Positivity-Preserving Rational Cubic Fractal Interpolation Function Together with Its Zipper Form
Abstract
1. Introduction
2. Basics of Fractal Interpolation Functions and Zipper Fractal Interpolation Functions
2.1. Fractal Interpolation Function
2.2. Zipper Fractal Interpolation Function
- There is a unique compact set such that
- The continuous function that interpolates the dataset , i.e.,
3. Construction of Rational Cubic Fractal Interpolation Function and Zipper-Rational Cubic Fractal Interpolation Function
3.1. C1—Rational Cubic Fractal Interpolation Function
3.2. C1-Zipper-Rational Cubic Fractal Interpolation Function
4. Convergence of Rational Cubic Fractal Interpolation Function and Zipper-Rational Cubic Fractal Interpolation Function
5. Constrained Rational Cubic Fractal Interpolation Function and Zipper-Rational Cubic Fractal Interpolation Function
6. Positivity of Rational Cubic Fractal Interpolation Function and Zipper-Rational Cubic Fractal Interpolation Function
7. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schmidt, J.W.; Heß, W. Positivity of cubic polynomials on intervals and positive spline interpolation. BIT Numer. Math. 1988, 28, 340–352. [Google Scholar] [CrossRef]
- Butt, S.; Brodlie, K.W. Preserving positivity using piecewise cubic interpolation. Comput. Graph. 1993, 17, 55–64. [Google Scholar] [CrossRef]
- Sarfraz, M.; Hussain, M.Z. Data visualization using rational spline interpolation. J. Comput. Appl. Math. 2006, 189, 513–525. [Google Scholar] [CrossRef]
- Hussain, M.Z.; Sarfraz, M. Positivity-preserving interpolation of positive data by rational cubics. J. Comput. Appl. Math. 2008, 218, 446–458. [Google Scholar] [CrossRef]
- Chernous’ ko, F.L.; Ananievski, I.M.; Reshmin, S.A. Control of Nonlinear Dynamical Systems: Methods and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Jayaraman, A.; Belmonte, A. Oscillations of a solid sphere falling through a wormlike micellar fluid. Phys. Rev. E. 2003, 67, 065301. [Google Scholar] [CrossRef]
- Massopust, P. Interpolation and Approximation with Splines and Fractals; Oxford University Press, Inc.: Oxford, UK, 2010. [Google Scholar]
- Barnsley, M.F. Fractals Everywhere; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Gibert, S.; Massopust, P.R. The exact Hausdorff dimension for a class of fractal functions. J. Math. Anal. Appl. 1992, 168, 171–183. [Google Scholar] [CrossRef]
- Barnsley, M.F. Fractal functions and interpolation. Constr. Approx. 1986, 2, 303–329. [Google Scholar] [CrossRef]
- Hutchinson, J.E. Fractals and self similarity. Indiana Univ. Math. J. 1981, 30, 713–747. [Google Scholar] [CrossRef]
- Barnsley, M.F.; Harrington, A.N. The calculus of fractal interpolation functions. J. Approx. Theory 1989, 57, 14–34. [Google Scholar] [CrossRef]
- Navascués, M.A.; Sebastián, M.V. Smooth fractal interpolation. J. Inequalities Appl. 2006, 2006, 78734. [Google Scholar] [CrossRef]
- Prasad, B.; Katiyar, K.; Singh, B. Trigonometric quadratic fractal interpolation functions. Int. J. Appl. Eng. Res. 2015, 37, 290–302. [Google Scholar]
- Garg, S.; Katiyar, K. A new type of zipper fractal interpolation surfaces and associated bivariate zipper fractal operator. J. Anal. 2023, 31, 3021–3043. [Google Scholar] [CrossRef]
- Gautam, S.S.; Katiyar, K. Alpha fractal rational quintic spline with shape preserving properties. Int. J. Comput. Appl. Math. Comput. Sci. 2023, 3, 113–121. [Google Scholar] [CrossRef]
- Chand, A.K.B.; Vijender, N.; Navascués, M.A. Shape preservation of scientific data through rational fractal splines. Calcolo 2014, 51, 329–362. [Google Scholar] [CrossRef]
- Reddy, K.M.; Chand, A.K.; Viswanathan, P. Data visualization by rational fractal function based on function values. J. Anal. 2020, 28, 261–277. [Google Scholar] [CrossRef]
- Navascués, M.A. Fractal polynomial interpolation. Z. Anal. Ihre Anwendungen 2005, 24, 401–418. [Google Scholar] [CrossRef]
- Banerjee, A.; Akhtar, M.N.; Navascués, M.A. Local α-fractal interpolation function. Eur. Phys. J. Spec. Top. 2023, 232, 1043–1050. [Google Scholar] [CrossRef]
- Feng, Z.; Sun, X. Box-counting dimensions of fractal interpolation surfaces derived from fractal interpolation functions. J. Math. Anal. Appl. 2014, 412, 416–425. [Google Scholar] [CrossRef]
- Akhtar, M.N.; Prasad, M.G.; Navascués, M.A. Box dimensions of α-fractal functions. Fractals 2016, 24, 1650037. [Google Scholar] [CrossRef]
- Nayak, S.R.; Mishra, J.; Palai, G. Analysing roughness of surface through fractal dimension: A review. Image Vis. Comput. 2019, 89, 21–34. [Google Scholar] [CrossRef]
- Ri, S. New types of fractal interpolation surfaces. Chaos Solitons Fractals 2019, 119, 291–307. [Google Scholar] [CrossRef]
- Navascués, M.A.; Akhtar, M.N.; Mohapatra, R. Fractal frames of functions on the rectangle. Fractal Fract. 2021, 5, 42. [Google Scholar] [CrossRef]
- Pandey, M.; Som, T.; Verma, S. Fractal dimension of Katugampola fractional integral of vector-valued functions. Eur. Phys. J. Spec. Top. 2021, 230, 3807–3814. [Google Scholar] [CrossRef]
- Navascués, M.A. Fractal curves on Banach algebras. Fractal Fract. 2022, 6, 722. [Google Scholar] [CrossRef]
- He, C.H.; Liu, C. Fractal dimensions of a porous concrete and its effect on the concrete’s strength. Facta Univ. Ser. Mech. Eng. 2023, 21, 137–150. [Google Scholar] [CrossRef]
- Lal, R.; Selmi, B.; Verma, S. On Dimension of Fractal Functions on Product of the Sierpiński Gaskets and Associated Measures. Results Math. 2024, 79, 73. [Google Scholar] [CrossRef]
- Navascués, M.A. Approximation of fixed points and fractal functions by means of different iterative algorithms. Chaos Solitons Fractals 2024, 180, 114535. [Google Scholar] [CrossRef]
- Chandra, S.; Verma, S.; Abbas, S. Construction of fractal functions using Kannan mappings and smoothness analysis. arXiv 2023, arXiv:2301.03075. [Google Scholar]
- Thangaraj, C.; Easwaramoorthy, D.; Selmi, B.; Chamola, B.P. Generation of fractals via iterated function system of Kannan contractions in controlled metric space. Math. Comput. Simul. 2024, 222, 188–198. [Google Scholar] [CrossRef]
- Garg, S.; Katiyar, K. Positivity and monotonicity shape preserving using rational quintic fractal interpolation functions. Adv. Math. Sci. J. 2020, 9, 5511–5520. [Google Scholar]
- Tyada, K.R.; Chand, A.K.B.; Sajid, M. Shape preserving rational cubic trigonometric fractal interpolation functions. Math. Comput. Simulation. 2021, 90, 866–891. [Google Scholar] [CrossRef]
- Ibraheem, F.; Hussain, M.; Hussain, M.Z.; Bhatti, A.A. Positive data visualization using trigonometric function. J. Appl. Math. 2012, 2012, 247120. [Google Scholar] [CrossRef]
- Dube, M.; Rana, P.S. Positivity preserving interpolation of positive data by rational quadratic trigonometric spline. IOSR J. Math. 2014, 10, 42–47. [Google Scholar] [CrossRef]
- Hussain, M.Z.; Ali, J. Positivity-preserving piecewise rational cubic interpolation. Matematika 2006, 22, 147–153. [Google Scholar]
- Piah, A.R.M.; Unsworth, K. Improved sufficient conditions for monotonic piecewise rational quartic interpolation. Sains Malays. 2011, 40, 1173–1178. [Google Scholar]
- Abbas, M.; Majid, A.A.; Ali, J.M. Monotonicity-preserving C2 rational cubic spline for monotone data. Appl. Math. Comput. 2012, 219, 2885–2895. [Google Scholar] [CrossRef]
- Chand, A.K.B.; Vijender, N. Monotonicity preserving rational quadratic fractal interpolation functions. Adv. Numer. Anal. 2014, 2014, 504825. [Google Scholar] [CrossRef]
- Dube, M.; Tiwari, P. Convexity preserving C2 rational quadratic trigonometric spline. Int. J. Sci. Res. Publ. 2012, 3, 401. [Google Scholar]
- Sharma, S.; Katiyar, K. Preserving convexity through C2 rational quintic fractal interpolation function. InAIP Conf. Proc. 2023, 2735, 040015. [Google Scholar]
- Brodlie, K.W.; Butt, S. Preserving convexity using piecewise cubic interpolation. Comput. Graph. 1991, 15, 15–23. [Google Scholar] [CrossRef]
- Viswanathan, P.; Chand, A.K.B.; Agarwal, R.P. Preserving convexity through rational cubic spline fractal interpolation function. J. Comput. Appl. Math. 2014, 263, 262–276. [Google Scholar] [CrossRef]
- Aseev, V.V.; Tetenov, A.V.; Kravchenko, A.S. On selfsimilar Jordan curves on the plane. Sib. Math. J. 2003, 44, 379–386. [Google Scholar] [CrossRef]
- Aseev, V.V.; Tetenov, A.V. On the self-similar Jordan arcs admitting structure parametrization. Sib. Math. J. 2005, 46, 581–592. [Google Scholar] [CrossRef]
- Jha, S.; Chand, A.K.B. Zipper rational quadratic fractal interpolation functions. In Proceedings of the Fifth International Conference on Mathematics and Computing: ICMC; Springer: Singapore, 2020; pp. 229–241. [Google Scholar]
- Chand, A.K.B. Zipper fractal functions with variable scalings. Adv. Theory Nonlinear Anal. Appl. 2022, 6, 481–501. [Google Scholar]
- Vijay; Chand, A.K.B. Convexity-preserving rational cubic zipper fractal interpolation curves and surfaces. Math. Comput. Appl. 2023, 28, 74. [Google Scholar]
- Chand, A.K.B.; Vijender, N.; Viswanathan, P.; Tetenov, A.V. Affine zipper fractal interpolation functions. BIT Numer. Math. 2020, 60, 319–344. [Google Scholar] [CrossRef]
- Aseev, V.V. On the regularity of self-similar zippers. In Proceedings of the 6-th Russian-Korean International Symposium on Science and Technology, KORUS-2002, Novosibirsk, Russia, 24–30 June 2002; p. 167. [Google Scholar]
- Duan, Q.; Djidjeli, K.; Price, W.G.; Twizell, E.H. The approximation properties of some rational cubic splines. Int. J. Comput. Math. 1999, 72, 155–166. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.; Katiyar, K.; Sudhamsu, G.; Wratch, M.K.; Salgotra, R. Positivity-Preserving Rational Cubic Fractal Interpolation Function Together with Its Zipper Form. Axioms 2024, 13, 584. https://doi.org/10.3390/axioms13090584
Sharma S, Katiyar K, Sudhamsu G, Wratch MK, Salgotra R. Positivity-Preserving Rational Cubic Fractal Interpolation Function Together with Its Zipper Form. Axioms. 2024; 13(9):584. https://doi.org/10.3390/axioms13090584
Chicago/Turabian StyleSharma, Shamli, Kuldip Katiyar, Gadug Sudhamsu, Manjinder Kaur Wratch, and Rohit Salgotra. 2024. "Positivity-Preserving Rational Cubic Fractal Interpolation Function Together with Its Zipper Form" Axioms 13, no. 9: 584. https://doi.org/10.3390/axioms13090584
APA StyleSharma, S., Katiyar, K., Sudhamsu, G., Wratch, M. K., & Salgotra, R. (2024). Positivity-Preserving Rational Cubic Fractal Interpolation Function Together with Its Zipper Form. Axioms, 13(9), 584. https://doi.org/10.3390/axioms13090584