Some New Estimations of Ostrowski-Type Inequalities for Harmonic Fuzzy Number Convexity via Gamma, Beta and Hypergeometric Functions
Abstract
:1. Introduction
2. Preliminaries
- is normal, i.e., there exists such that
- is upper semi-continuous, i.e., for given there exists and there exists such that for all with ;
- is fuzzy convex, i.e., , ;
- is compact.
- 1.
- is a non-decreasing function.
- 2.
- is a non-increasing function.
- 3.
- 4.
- and are bounded and left continuous on and right continuous at
- 5.
- Moreover, if is a fuzzy number with parametrization given by then function and find the conditions 1–4.
- , ;
- , and ;
- , ;
- , , where is the function defined by ;
- .
3. Main Results
4. Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ostrowski, A.M. Über die absolutabweichung einer differentiebaren funktion van ihrem integralmitte wert. Comment Math. Helv. 1938, 10, 226–227. [Google Scholar] [CrossRef]
- Mitrinović, D.S.; Vasić, P.M. Die Grundlehren der Mathematischen Wissenschaften, Band 165; Springer: Berlin/Heidelberg, Germany, 1970. [Google Scholar]
- Milovanović, G.V. Ostrowski type inequalities and some selected quadrature formulae. Appl. Anal. Discret. Math. 2021, 15, 151–178. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Z.; Zheng, X.; Zhao, Y.; Wang, J. 3D path planning in threat environment based on fuzzy logic. J. Intell. Fuzzy Syst. 2024, 1, 7021–7034. [Google Scholar] [CrossRef]
- Zhang, T.; Deng, F.; Shi, P. Non-fragile finite-time stabilization for discrete mean-field stochastic systems. IEEE Trans. Autom. Control 2023, 68, 6423–6430. [Google Scholar] [CrossRef]
- Ujević, N. Sharp inequalities of Simpson type and Ostrowski type. Comput. Math. Appl. 2004, 48, 145–151. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Y.; Zhao, D.; Shi, L. Online Pareto optimal control of mean-field stochastic multi-player systems using policy iteration. Sci. China Inf. Sci. 2024, 67, 1–17. [Google Scholar] [CrossRef]
- Costa, T.M.; Flores-Franulic, A.; Chalco-Cano, Y.; Aguirre-Cipe, I. Ostrowski–type inequalities for fuzzy valued functions and its applications in quadrature theory. Inf. Sci. 2020, 529, 101–115. [Google Scholar] [CrossRef]
- Liu, W. New bounds for the companion of Ostrowski’s inequality and applications. Filomat 2014, 28, 167–178. [Google Scholar] [CrossRef]
- Masjed-Jamei, M.; Dragomir, S.S. A generalization of the Ostrowski-Grüss inequality. Anal. Appl. 2014, 12, 117–130. [Google Scholar] [CrossRef]
- Qayyum, A.; Faye, I.; Shoaib, M. Improvement of Ostrowski integral type inequalities with application. Filomat 2016, 30, 1441–1456. [Google Scholar] [CrossRef]
- Abbaszadeh, S.; Gordji, M.E.; Pap, E.; Szakái, A. Jensen-type inequalities for Sugeno integral. Inf. Sci. 2017, 376, 148–157. [Google Scholar] [CrossRef]
- Agahi, H.; Mesiar, R.; Ouyang, Y. General Minkowski type inequalities for Sugeno integrals. Fuzzy Sets Syst. 2010, 161, 708–715. [Google Scholar] [CrossRef]
- Pap, E.; Štrboja, M. Generalization of the Jensen inequality for pseudo-integral. Inf. Sci. 2010, 180, 543–548. [Google Scholar] [CrossRef]
- Wang, R.S. Some inequalities and convergence theorems for Choquet integral. J. Appl. Math. Comput. 2011, 35, 305–321. [Google Scholar] [CrossRef]
- Aumann, R.J. Integrals of set-valued functions. J. Math. Anal. Appl. 1965, 12, 1–12. [Google Scholar] [CrossRef]
- Klein, E.; Thompson, A.C. Theory of Correspondences; Wiley: Hoboken, NJ, USA, 1984. [Google Scholar]
- Costa, T.M.; Roma ’n-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
- Khan, M.B.; Zaini, H.G.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K. Riemann–Liouville fractional integral inequalities for generalized pre-invex functions of interval-valued settings based upon pseudo order relation. Mathematics 2022, 10, 204. [Google Scholar] [CrossRef]
- Budak, H.; Tun, T.; Sarikaya, M.Z. Fractional Hermite-Hadamard-type inequalities for interval-valued functions. Proc. Am. Math. Soc. 2019, 148, 705–718. [Google Scholar] [CrossRef]
- Zhao, D.; An, T.; Ye, G.; Liu, W. Chebyshev type inequalities for interval-valued functions. Fuzzy Sets Syst. 2020, 396, 82–101. [Google Scholar] [CrossRef]
- Zhao, D.; An, T.; Ye, G.; Liu, W. Some generalizations of Opial type inequalities for interval-valued functions. Fuzzy Sets Syst. 2021, 436, 128–151. [Google Scholar] [CrossRef]
- Zhao, D.; Zhao, G.; Ye, G.; Liu, W.; Dragomir, S.S. On Hermite–Hadamard-type inequalities for coordinated h-convex interval-valued functions. Mathematics 2021, 9, 2352. [Google Scholar] [CrossRef]
- Budak, H.; Kashuri, A.; Butt, S. Fractional Ostrowski type inequalities for interval valued functions. Mathematics 2022, 36, 2531–2540. [Google Scholar] [CrossRef]
- Khan, M.B.; Abdullah, L.; Noor, M.A.; Noor, K.I. New Hermite–Hadamard and Jensen inequalities for log-h-convex fuzzy interval valued functions. Int. J. Comput. Intell. Syst. 2021, 14, 155. [Google Scholar] [CrossRef]
- Anastassiou, G.A. Fuzzy Ostrowski type inequalities. Comput. Appl. Math. 2003, 22, 279–292. [Google Scholar] [CrossRef]
- Bede, B.; Gal, S.G. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 2005, 151, 581–599. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Roma’n-Flores, H.; Jiménez-Gamero, M.D. Generalized derivative and π-derivative for set-valued functions. Inf. Sci. 2011, 181, 2177–2188. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Roma’n-Flores, H.; Jiménez-Gamero, M.D. Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative. Comput. Appl. Math. 2012, 31, 457–472. [Google Scholar]
- Chalco-Cano, Y.; Rufian-Lizana, A.; Roma’n-Flores, H.; Jiménez-Gamero, M.D. Calculus for interval valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets Syst. 2013, 219, 49–67. [Google Scholar] [CrossRef]
- Stefanini, L.; Bede, B. Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal. 2009, 71, 1311–1328. [Google Scholar] [CrossRef]
- Stefanini, L. A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets Syst. 2010, 161, 1564–1584. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Lodwick, W.A.; Condori-Equice, W. Ostrowski type inequalities and applications in numerical integration for interval-valued functions. Soft Comput. 2015, 19, 3293–3300. [Google Scholar] [CrossRef]
- Iscan, I. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
- Khan, M.B.; Zaini, H.G.; Santos-García, G.; Mohammed, P.O.; Soliman, M.S. Riemann–Liouville Fractional Integral Inequalities for Generalized Harmonically Convex Fuzzy-Interval-Valued Functions. Int. J. Comput. Intell. Syst. 2022, 15, 28. [Google Scholar] [CrossRef]
- Diamond, P.; Kloeden, P.E. Metric Spaces of Fuzzy Sets: Theory and Applications; World Scientific: Singapore, 1994. [Google Scholar]
- Debreu, G. Integration of correspondences. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkerley, CA, USA, 21 June–18 July 1965; University of California Press: Berkerley, CA, USA, 1965; Volume 2, pp. 351–372. [Google Scholar]
- Chalco-Cano, Y.; Román-Flores, H. On new solutions of fuzzy differential equations. Chaos Solitons Fractals 2008, 38, 112–119. [Google Scholar] [CrossRef]
- Rojas-Medar, M.A.; Jiménez-Gamero, M.D.; Chalco-Cano, Y.; Viera-Brandão, A.J. Fuzzy quasilinear spaces and applications. Fuzzy Sets Syst. 2005, 152, 173–190. [Google Scholar] [CrossRef]
- Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
- Althobaiti, A.; Althobaiti, S.; Vivas Cortez, M. The Estimation of Different Kinds of Integral Inequalities for a Generalized Class of Convex Mapping and a Harmonic Set via Fuzzy Inclusion Relations and Their Applications in Quadrature Theory. Axioms 2024, 13, 344. [Google Scholar] [CrossRef]
- Milovanović, G.V.; Pečarić, J.E. On generalization of the inequality of A. Ostrowski and some related applications. Publ. Elektrotehničkog Fak. Serija Matematika i Fizika 1976, 544/576, 155–158. Available online: https://www.jstor.org/stable/43667982 (accessed on 11 May 2024).
- Rakhmangulov, A.; Aljohani, A.F.; Mubaraki, A.; Althobaiti, S. A New Class of Coordinated Non-Convex Fuzzy-Number-Valued Mappings with Related Inequalities and Their Applications. Axioms 2024, 13, 404. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshehry, A.S.; Ciurdariu, L.; Saber, Y.; Soliman, A.F. Some New Estimations of Ostrowski-Type Inequalities for Harmonic Fuzzy Number Convexity via Gamma, Beta and Hypergeometric Functions. Axioms 2024, 13, 455. https://doi.org/10.3390/axioms13070455
Alshehry AS, Ciurdariu L, Saber Y, Soliman AF. Some New Estimations of Ostrowski-Type Inequalities for Harmonic Fuzzy Number Convexity via Gamma, Beta and Hypergeometric Functions. Axioms. 2024; 13(7):455. https://doi.org/10.3390/axioms13070455
Chicago/Turabian StyleAlshehry, Azzh Saad, Loredana Ciurdariu, Yaser Saber, and Amal F. Soliman. 2024. "Some New Estimations of Ostrowski-Type Inequalities for Harmonic Fuzzy Number Convexity via Gamma, Beta and Hypergeometric Functions" Axioms 13, no. 7: 455. https://doi.org/10.3390/axioms13070455
APA StyleAlshehry, A. S., Ciurdariu, L., Saber, Y., & Soliman, A. F. (2024). Some New Estimations of Ostrowski-Type Inequalities for Harmonic Fuzzy Number Convexity via Gamma, Beta and Hypergeometric Functions. Axioms, 13(7), 455. https://doi.org/10.3390/axioms13070455