Analytical Relations and Statistical Estimations for Sums of Powered Integers
Abstract
:1. Introduction
2. Faulhaber Polynomials in Different Transformations
3. Several Explicit Examples of Relations Between the Sums
4. Numerical Evaluation and Statistical Estimation for the Powered Sums
5. Summary
Funding
Data Availability Statement
Conflicts of Interest
References
- Power Sum. Available online: https://mathworld.wolfram.com/PowerSum.html (accessed on 25 December 2024).
- Faulhaber’s Formula. Available online: https://en.wikipedia.org/wiki/Faulhaber%27s_formula (accessed on 25 December 2024).
- Squared Triangular Number. Available online: https://en.wikipedia.org/wiki/Squared_triangular_number (accessed on 25 December 2024).
- Cooper, H. Visual Sum of Cubes. 2022. Available online: https://x.st/visual-sum-of-cubes/ (accessed on 25 December 2024).
- Burrows, B.L.; Talbot, R.F. Sums of powers of integers. Am. Math. Mon. 1984, 91, 394–403. [Google Scholar] [CrossRef]
- Edwards, A.W.F. A quick route to sums of powers. Am. Math. Mon. 1986, 93, 451–455. [Google Scholar] [CrossRef]
- Crilly, T.; Millward, S. Sums of powers of integers—A general method. Math. Gaz. 1988, 471, 205–207. [Google Scholar] [CrossRef]
- Acu, D. Some algorithms for the sums of integer powers. Math. Mag. 1988, 61, 189–191. [Google Scholar] [CrossRef]
- Knuth, D.E. Johann Faulhaber and sums of powers. Math. Comput. 1993, 61, 277–294. [Google Scholar] [CrossRef]
- Beardon, A. Sums of powers of integers. Am. Math. Mon. 1996, 103, 201–213. [Google Scholar] [CrossRef]
- Wu, D.W. Bernoulli numbers and sums of powers. Int. J. Math. Educ. Sci. Technol. 2001, 32, 440–443. [Google Scholar] [CrossRef]
- Guo, V.J.W.; Zeng, J. A q-analogue of Faulhaber’s formula for sums of powers. arXiv 2005, arXiv:math/0501441. [Google Scholar] [CrossRef] [PubMed]
- Shevelev, V. A short proof of a known relation for consecutive power sums. arXiv 2007, arXiv:0711.3692. [Google Scholar]
- Apostol, T.M. A primer on Bernoulli numbers and polynomials. Math. Mag. 2008, 81, 178–190. [Google Scholar]
- Tsao, H.P. Explicit polynomial expressions for sums of powers of an arithmetic progression. Math. Gaz. 2008, 92, 87–92. Available online: https://www.cambridge.org/core/journals/mathematical-gazette/article/abs/9209-explicit-polynomial-expressions-for-sums-of-powers-of-an-arithmetic-progression/168A1844CADBE7C16A599B44E80385A7 (accessed on 25 December 2024). [CrossRef]
- Chen, W.Y.; Fu, A.M.; Zhang, I.F. Faulhaber’s theorem on power sums. Discret. Math. 2009, 309, 2974–2981. [Google Scholar] [CrossRef]
- Swetz, F.J.; Katz, V.J. Mathematical Treasures—Johann Faulhaber’s Academia Algebrae. Convergence. January 2011. Available online: https://old.maa.org/press/periodicals/convergence/mathematical-treasures-johann-faulhabers-academia-algebrae (accessed on 25 December 2024).
- MacMillan, K.; Sondow, J. Proofs of power sum and binomial coefficient congruences via Pascal’s identity. Am. Math. Mon. 2011, 118, 549–551. [Google Scholar] [CrossRef]
- Bazsó, A.; Pintér, A.; Srivastava, H. A refinement of Faulhaber’s theorem concerning sums of powers of natural numbers. Appl. Math. Lett. 2012, 25, 486–489. Available online: https://www.sciencedirect.com/science/article/pii/S089396591100454X (accessed on 25 December 2024). [CrossRef]
- Johnson, J. Summing the powers of the integers using calculus. Math. Teach. 1986, 79, 218–219. [Google Scholar] [CrossRef]
- Coen, L.E. Sums of Powers and the Bernoulli Numbers. April 1996. Available online: https://thekeep.eiu.edu/theses/1896 (accessed on 25 December 2024).
- Beery, J. Sums of Powers of Positive Integers. Convergence. 2009. Available online: https://old.maa.org/press/periodicals/convergence/sums-of-powers-of-positive-integers (accessed on 25 December 2024).
- Alt, A. Variations on a theme: The sum of equal powers of natural numbers (II). Crux Math. 2014, 40, 10. Available online: https://www.academia.edu/34314987/Variations_on_a_theme_The_sum_of_equal_powers_of_natural_numbers_II (accessed on 25 December 2024).
- Coffey, M.W.; Lettington, M.C. On Fibonacci polynomial expressions for sums of mth powers, their implications for Faulhaber’s formula and some theorems of Fermat. arXiv 2015, arXiv:1510.05402. [Google Scholar]
- Merca, M. An alternative to Faulhaber’s formula. Am. Math. Mon. 2015, 122, 599–601. Available online: https://www.researchgate.net/publication/278726859_An_Alternative_to_Faulhaber%27s_Formula (accessed on 25 December 2024). [CrossRef]
- Schumacher, R. An Extended version of Faulhaber’s formula. J. Integer Seq. 2016, 19, 16.4.2. Available online: https://cs.uwaterloo.ca/journals/JIS/VOL19/Schumacher/schu3.pdf (accessed on 25 December 2024).
- Singh, J. Defining sums of products of power sums. J. Integer Seq. 2016, 19, 1–16. Available online: https://www.academia.edu/90914310/Defining_Sums_of_Products_of_Power_Sums (accessed on 15 December 2024).
- Si, D.T. Sums of powers of integers and Bernoulli numbers clarified. Appl. Phys. Res. 2017, 9, 12–20. [Google Scholar] [CrossRef]
- Orosi, G.A. Simple derivation of Faulhaber’s formula. Appl. Math. E-Notes 2018, 18, 124–126. Available online: https://www.math.nthu.edu.tw/~amen/2018/AMEN-170803.pdf (accessed on 25 December 2024).
- Ho, C.; Mellblom, G.; Frodyma, M. On the sum of powers of consecutive integers. Coll. Math. J. 2018, 45, 1–7. [Google Scholar] [CrossRef]
- Duran, U.; Acikgoz, M. Some computations between sums of powers of consecutive integers and alternating sums of powers of consecutive integers. J. Univers. Math. 2019, 2, 137–143. [Google Scholar] [CrossRef]
- Litvinov, S.; Marco, F. Sums of powers of consecutive integers and Pascal’s triangle. Coll. Math. J. 2019, 45, 1–7. Available online: https://www.researchgate.net/publication/338249827_Sums_of_Powers_of_Consecutive_Integers_and_Pascal%27s_Triangle (accessed on 25 December 2024). [CrossRef]
- Pietrocola, G. From Twin Theorems on Matrices Obtainable from the Pascal Triangle to the Problem of Sums of Successive Integers Extended to Any Arithmetic Progression. 2019. Available online: http://www.pietrocola.eu/EN/fromtwintheoremstoFaulhaber.pdf (accessed on 25 December 2024).
- Cereceda, J.L. Bernoulli and Faulhaber. Fibonacci Q. 2021, 59, 145–149. [Google Scholar] [CrossRef]
- Casinillo, L.F. Some new remarks on power sums. J. Fundam. Math. Appl. 2022, 5, 9–16. [Google Scholar] [CrossRef]
- Cereceda, J.L. Sums of Powers of Integers and the Sequence A304330. arXiv 2024, arXiv:2405.05268. [Google Scholar]
- Zielinski, R. Faulhaber’s formula, odd Bernoulli numbers, and the method of partial sums. Integers 2022, 22, A78. [Google Scholar]
- Kumar, V.R.K.; Sivaraman, R. Novel way of determining sum of k-th powers of natural numbers. Int. J. Res. 2024, 12, 49–54. [Google Scholar] [CrossRef]
- Miller, S.J.; Trevino, E. On the sum of k-th powers in terms of earlier sums. Coll. Math. J. 2022, 53, 220–225. Available online: https://arxiv.org/pdf/1912.07171v2 (accessed on 25 December 2024). [CrossRef]
- Cubic Equation. Available online: https://en.wikipedia.org/wiki/Cubic_equation (accessed on 25 December 2024).
- Simsek, Y.; Kim, D.; Kim, T.; Rim, S.-H. A note on the sums of powers of consecutive q-integers. arXiv 2005, arXiv:math/0503073. [Google Scholar]
- Lipovetsky, S. Specific Features of Polynomials in Several Examples. Axioms 2024, 13, 43. [Google Scholar] [CrossRef]
- Lambert Function. Available online: https://en.wikipedia.org/wiki/Lambert_W_function (accessed on 25 December 2024).
- Euler-Maclaurin Formula. Available online: https://mathworld.wolfram.com/Euler-MaclaurinIntegrationFormulas.html (accessed on 25 December 2024).
- Confidence Intervals. Available online: https://real-statistics.com/regression/confidence-and-prediction-intervals/ (accessed on 25 December 2024).
p | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | ||||||||||||
2 | 3 | 5 | 9 | 17 | 33 | 65 | 129 | 257 | 513 | 1025 | 2049 | 4097 |
3 | 6 | 14 | 36 | 98 | 276 | 794 | 2316 | 6818 | 20,196 | 60,074 | 179,196 | 535,538 |
4 | 10 | 30 | 100 | 354 | 1300 | 4890 | 18,700 | 72,354 | 282,340 | 1,108,650 | 4,373,500 | 17,312,754 |
5 | 15 | 55 | 225 | 979 | 4425 | 20,515 | 96,825 | 462,979 | 2,235,465 | 10,874,275 | 53,201,625 | 261,453,379 |
6 | 21 | 91 | 441 | 2275 | 12,201 | 67,171 | 376,761 | 2,142,595 | 12,313,161 | 71,340,451 | 415,998,681 | 2,438,235,715 |
7 | 28 | 140 | 784 | 4676 | 29,008 | 184,820 | 1,200,304 | 7,907,396 | 52,666,768 | 353,815,700 | 2.393 × 109 | 1.628 × 1010 |
8 | 36 | 204 | 1296 | 8772 | 61,776 | 446,964 | 3,297,456 | 24,684,612 | 186,884,496 | 1,427,557,524 | 1.098 × 1010 | 8.4999 × 1010 |
9 | 45 | 285 | 2025 | 15,333 | 120,825 | 978,405 | 8,080,425 | 67,731,333 | 574,304,985 | 4,914,341,925 | 4.236 × 1010 | 3.6743 × 1011 |
10 | 55 | 385 | 3025 | 25,333 | 220,825 | 1,978,405 | 18,080,425 | 167,731,333 | 1,574,304,985 | 14,914,341,925 | 1.424 × 1011 | 1.3674 × 1012 |
11 | 66 | 506 | 4356 | 39,974 | 381,876 | 3,749,966 | 37,567,596 | 382,090,214 | 3,932,252,676 | 40,851,766,526 | 4.277 × 1011 | 4.5059 × 1012 |
12 | 78 | 650 | 6084 | 60,710 | 630,708 | 6,735,950 | 73,399,404 | 812,071,910 | 9,092,033,028 | 1.02769 × 1011 | 1.171 × 1012 | 1.3422 × 1013 |
13 | 91 | 819 | 8281 | 89,271 | 1,002,001 | 11,562,759 | 1.36 × 108 | 1.628 × 109 | 1.9697 × 1010 | 2.40628 × 1011 | 2.963 × 1012 | 3.672 × 1013 |
14 | 105 | 1015 | 11,025 | 127,687 | 1,539,825 | 19,092,295 | 2.42 × 108 | 3.104 × 109 | 4.0358 × 1010 | 5.29882 × 1011 | 7.012 × 1012 | 9.3414 × 1013 |
15 | 120 | 1240 | 14,400 | 178,312 | 2,299,200 | 30,482,920 | 4.12 × 108 | 5.666 × 109 | 7.8801 × 1010 | 1.10653 × 1012 | 1.566 × 1013 | 2.2316 × 1014 |
16 | 136 | 1496 | 18,496 | 243,848 | 3,347,776 | 47,260,136 | 6.81 × 108 | 9.961 × 109 | 1.4752 × 1011 | 2.20604 × 1012 | 3.325 × 1013 | 5.0464 × 1014 |
17 | 153 | 1785 | 23,409 | 327,369 | 4,767,633 | 71,397,705 | 1.09 × 109 | 1.694 × 1010 | 2.6611 × 1011 | 4.22204 × 1012 | 6.753 × 1013 | 1.0873 × 1015 |
18 | 171 | 2109 | 29,241 | 432,345 | 6,657,201 | 1.05 × 108 | 1.7 × 109 | 2.796 × 1010 | 4.6447 × 1011 | 7.79251 × 1012 | 1.318 × 1014 | 2.2441 × 1015 |
19 | 190 | 2470 | 36,100 | 562,666 | 9,133,300 | 1.52 × 108 | 2.6 × 109 | 4.494 × 1010 | 7.8716 × 1011 | 1.39236 × 1013 | 2.483 × 1014 | 4.4574 × 1015 |
20 | 210 | 2870 | 44,100 | 722,666 | 1.2 × 107 | 2.16 × 108 | 3.88 × 109 | 7.054 × 1010 | 1.2992 × 1012 | 2.41636 × 1013 | 4.531 × 1014 | 8.5534 × 1015 |
p | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | ||||||||||||
2 | 1.20 | 0.80 | 0.58 | 0.44 | 0.34 | 0.27 | 0.21 | 0.17 | 0.13 | 0.11 | 0.09 | 0.07 |
3 | 1.71 | 1.14 | 0.84 | 0.65 | 0.53 | 0.43 | 0.36 | 0.30 | 0.26 | 0.22 | 0.19 | 0.16 |
4 | 2.22 | 1.48 | 1.10 | 0.86 | 0.70 | 0.59 | 0.50 | 0.43 | 0.37 | 0.33 | 0.29 | 0.25 |
5 | 2.73 | 1.82 | 1.35 | 1.07 | 0.88 | 0.74 | 0.64 | 0.55 | 0.49 | 0.43 | 0.38 | 0.34 |
6 | 3.23 | 2.15 | 1.61 | 1.27 | 1.05 | 0.89 | 0.77 | 0.67 | 0.59 | 0.53 | 0.48 | 0.43 |
7 | 3.73 | 2.49 | 1.86 | 1.48 | 1.22 | 1.04 | 0.90 | 0.79 | 0.70 | 0.63 | 0.57 | 0.51 |
8 | 4.24 | 2.82 | 2.11 | 1.68 | 1.39 | 1.19 | 1.03 | 0.91 | 0.81 | 0.73 | 0.66 | 0.60 |
9 | 4.74 | 3.16 | 2.36 | 1.88 | 1.56 | 1.33 | 1.16 | 1.02 | 0.91 | 0.82 | 0.74 | 0.68 |
10 | 5.24 | 3.49 | 2.61 | 2.08 | 1.73 | 1.48 | 1.28 | 1.14 | 1.01 | 0.92 | 0.83 | 0.76 |
11 | 5.74 | 3.83 | 2.86 | 2.29 | 1.90 | 1.62 | 1.41 | 1.25 | 1.12 | 1.01 | 0.92 | 0.84 |
12 | 6.24 | 4.16 | 3.12 | 2.49 | 2.07 | 1.77 | 1.54 | 1.36 | 1.22 | 1.10 | 1.01 | 0.92 |
13 | 6.74 | 4.49 | 3.37 | 2.69 | 2.23 | 1.91 | 1.67 | 1.48 | 1.32 | 1.20 | 1.09 | 1.00 |
14 | 7.24 | 4.83 | 3.62 | 2.89 | 2.40 | 2.05 | 1.79 | 1.59 | 1.42 | 1.29 | 1.18 | 1.08 |
15 | 7.74 | 5.16 | 3.87 | 3.09 | 2.57 | 2.20 | 1.92 | 1.70 | 1.53 | 1.38 | 1.26 | 1.16 |
16 | 8.24 | 5.49 | 4.12 | 3.29 | 2.74 | 2.34 | 2.04 | 1.81 | 1.63 | 1.47 | 1.35 | 1.24 |
17 | 8.74 | 5.83 | 4.37 | 3.49 | 2.90 | 2.49 | 2.17 | 1.93 | 1.73 | 1.57 | 1.43 | 1.32 |
18 | 9.24 | 6.16 | 4.62 | 3.69 | 3.07 | 2.63 | 2.30 | 2.04 | 1.83 | 1.66 | 1.52 | 1.40 |
19 | 9.74 | 6.50 | 4.87 | 3.89 | 3.24 | 2.77 | 2.42 | 2.15 | 1.93 | 1.75 | 1.60 | 1.47 |
20 | 10.24 | 6.83 | 5.12 | 4.09 | 3.41 | 2.92 | 2.55 | 2.26 | 2.03 | 1.84 | 1.69 | 1.55 |
p | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | mean | std |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | ||||||||||||||
2 | 0.99 | 0.97 | 0.99 | 1.02 | 1.07 | 1.13 | 1.21 | 1.31 | 1.44 | 1.59 | 1.77 | 1.97 | 1.29 | 0.34 |
3 | 0.99 | 0.97 | 0.97 | 0.99 | 1.00 | 1.03 | 1.06 | 1.10 | 1.15 | 1.20 | 1.27 | 1.34 | 1.09 | 0.12 |
4 | 0.99 | 0.97 | 0.97 | 0.98 | 0.98 | 1.00 | 1.01 | 1.03 | 1.05 | 1.08 | 1.12 | 1.15 | 1.03 | 0.06 |
5 | 0.99 | 0.98 | 0.97 | 0.98 | 0.98 | 0.98 | 0.99 | 1.00 | 1.02 | 1.03 | 1.05 | 1.07 | 1.00 | 0.03 |
6 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.99 | 1.00 | 1.01 | 1.02 | 1.03 | 0.99 | 0.02 |
7 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.99 | 1.00 | 1.00 | 1.01 | 0.99 | 0.01 |
8 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.99 | 0.99 | 1.00 | 0.98 | 0.01 |
9 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.99 | 0.99 | 0.98 | 0.01 |
10 | 0.99 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.99 | 0.98 | 0.00 |
11 | 0.99 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.00 |
12 | 0.99 | 0.99 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.00 |
13 | 0.99 | 0.99 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.00 |
14 | 0.99 | 0.99 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.01 |
15 | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.01 |
16 | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.01 |
17 | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.01 |
18 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.01 |
19 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.01 |
20 | 1.00 | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.99 | 0.01 |
mean | 0.99 | 0.98 | 0.98 | 0.98 | 0.99 | 0.99 | 1.00 | 1.01 | 1.02 | 1.03 | 1.05 | 1.07 | 1.01 | |
std | 0.00 | 0.01 | 0.01 | 0.01 | 0.02 | 0.04 | 0.05 | 0.08 | 0.11 | 0.14 | 0.19 | 0.24 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipovetsky, S. Analytical Relations and Statistical Estimations for Sums of Powered Integers. Axioms 2025, 14, 30. https://doi.org/10.3390/axioms14010030
Lipovetsky S. Analytical Relations and Statistical Estimations for Sums of Powered Integers. Axioms. 2025; 14(1):30. https://doi.org/10.3390/axioms14010030
Chicago/Turabian StyleLipovetsky, Stan. 2025. "Analytical Relations and Statistical Estimations for Sums of Powered Integers" Axioms 14, no. 1: 30. https://doi.org/10.3390/axioms14010030
APA StyleLipovetsky, S. (2025). Analytical Relations and Statistical Estimations for Sums of Powered Integers. Axioms, 14(1), 30. https://doi.org/10.3390/axioms14010030