Theoretical Basis for Classifying Hyperuniform States of Two-Component Systems
Abstract
:1. Introduction
2. Basic Formalism
2.1. Total Correlation Functions and Structure Factors
2.2. The Ornstein–Zernike Equations and Their Solutions
3. General Relations: When SFs Vanish with D(k) of Finite Extent
3.1. Partial Disappearance of Total SFs with Inter-Correlations
3.2. Stability in Terms of D(k)
4. Theoretical Predictions of Hyperuniform States in Two-Component Systems
4.1. Tentative Classification of Two-Component Hyperuniformity
- Type I: Single-component hyperuniformity appears without inter-correlations.
- Type II: There emerge multihyperuniform states where not only two-component hyperuniformity but also both global hyperuniformities denoted by ‘G1’ and ‘G2’ are preserved in the absence of inter-correlations (i.e., ).
- Type III: There are two kinds of globally hyperuniform states that vary depending on the sign of .
- Type IV: Either single-component or two-component hyperuniformity is observed, though global hyperuniformity is lost due to the presence of inter-correlations (i.e., ).
- Type V: This type preserves multihyperuniformity when taking the opposite limit of to that of Type-II multihyperuniformity.
4.2. Compatibility of Global and Two-Component Hyperuniformity
4.3. Types I and II: Stability Indicator D(k) Divergent in Absence of Inter-Correlations
- (i)
- Either or contributes to the relation (47), whereas the other non-divergent factor ( or ) is in the order of .
- (ii)
- Both factors of and are extremely large: .
4.4. Type III: Global Hyperuniformity with Inter-Correlations
4.5. Type IV: Single-Component or Two-Component Hyperuniformity with Inter-Correlations
4.6. Type V: Multihyperuniformity as the Opposite Limit of Type II
4.7. Assessment of Thermodynamic Stability Using Equations (23) and (24)
- Type I: Equation (49) ensures that .
- Types II and V: multihyperuniformity necessarily leads to .
- Type III(a): G1-hyperuniformity is defined by .
- Type III(b): G2-hyperuniformity yields , as proven in Equation (52) for .
- Types I, II, and V: all types provide because of .
- Type III(b): G2-hyperuniformity amounts to because the denominator in Equation (24) goes to zero by definition of this state.
5. Connection with Experimental and Simulation Results
5.1. Target Systems for Comparison
5.2. A Condition for Multihyperuniformity: Comparison Between Types II and IV(b)
5.3. Heterogeneous Mixtures Only with Global Hyperuniformity: Phase Separation and Complexation in Type-III Systems
5.4. Two-Phase Systems in the Strong Segregation Limits: An Interpretation in Terms of Type-V Multihyperuniformity
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
SF | structure factor |
TCF | total correlation function |
DCF | direct correlation function |
SC-hyperuniformity | single-component hyperuniformity: or |
TC-hyperuniformity | two-component hyperuniformity: |
G1-hyperuniformity | global hyperuniformity for the sum density: |
G2-hyperuniformity | global hyperuniformity for the density difference: |
ICs | inter-correlations representing for the inter-SF |
ACs | additional conditions required by thermodynamic stability |
Appendix A. Derivation of Equations (16)–(19)
References
- Torquato, S. Hyperuniform states of matter. Phys. Rep. 2018, 745, 1–95. [Google Scholar] [CrossRef]
- Torquato, S. Extraordinary disordered hyperuniform multifunctional composites. J. Compos. Mater. 2022, 56, 3635–3649. [Google Scholar] [CrossRef]
- Chen, D.; Zhuang, H.; Chen, M.; Huang, P.Y.; Vlcek, V.; Jiao, Y. Disordered hyperuniform solid state materials. Appl. Phys. Rev. 2023, 10, 021310. [Google Scholar] [CrossRef]
- Frusawa, H. Non-hyperuniform metastable states around a disordered hyperuniform state of densely packed spheres: Stochastic density functional theory at strong coupling. Soft Matter 2021, 17, 8810–8831. [Google Scholar] [CrossRef]
- Zachary, C.E.; Torquato, S. Hyperuniformity in point patterns and two-phase random heterogeneous media. J. Stat. Mech. Theory Exp. 2009, 2009, P12015. [Google Scholar] [CrossRef]
- Jack, R.L.; Thompson, I.R.; Sollich, P. Hyperuniformity and phase separation in biased ensembles of trajectories for diffusive systems. Phys. Rev. Lett. 2015, 114, 060601. [Google Scholar] [CrossRef]
- Torquato, S. Disordered hyperuniform heterogeneous materials. J. Phys. Condens. Matter 2016, 28, 414012. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Torquato, S. Random scalar fields and hyperuniformity. J. Appl. Phys. 2017, 121, 244904. [Google Scholar] [CrossRef]
- Salvalaglio, M.; Bouabdellaoui, M.; Bollani, M.; Benali, A.; Favre, L.; Claude, J.B.; Wenger, J.; de Anna, P.; Intonti, F.; Voigt, A.; et al. Hyperuniform monocrystalline structures by spinodal solid-state dewetting. Phys. Rev. Lett. 2020, 125, 126101. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Klatt, M.A.; Löwen, H. Universal hyperuniformity in active field theories. Phys. Rev. Res. 2024, 6, L032056. [Google Scholar] [CrossRef]
- De Luca, F.; Ma, X.; Nardini, C.; Cates, M.E. Hyperuniformity in phase ordering: The roles of activity, noise, and non-constant mobility. arXiv 2024, arXiv:2405.00508. [Google Scholar] [CrossRef] [PubMed]
- Skolnick, M.; Torquato, S. Quantifying phase mixing and separation behaviors across length and time scales. Acta Mater. 2024, 268, 119774. [Google Scholar] [CrossRef]
- Zito, G.; Rusciano, G.; Pesce, G.; Malafronte, A.; di Girolamo, R.; Ausanio, G.; Vecchione, A.; Sasso, A. Nanoscale engineering of two-dimensional disordered hyperuniform block-copolymer assemblies. Phys. Rev. E 2015, 92, 050601. [Google Scholar] [CrossRef] [PubMed]
- Chremos, A.; Douglas, J.F. Hidden hyperuniformity in soft polymeric materials. Phys. Rev. Lett. 2018, 121, 258002. [Google Scholar] [CrossRef]
- Chen, D.; Klatt, M.A.; Fredrickson, G.H. Emergence of disordered hyperuniformity in melts of linear diblock copolymers. Macromolecules 2023, 57, 9911–9919. [Google Scholar] [CrossRef]
- Das, S.K.; Kim, Y.C.; Fisher, M.E. Near critical electrolytes: Are the charge-charge sum rules obeyed? J. Chem. Phys. 2012, 137, 074902. [Google Scholar] [CrossRef]
- Rotenberg, B.; Marbach, S. Ionic fluctuations in finite volumes: Fractional noise and hyperuniformity. Faraday Discuss. 2023, 246, 225–250. [Google Scholar]
- Zachary, C.E.; Jiao, Y.; Torquato, S. Hyperuniformity, quasi-long-range correlations, and void-space constraints in maximally random jammed particle packings. I. Polydisperse spheres. Phys. Rev. E 2011, 83, 051308. [Google Scholar] [CrossRef]
- Jiao, Y.; Lau, T.; Hatzikirou, H.; Meyer-Hermann, M.; Corbo, J.C.; Torquato, S. Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem. Phys. Rev. E 2014, 89, 022721. [Google Scholar] [CrossRef]
- Lomba, E.; Weis, J.J.; Torquato, S. Disordered hyperuniformity in two-component nonadditive hard-disk plasmas. Phys. Rev. E 2017, 96, 062126. [Google Scholar] [CrossRef]
- Chen, D.; Lomba, E.; Torquato, S. Binary mixtures of charged colloids: A potential route to synthesize disordered hyperuniform materials. Phys. Chem. Chem. Phys. 2018, 20, 17557–17562. [Google Scholar] [CrossRef]
- Lomba, E.; Weis, J.J.; Torquato, S. Disordered multihyperuniformity derived from binary plasmas. Phys. Rev. E 2018, 97, 010102. [Google Scholar] [CrossRef] [PubMed]
- Lomba, E.; Weis, J.J.; Guisández, L.; Torquato, S. Minimal statistical mechanical model for multihyperuniform patterns in avian retina. Phys. Rev. E 2020, 102, 012134. [Google Scholar] [CrossRef]
- Ma, Z.; Lomba, E.; Torquato, S. Optimized large hyperuniform binary colloidal suspensions in two dimensions. Phys. Rev. Lett. 2020, 125, 068002. [Google Scholar] [CrossRef] [PubMed]
- Piechulla, P.M.; Wehrspohn, R.B.; Sprafke, A.N. Toward hyperuniform disorder via self-assembly of bidisperse colloidal patterns at an electrode. Adv. Mater. Interfaces 2023, 10, 2201395. [Google Scholar] [CrossRef]
- Wilken, S.; Chaderjian, A.; Saleh, O.A. Spatial organization of phase-separated DNA droplets. Phys. Rev. X 2023, 13, 031014. [Google Scholar] [CrossRef]
- Chen, D.; Jiang, X.; Wang, D.; Vidallon, J.I.; Zhuang, H.; Jiao, Y. Multihyperuniform long-range order in medium-entropy alloys. Acta Mater. 2023, 246, 118678. [Google Scholar] [CrossRef]
- Tjhung, E.; Berthier, L. Hyperuniform density fluctuations and diverging dynamic correlations in periodically driven colloidal suspensions. Phys. Rev. Lett. 2015, 114, 148301. [Google Scholar] [CrossRef]
- Wang, J.; Schwarz, J.M.; Paulsen, J.D. Hyperuniformity with no fine tuning in sheared sedimenting suspensions. Nat. Commun. 2018, 9, 2836. [Google Scholar] [CrossRef] [PubMed]
- Lei, Q.L.; Ciamarra, M.P.; Ni, R. Nonequilibrium strongly hyperuniform fluids of circle active particles with large local density fluctuations. Sci. Adv. 2019, 5, eaau7423. [Google Scholar] [CrossRef] [PubMed]
- Backofen, R.; Altawil, A.Y.; Salvalaglio, M.; Voigt, A. Nonequilibrium hyperuniform states in active turbulence. Proc. Natl. Acad. Sci. USA 2024, 121, e2320719121. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Ni, R. Non-equilibrium dynamic hyperuniform states. J. Phys. Condens. Matter 2024, 37, 023004. [Google Scholar] [CrossRef]
- Torquato, S.; Scardicchio, A.; Zachary, C.E. Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory. J. Stat. Mech. Theory Exp. 2008, 2008, P11019. [Google Scholar] [CrossRef]
- Forrester, P.J. A review of exact results for fluctuation formulas in random matrix theory. Probab. Surv. 2023, 20, 170–225. [Google Scholar] [CrossRef]
- Abreu, L.D.; Pereira, J.M.; Romero, J.L.; Torquato, S. The Weyl-Heisenberg ensemble: Hyperuniformity and higher Landau levels. J. Stat. Mech. Theory Exp. 2017, 2017, 043103. [Google Scholar] [CrossRef]
- Abreu, L.D. Entanglement entropy and hyperuniformity of Ginibre and Weyl-Heisenberg ensembles. Lett. Math. Phys. 2023, 113, 54. [Google Scholar] [CrossRef] [PubMed]
- Dereudre, D.; Flimmel, D. Non-hyperuniformity of Gibbs point processes with short-range interactions. J. Appl. Probab. 2024, 61, 1380–1406. [Google Scholar] [CrossRef]
- Hansen, J.P.; McDonald, I.R. Theory of Simple Liquids; Academic Press: London, UK, 2013. [Google Scholar]
- Archer, A.J.; Walters, M.C.; Thiele, U.; Knobloch, E. Solidification in soft-core fluids: Disordered solids from fast solidification fronts. Phys. Rev. E 2014, 90, 042404. [Google Scholar] [CrossRef] [PubMed]
- Frusawa, H. Electric-field-induced oscillations in ionic fluids: A unified formulation of modified Poisson–Nernst–Planck models and its relevance to correlation function analysis. Soft Matter 2022, 18, 4280–4304. [Google Scholar] [CrossRef]
- Frusawa, H. Stochastic density functional theory on lane formation in electric-field-driven ionic mixtures: Flow-kernel-based formulation. Entropy 2022, 24, 500. [Google Scholar] [CrossRef]
- Ashcroft, N.W.; Langreth, D.C. Structure of binary liquid mixtures I. Phys. Rev. 1967, 156, 685–692. [Google Scholar] [CrossRef]
- Overduin, S.D.; Patey, G.N. Understanding the structure factor and isothermal compressibility of ambient water in terms of local structural environments. J. Phys. Chem. B 2012, 116, 12014–12020. [Google Scholar] [CrossRef] [PubMed]
- Thorneywork, A.L.; Schnyder, S.K.; Aarts, D.G.; Horbach, J.; Roth, R.; Dullens, R.P. Structure factors in a two-dimensional binary colloidal hard sphere system. Mol. Phys. 2018, 116, 3245–3257. [Google Scholar] [CrossRef]
- Frusawa, H. Pole analysis of the inter-replica correlation function in a two-replica system as a binary mixture: Mean overlap in the cluster glass phase. Axioms 2024, 13, 468. [Google Scholar] [CrossRef]
- Dijkstra, M. Phase behavior of nonadditive hard-sphere mixtures. Phys. Rev. E 1998, 58, 7523. [Google Scholar] [CrossRef]
- Louis, A.A.; Finken, R.; Hansen, J.P. Crystallization and phase separation in nonadditive binary hard-sphere mixtures. Phys. Rev. E 2000, 61, R1028. [Google Scholar] [CrossRef]
- Roth, R.; Evans, R.; Louis, A.A. Theory of asymmetric nonadditive binary hard-sphere mixtures. Phys. Rev. E 2001, 64, 051202. [Google Scholar] [CrossRef] [PubMed]
- Fiumara, G.; Pandaram, O.D.; Pellicane, G.; Saija, F. Theoretical and computer simulation study of phase coexistence of nonadditive hard-disk mixtures. J. Chem. Phys. 2014, 141, 214508. [Google Scholar] [CrossRef] [PubMed]
- Pellicane, G.; Lomba, E.; Saija, F. Theory and equation of state of two-component nonadditive hard-disks: An application in the colloidal regime. Phys. Chem. Liq. 2022, 60, 463–484. [Google Scholar] [CrossRef]
- Tateno, M.; Tanaka, H. Power-law coarsening in network-forming phase separation governed by mechanical relaxation. Nat. Commun. 2021, 12, 912. [Google Scholar] [CrossRef]
- Tanaka, H. Viscoelastic phase separation in biological cells. Commun. Phys. 2022, 5, 167. [Google Scholar] [CrossRef]
- Sing, C.E.; Perry, S.L. Recent progress in the science of complex coacervation. Soft Matter 2020, 16, 2885–2914. [Google Scholar] [CrossRef] [PubMed]
- Schröer, W. A short history of phase transitions in ionic fluids. Contrib. Plasma Phys. 2012, 52, 78–88. [Google Scholar] [CrossRef]
Types | ICs | ACs | SC | TC | G1 | G2 | Sections |
---|---|---|---|---|---|---|---|
I | — | — | ✓ | — | — | — | 4.3 |
II | — | — | — | ✓ | ✓ | ✓ | 4.3, 5.2 |
III(a) | ✓ | ✓ | — | — | ✓ | — | 4.4, 4.7, 5.3 |
III(b) | ✓ | — | — | — | — | ✓ | 4.4, 5.3 |
IV(a) | ✓ | ✓ | ✓ | — | — | — | 4.5, 4.7 |
IV(b) | ✓ | ✓ | — | ✓ | — | — | 4.5, 4.7, 5.2 |
V | ✓ | — | — | ✓ | ✓ | ✓ | 4.6, 5.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frusawa, H. Theoretical Basis for Classifying Hyperuniform States of Two-Component Systems. Axioms 2025, 14, 39. https://doi.org/10.3390/axioms14010039
Frusawa H. Theoretical Basis for Classifying Hyperuniform States of Two-Component Systems. Axioms. 2025; 14(1):39. https://doi.org/10.3390/axioms14010039
Chicago/Turabian StyleFrusawa, Hiroshi. 2025. "Theoretical Basis for Classifying Hyperuniform States of Two-Component Systems" Axioms 14, no. 1: 39. https://doi.org/10.3390/axioms14010039
APA StyleFrusawa, H. (2025). Theoretical Basis for Classifying Hyperuniform States of Two-Component Systems. Axioms, 14(1), 39. https://doi.org/10.3390/axioms14010039