cauchy–Schwarz inequality in pre-Hilbert C*-modules and their applications. Ann. Funct. Anal. 2023, 14, 75–91. [Google Scholar] [CrossRef]
  26. Bhunia, P.; Feki, K.; Paul, K. A-Numerical radius orthogonality and parallelism of semi-Hilbertian space operators and their applications. Bull. Iran. Math. Soc. 2021, 47, 435–457. [Google Scholar] [CrossRef]
  27. Feki, K. Spectral radius of semi-Hilbertian space operators and its applications. Ann. Funct. Anal. 2023, 11, 929–946. [Google Scholar] [CrossRef]
  28. Feki, K. Further improvements of generalized numerical radius inequalities for semi-Hilbertian space operators. Miskolc Math. Notes 2022, 23, 651–665. [Google Scholar] [CrossRef]
  29. Buzano, M.L. Generalizzazione della diseguaglianza di Cauchy-Schwarz. Rend. Semin. Mat. Univ. Politec. Torino 1971, 31, 405–409. [Google Scholar]
  30. Al-Manasrah, Y.; Kittaneh, F. A generalization of two refined Young inequalities. Positivity 2015, 19, 757–768. [Google Scholar] [CrossRef]
  31. Aujla, J.S.; Silva, F.C. Weak majorization inequalities and convex functions. Linear Algebra Appl. 2003, 369, 217–233. [Google Scholar] [CrossRef]
  32. Nayak, R.K. Enhancement of the Cauchy-Schwarz Inequality and Its Implications for Numerical Radius Inequalities. arXiv 2024, arXiv:2405.19698. [Google Scholar]
  33. Al-Dolat, M.; Jaradat, I. A refinement of the Cauchy-Schwarz inequality accompanied by new numerical radius upper bounds. Filomat 2023, 37, 971–977. [Google Scholar] [CrossRef]
  34. El-Haddad, M.; Kittaneh, F. Numerical radius inequalities for Hilbert space operators II. Stud. Math. 2007, 182, 133–140. [Google Scholar] [CrossRef]
  35. Kittaneh, F.; Moradi, H.R. Cauchy-Schwarz type inequalities and applications to numerical radius inequalities. Math. Ineq. Appl. 2020, 23, 1117–1125. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Liu, J.; Wu, D.; Chen, A. The Upper Bounds of the Numerical Radius on Hilbert C*-Modules. Axioms 2025, 14, 199. https://doi.org/10.3390/axioms14030199

AMA Style

Liu J, Wu D, Chen A. The Upper Bounds of the Numerical Radius on Hilbert C*-Modules. Axioms. 2025; 14(3):199. https://doi.org/10.3390/axioms14030199

Chicago/Turabian Style

Liu, Jing, Deyu Wu, and Alatancang Chen. 2025. "The Upper Bounds of the Numerical Radius on Hilbert C*-Modules" Axioms 14, no. 3: 199. https://doi.org/10.3390/axioms14030199

APA Style

Liu, J., Wu, D., & Chen, A. (2025). The Upper Bounds of the Numerical Radius on Hilbert C*-Modules. Axioms, 14(3), 199. https://doi.org/10.3390/axioms14030199

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop