Sălăgean Differential Operator in Connection with Stirling Numbers
Abstract
:1. Introduction
- For the above classes and their special cases, one can refer to [29].
2. Lemmas and Useful Relations
3. Sufficient Condition
4. Inclusion Properties
5. An Integral Operator
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cho, N.E.; Woo, S.Y.; Owa, S. Uniform convexity properties for hypergeometric functions. Fract. Cal. Appl. Anal. 2002, 5, 303–313. [Google Scholar]
- Porwal, S. Confluent hypergeometric distribution and its applications on certain classes of univalent functions of conic regions. Kyungpook Math. J. 2018, 58, 495–505. [Google Scholar]
- Altunhan, A.; Sümer Eker, S. On certain subclasses of univalent functions of complex order associated with Poisson distribution series. Bol. Soc. Mat. Mex. 2020, 26, 1023–1034. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Bulboacă, T.; Dziok, J. Pascal distribution series connected with certain subclasses of univalent functions. Kyungpook Math. J. 2019, 59, 301–314. [Google Scholar]
- Frasin, B.A.; Swamy, S.R.; Wanas, A.K. Subclasses of starlike and convex functions associated with Pascal distribution series. Kyungpook Math. J. 2021, 61, 99–110. [Google Scholar]
- Ahmad, M.; Frasin, B.; Murugusundaramoorthy, G.; Al-khazaleh, A. An application of Mittag–Leffler-type Poisson distribution on certain subclasses of analytic functions associated with conic domains. Heliyon 2021, 7, e08109. [Google Scholar] [CrossRef]
- Porwal, S.; Magesh, N.; Abirami, C. Certain subclasses of analytic functions associated with Mittag-Leffler-type Poisson distribution series. Bol. Soc. Mat. Mex. 2020, 26, 1035–1043. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Seoudy, T.M. An Application of Miller–Ross-Type Poisson Distribution on Certain Subclasses of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials. Mathematics 2022, 10, 2462. [Google Scholar] [CrossRef]
- Nazeer, W.; Mehmood, Q.; Kang, S.M.; Haq, A.U. An application of binomial distribution series on certain analytic functions. J. Comput. Anal. Appl. 2019, 26, 11–17. [Google Scholar]
- Wanas, A.K.; Al-Ziadi, N.A.J. Applications of Beta Negative Binomial Distribution Series on Holomorphic Functions. Earthline J. Math. Sci. 2021, 6, 271–292. [Google Scholar] [CrossRef]
- Porwal, S. Generalized distribution and its geometric properties associated with univalent functions. J. Complex Anal. 2018, 2018, 8654506. [Google Scholar] [CrossRef]
- Porwal, S.; Gupta, A. Some properties of convolution for hypergeometric distribution type series on certain analytic univalent functions. Acta Univ. Apulensis Mat.-Inform. 2018, 56, 69–80. [Google Scholar]
- Aizenberg, L.A.; Leinartas, E.K. Multidimensional Hadamard composition and Szegö kernels. Siberian Math. J. 1983, 24, 317–323. [Google Scholar] [CrossRef]
- Sadykov, T. The Hadamard product of hypergeometric series. Bull. Sci. Math. 2002, 126, 31–43. [Google Scholar] [CrossRef]
- Alexander, J.W. Functions which map the interior of the unit circle upon simple regions. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
- Ruscheweyh, S. New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- Carlson, B.C.; Shaffer, D.B. Starlike and prestarlike hypergeometric functions. SIAM J. Math. 1984, 15, 737–745. [Google Scholar] [CrossRef]
- Sălăgean, G.S. Subclasses of univalent functions. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1983; Volume 1013, pp. 362–372. [Google Scholar]
- Noor, K.I.; Noor, M.A. On integral operators. J. Math. Anal. Appl. 1999, 238, 341–352. [Google Scholar] [CrossRef]
- Dziok, J.; Srivastava, H.M. Classes of analytic functions associated with the generalized hypergeometric function. Appl. Math. Comput. 1999, 103, 1–13. [Google Scholar] [CrossRef]
- Al-Oboudi, F.M. On univalent functions defined by a generalized Sălăgean operator. Int. J. Math. Math. Sci. 2004, 2004, 1429–1436. [Google Scholar] [CrossRef]
- Gordji, M.E.; Alimohammadi, D.; Ebadian, A. Some applications of the generalized Bernardi-Libera-Livingston integral operator on univalent functions. J. Inequal. Pure Appl. Math. 2009, 10, 5. [Google Scholar]
- El-Ashwah, R.M.; Aouf, M.K.; Hassan, A.; Hassan, A. Certain class of analytic functions defined by Ruscheweyh derivative with varying arguments. Kyungpook Math. J. 2014, 54, 453–461. [Google Scholar] [CrossRef]
- Stirling, J. Methodus Differentialis: Sive Tractatus de Summatione et Interpolatione Serierum Infinitarum; Gale Ecco: London, UK, 1730. [Google Scholar]
- Frasin, B.A. An application of Pascal distribution series on certain analytic functions associated with Stirling numbers and Sălăgean operator. J. Funct. Spaces 2022, 2022, 13. [Google Scholar] [CrossRef]
- Frasin, B.A. Poisson distribution series on certain analytic functions involving Stirling numbers. Asian-Eur. J. Math. 2023, 16, 2350120. [Google Scholar] [CrossRef]
- Quaintance, J.; Gould, H.W. Combinatorial Identities for Stirling Numbers (The Unpublished Notes of H.W. Gould); World Scientific Publishing Co.: Singapore, 2015. [Google Scholar]
- Aouf, M.K. Subordination properties for a certain class of analytic functions defined by the Sălăgean operator. Appl. Math. Lett. 2009, 22, 1581–1585. [Google Scholar] [CrossRef]
- Dixit, K.K.; Pal, S.K. On a class of univalent functions related to complex order. Indian J. Pure Appl. Math. 1995, 26, 889–896. [Google Scholar]
- El-Ashwah, R.M.; Aouf, M.K.; Hassan, A.A.M.; Hassan, A.H. A New Class of Analytic Functions Defined by Using Sălăgean Operator. Int. J. Anal. 2013, 2013, 10. [Google Scholar] [CrossRef]
- Arif, M.; Ahmad, K.; Liu, J.-L.; Sokol, J. A New Class of Analytic Functions Associated with Sălăgean Operator. J. Func. Spaces 2019, 2019, 8. [Google Scholar] [CrossRef]
- Frasin, B.A. A new differential operator of analytic functions involving binomial series. Bol. Soc. Paran. Mat. 2020, 38, 205–213. [Google Scholar] [CrossRef]
- Lupas, A.A.; Oros, G.I. Strong differential superordination results involving extended Sălăgean and Ruscheweyh Operators. Mathematics 2021, 9, 2487. [Google Scholar] [CrossRef]
- Lupas, A.A.; Oros, G.I. On Special Differential Subordinations Using Fractional Integral of Sălăgean and Ruscheweyh Operators. Symmetry 2021, 13, 1553. [Google Scholar] [CrossRef]
- Hussain, S.; Khan, S.; Zaighum, M.A.; Darus, M. Applications of a q-Sălăgean type operator on multivalent functions. J. Inequal. Appl. 2018, 2018, 301. [Google Scholar] [CrossRef]
- Aouf, M.K.; Mostafa, A.O.; Madian, S.M. Fekete–Szegö properties for quasi-subordination class of complex order defined by Sălăgean operator. Afr. Mat. 2020, 31, 483–492. [Google Scholar] [CrossRef]
1 | 0 | 0 | 0 | 0 | 0 | |
1 | 1 | 0 | 0 | 0 | 0 | |
1 | 3 | 1 | 0 | 0 | 0 | |
1 | 7 | 6 | 1 | 0 | 0 | |
1 | 15 | 25 | 10 | 1 | 0 | |
1 | 31 | 90 | 65 | 15 | 1 | |
⋮ | 1 | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frasin, B.A.; Cotîrlă, L.-I. Sălăgean Differential Operator in Connection with Stirling Numbers. Axioms 2024, 13, 620. https://doi.org/10.3390/axioms13090620
Frasin BA, Cotîrlă L-I. Sălăgean Differential Operator in Connection with Stirling Numbers. Axioms. 2024; 13(9):620. https://doi.org/10.3390/axioms13090620
Chicago/Turabian StyleFrasin, Basem Aref, and Luminiţa-Ioana Cotîrlă. 2024. "Sălăgean Differential Operator in Connection with Stirling Numbers" Axioms 13, no. 9: 620. https://doi.org/10.3390/axioms13090620
APA StyleFrasin, B. A., & Cotîrlă, L. -I. (2024). Sălăgean Differential Operator in Connection with Stirling Numbers. Axioms, 13(9), 620. https://doi.org/10.3390/axioms13090620