Existence and Attractivity of Mild Solutions for Fractional Diffusion Equations Involving the Regularized ψ-Hilfer Fractional Derivatives
Abstract
1. Introduction
2. Preliminaries
3. Existence and Uniqueness of Mild Solutions
4. Attractivity of Mild Solutions
5. Examples
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sene, N. Fractional diffusion equation with new fractional operator. Alex. Eng. J. 2020, 59, 2921–2926. [Google Scholar] [CrossRef]
- Liao, X.; Feng, M. Time-fractional diffusion equation-based image denoising model. Nonlinear Dyn. 2021, 103, 1999–2017. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 406–481. [Google Scholar] [CrossRef]
- Jajarmi, A.; Baleanu, D.; Sajjadi, S.S.; Nieto, J.J. Analysis and some applications of a regularized ψ–Hilfer fractional derivative. J. Comput. Appl. Math. 2022, 415, 114476. [Google Scholar] [CrossRef]
- Sousa, J.V.d.C.; De Oliveira, E.C.d. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Zhu, T. Global attractivity for fractional differential equations of Riemann-Liouville type. Fract. Calc. Appl. Anal. 2023, 26, 2264–2280. [Google Scholar] [CrossRef]
- Jiang, C.; Xu, K. Global existence and attractivity for Riemann-Liouville fractional semilinear evolution equations involving weakly singular integral inequalities. J. Inequalities Appl. 2024, 2024, 64. [Google Scholar] [CrossRef]
- Sousa, J.V.d.C.; Benchohra, M.; N’Guérékata, G.M. Attractivity for differential equations of fractional order and ψ-Hilfer type. Fract. Calc. Appl. Anal. 2020, 23, 1188–1207. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform. Discret. Contin. Dyn. Syst. Ser.-S. 2020, 13, 709–722. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations; Springer: New York, NY, USA, 1983. [Google Scholar]
- Zhou, Y.; Jiao, F. Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal. Real World Appl. 2010, 11, 4465–4475. [Google Scholar] [CrossRef]
- Mainardi, F.; Paradisi, P.; Gorenflo, R. Probability distributions generated by fractional diffusion equations. In Econophysics: An Emerging Science; Kertesz, J., Kondor, I., Eds.; Kluwer: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Fahad, H.M.; Rehman, M.U.; Fernandez, A. On Laplace transforms with respect to functions and their applications to fractional differential equations. Math. Methods Appl. Sci. 2023, 46, 8304–8323. [Google Scholar] [CrossRef]
- Guo, W. A generalization and application of Ascoli-Arzela theorem. J. Syst. Sci. Math. Sci. 2002, 22, 115–122. [Google Scholar]
- Isac, G. Complementarity Problems and Variational Inequalities; Springer: New York, NY, USA, 2006. [Google Scholar]
- Deimling, K. Nonlinear Functional Analysis; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Zhou, Y. Attractivity for fractional differential equations in Banach space. Appl. Math. Lett. 2018, 75, 1–6. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Jin, Y.; He, W.; Mu, J. Existence and Attractivity of Mild Solutions for Fractional Diffusion Equations Involving the Regularized ψ-Hilfer Fractional Derivatives. Axioms 2025, 14, 79. https://doi.org/10.3390/axioms14020079
Wang L, Jin Y, He W, Mu J. Existence and Attractivity of Mild Solutions for Fractional Diffusion Equations Involving the Regularized ψ-Hilfer Fractional Derivatives. Axioms. 2025; 14(2):79. https://doi.org/10.3390/axioms14020079
Chicago/Turabian StyleWang, Luyao, Yuhang Jin, Wenchang He, and Jia Mu. 2025. "Existence and Attractivity of Mild Solutions for Fractional Diffusion Equations Involving the Regularized ψ-Hilfer Fractional Derivatives" Axioms 14, no. 2: 79. https://doi.org/10.3390/axioms14020079
APA StyleWang, L., Jin, Y., He, W., & Mu, J. (2025). Existence and Attractivity of Mild Solutions for Fractional Diffusion Equations Involving the Regularized ψ-Hilfer Fractional Derivatives. Axioms, 14(2), 79. https://doi.org/10.3390/axioms14020079