Next Article in Journal
Analysis of Fat Big Data Using Factor Models and Penalization Techniques: A Monte Carlo Simulation and Application
Previous Article in Journal
Inspection of a Time-Delayed Excited Damping Duffing Oscillator
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some New Estimations of Left and Right Interval Fractional Pachpatte’s Type Integral Inequalities via Rectangle Plane

1
Department of Mathematical Sciences, Faculty of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
2
Department of Mathematics, Politehnica University of Timișoara, 300006 Timisoara, Romania
3
Department of Mathematics, College of Science Al-Zulfi, Majmaah University, P.O. Box 66, Al-Majmaah 11952, Saudi Arabia
4
Department of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
5
Department of Basic Science, Benha Faculty of Engineering, Benha University, Banha 13511, Egypt
*
Author to whom correspondence should be addressed.
Axioms 2024, 13(7), 417; https://doi.org/10.3390/axioms13070417
Submission received: 19 May 2024 / Revised: 6 June 2024 / Accepted: 19 June 2024 / Published: 21 June 2024
(This article belongs to the Section Mathematical Analysis)

Abstract

:
Inequalities involving fractional operators have been an active area of research, which is crucial in establishing bounds, estimates, and stability conditions for solutions to fractional integrals. In this paper, we initially presented a new class that is known as coordinated left and right -pre-invex interval-valued mappings ( C · L · R - -pre-invex Ι · V - M ), as well classical convex and nonconvex are also obtained. This newly defined class enabled us to derive novel inequalities, such as Hermite–Hadamard and Pachpatte’s type inequalities. Furthermore, the obtained results allowed us to recapture several special cases of known results for different parameter choices, which can be applications of the main results. Finally, we discussed the validity of the main outcomes.

1. Introduction

The theory of inequalities is fundamental in numerous scientific and engineering fields and is extensively taught due to its practical applications. Mathematical inequalities are used in system design and analysis, engineering, signal processing, and optimization problems [1,2]. They offer a robust framework for analyzing and comprehending the behavior of solutions to numerical and partial differential equations. Fractional analysis, an innovative extension of classical analysis to non-integer orders, plays a significant role in this context. In studying physical systems described by fractional differential equations, fractional integral inequalities are utilized to obtain energy estimates, see [3,4,5,6].
Convex functions have been a central topic in mathematics for a significant period. Their growing popularity is likely due to their essential role in optimization, machine learning, and various applications across scientific and engineering disciplines [7,8,9,10,11]. There is a profound and intricate relationship between the theory of inequalities and convex functions. Convex functions have been crucial in the discovery and development of numerous important and useful inequalities. The primary definition of a convex function on convex sets is as follows.
If G : K N is a convex function defined on the interval K of real numbers, and   θ ,   λ K with θ < λ , then
G κ θ + 1 κ λ κ G θ + 1 κ G λ .
Jensen’s inequality is a foundational and widely recognized result for convex functions, with various related forms and extensions. Its extensive applications highlight its importance in numerous scientific, engineering, and computational fields, see [12,13]. Convex functions serve as the cornerstone of mathematical inequalities and are essential tools in contemporary research.
Fractional calculus offers a framework for describing and modeling systems with intricate dynamics, memory effects, and anomalous behaviors that classical calculus may not adequately capture. It is a specialized branch of applied mathematics that aids in the comprehension and analysis of complex real-world phenomena, see [14,15,16]. Fractional integral and derivative operators are vital in connecting mathematical models to real-world problems. These operators have substantially contributed to the development of new concepts in fractional analysis, broadening their application areas [17,18,19]. Fractional integrals and derivatives differ in terms of singularity, locality, and kernel. Fractional integrals, in particular, are powerful mathematical tools which are valuable for addressing a wide range of issues in science and engineering, see [20,21]. The development of fractional calculus has led to the introduction and analysis of various fractional integral operators, each with distinct properties and applications, see [22,23]. The Riemann–Liouville fractional integral is one of the most fundamental and widely utilized operators in this field. Additionally, operators introduced by Caputo, Fabrizio, and tempered operators add further depth and versatility to the theory. Due to the significance of fractional calculus, many mathematicians are interested in fractional operators and integral inequalities. Kashuri et al. [24,25] proved trapezoidal-type inequalities for differentiable convex functions with applications to matrices and the q-digamma function. Junjua et al. [26,27] obtained trapezoidal-type inequalities for exponential convex functions, applying them to certain real means. Furthermore, several articles [28,29,30] have demonstrated fractional trapezoidal-type inequalities for functions with convex second derivatives in the absolute value. Klasoom et al. [31,32] examined various modifications of trapezoidal-type inequalities for twice differentiable convex functions using (p,q)-integrals. For different fractional versions of various inequalities, see [33,34].
Due to the broad spectrum of fields where set-valued analysis is applicable, researchers have formulated integral inequalities using various operators and order relations within the realm of interval-valued mappings (I.V.F.). Taking inspiration from this approach, Zhao et al. [35,36] recently employed the conventional integral operator to establish inequality (1.2) within the framework of interval inclusion relations. The authors of [37] introduced pre-invex functions on the plane with interval values and derived multiple double inequalities. Wannalookkhee et al. [38] utilized quantum integrals to derive a double inequality on the plane and for other applications. Kalsoom et al. [39] developed a Hermite–Hadamard-type (H.H) inequality associated with coordinated higher-order generalized pre and quasi-invex mappings by utilizing the concept of quantum integrals. Utilizing two intriguing identities for functions of two variables, Akkurt et al. [40] innovatively formulated Hermite–Hadamard (H.H.)-type fractional integral inequalities for double fractional integrals. Shi et al. [41] established H.H. and its symmetric variation using interval-valued mappings ( Ι · V - M ) and two forms of generalized convex functions. Saeed et al. [42] devised H.H. and Pachpatte-type integral inequalities employing coordinated up and down convex mappings with fuzzy-number values. Wu et al. [43] derived three fundamental integral identities based on the first- and second-order derivatives of a given function using fractional integrals with an exponential kernel. Ahmad et al. [44] introduced fractional operators with non-singular kernels to support H.H., Hermite–Hadamard–Fejer, Dragomir–Agarwal, and Pachpatte-type inequalities for convex functions. Khan et al. [45,46,47,48,49] formulated specific Hermite–Hadamard (H.H.) and its various variations of inequalities for exponential trigonometric convex mappings with fuzzy-number values, employing fuzzy fractional integral operators with exponential kernels.
In this paper, our focus lies on examining pseudo left–right interval order connections. Recent studies in this direction have yielded notable results: Saeed et al. [50] explored coordinated h-convex mappings, leading to the derivation of three well-known inequalities within the framework of pseudo order relations. Stojiljkovic et al. [51,52] utilized Katugampola integrals to introduce a new class of p-convex mappings, establishing numerous generalized bounds for double inequalities through the utilization of left–right order relations. Khan et al. [53] employed convex interval-valued functions via log convex functions based on the pseudo order relation, revealing several novel properties and inequalities. For more information related to fractional integral operator and coordinated inequalities, see [54,55,56,57,58,59].
The rest of the paper is structured as follows: Section 2 reviews some basic notations that will be used throughout. In Section 3, we first introduce a new convex class on coordinates known as C · L · R - - pre-invex Ι · V - M . By using fractional integral operators, various types of inequalities have been proved as well as Hermite–Hadamard and Pachpatte’s type integral inequalities. Moreover, useful examples are also provided to check the validations of our main outcomes. For the applications of these results, our results will allow us to recover several special cases of known results for different parameter choices. In Section 4, we will draw some conclusions and provide future recommendations for interested readers.

2. Preliminaries

Let R be the set of real numbers and R I containing all bounded and closed intervals within R . R I should be defined as follows:
= ,   = y R | y ,     ,   R .
It is argued that is degenerate if = . The interval ,   is referred to as positive if 0 ,   R I + represents the set of all positive intervals and is defined as R I + = ,   : ,   R I   a n d   0 .
Let ϱ R , , S R I be defined by, with S = S ,   S and = ,   , we may define the interval arithmetic as follows:
  • Scaler multiplication:
ϱ . = { ϱ ,   ϱ     if   ϱ > 0 , 0                 if   ϱ = 0 , ϱ , ϱ     if   ϱ < 0 .  
  • Minkowski difference:
  S ,   S ,   = S ,   S ,    
  • Addition:
  S ,   S + ,   = S + ,   S + ,
  • Multiplication:
S ,   S × ,   = m i n S ,   S ,   S ,   S ,   m a x S ,   S ,   S ,   S .
The inclusion means that
S if and only if, ,   S ,   S , and if and only if
S ,   S .
Remark 1
([58]). (i) The relation p is defined on R I by
S ,   S p ,     if   and   only   if   S ,     S ,
for all S ,   S ,   ,   R I , and it is a pseudo order relation. The relation S ,   S p ,   coincident to S ,   S ,   on R I when it is p .
(ii) It can be easily seen that p looks like “left and right” on the real line R , so we call p is “left and right” (or “LR” order, in short).
Definition 1
([55,56]). Let G : ȵ ,   ȶ R I + be an interval-valued mapping ( I V M ) and G I R ȵ ,   ȶ . Then, the interval Riemann–Liouville-type integrals of G are defined as
I ȵ + i G y = 1 Γ i ȵ y y t i 1 G t d t       y > ȵ ,
I ȶ i G y = 1 Γ i y ȶ t y i 1 G t d t       ( y < ȶ ) ,
where i > 0 and Γ is the gamma function.
Theorem 1
([59]). Let : 0 ,   1 R + and G : ,   + ʎ 2 θ , R I + be a L · R - -pre-invex Ι · V - M on ,   + ʎ 2 θ , , given by G y = G y ,   G y for all y ,   + ʎ 2 θ , . If G L ,   + ʎ 2 θ , , R I + , then
1 i 1 2 G 2 + ʎ 2 θ , 2 p Γ i ʎ 2 θ , i I + i G + ʎ 2 θ , + I + ʎ 2 θ , i G p G + G θ 0 1 υ i 1 υ + 1 υ d υ .
Interval double Aumann’s type integrals are defined as follows for coordinated I V M ( C - I V M ) G x , y .
Theorem 2
([57]). Let G : = ȵ ,   ȶ × ,   θ R 2 R I   be an Ι · V - M on coordinates, given by G x , y = G x , y ,   G x , y for all x , y = ȵ ,   ȶ × ,   θ . Then, G is double integrable ( F D -integrable) over if and only if G x , y and G x , y both are D -integrable over . Moreover, if G is F D -integrable over , then
I D ȵ ȶ θ G x , y d y d x = D ȵ ȶ θ G x , y d y d x ,   D ȵ ȶ θ G x , y d y d x
The family of all F D -integrables of Ι · V - M s over coordinates and D -integrable functions over coordinates are denoted by F O and O .
Here is the main definition of the fuzzy Riemann–Liouville fractional integral on the coordinates of the function G x , y by:
Definition 2
([56]). Let G : R I   and G F O . The double fuzzy interval Riemann–Liouville-type integrals I ȵ + , + i , j ,   I ȵ + , θ i , j ,   I ȶ , + i , j ,   I ȶ , θ i , j of G order i , j > 0 are defined by
I ȵ + , + i , j G x , y = 1 Γ i Γ j ȵ x y x t i 1 y s j 1 G t , s d s d t ,     x > ȵ ,   y > ,
I ȵ + , θ i , j G x , y = 1 Γ i Γ j ȵ x y θ x t i 1 s y j 1 G t , s d s d t ,     ( x > ȵ ,   y < θ ) ,
I ȶ , + i , j G x , y = 1 Γ i Γ j x ȶ y t x i 1 y s j 1 G t , s d s d t ,     x < ȶ ,   y > ,
I ȶ , θ i , j G x , y = 1 Γ i Γ j x ȶ y θ t x i 1 s y j 1 G t , s d s d t ,     ( x < ȶ ,   y < θ ) .
Here is the newly defined concept of C · L · R - -pre-invexity over fuzzy number space in the codomain via fuzzy relation given by
Definition 3.
The Ι · V - M   G : = ȵ ,   ȶ × , θ R I + is referred to be C · L · R - -pre-invex Ι · V - M on   with respect to bifurcations ʎ 1 ,   ʎ 2 if
G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , p υ κ G ȵ , + υ 1 κ G ȵ , θ + 1 υ κ G ȶ , + 1 υ 1 κ G ȶ , θ ,
for all   ȵ ,   ȶ ,   , θ ,   and υ , κ 0 ,   1 , where ʎ 1 :   ȵ ,   ȶ × ȵ ,   ȶ ȵ ,   ȶ and ʎ 2 :   , θ × , θ , θ . If the inequality (17) is reversed, then G is referred to be C · L · R - -pre-concave Ι · V - M on .
Lemma 1.
Let G : R I + be a coordinated Ι · V - M on . Then, G is C · L · R - - pre-invex Ι · V - M on if and only if there exist two C · L · R - -pre-invex Ι · V - M s G x : , θ R I + , G x w = G x , w and G y : ȵ , ȶ R I + , G y z = G z , y .
Theorem 3.
Let G : R I + be an Ι · V - M on , given by
G x , y = G x , y ,   G x , y ,
for all x , y . Then, G is C · L · R - -pre-invex Ι · V - M on , if and only if, G x , y and G x , y both are C · L · R - -pre-invex.
Proof. 
Assume that, G x , y and G x , y are C · L · R - -pre-invex and -pre-invex on , respectively. Then, from Equation (17), for all   ȵ ,   ȶ ,   , θ ,   υ , and κ 0 ,   1 , we have
G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , υ κ G ȵ , + υ 1 κ G ȵ , θ + κ 1 υ G ȶ , + 1 υ 1 κ G ȶ , θ ,
and
G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , υ κ G ȵ , + υ 1 κ G ȵ , θ + κ 1 υ G ȶ , + 1 υ 1 κ G ȶ , θ ,
Then, by Equations (18), (3), and (5), we obtain
G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , = G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , ,   G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , p υ κ G ȵ , ,   G ȵ , + υ 1 κ [ G ȵ , θ ,   G ȵ , θ ] + κ 1 υ G ȶ , ,   G ȶ , + 1 υ 1 κ G ȶ , θ ,   G ȶ , θ
From (19) and (20), we have
G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , p υ κ G ȵ , + υ 1 κ G ȵ , θ + 1 υ 1 κ G ȶ , + 1 υ 1 κ G ȶ , θ ,
hence, G is C · L · R - -pre-invex Ι · V - M on .
Conversely, let G be C · L · R - - pre-invex Ι · V - M on . Then, for all   ȵ ,   ȶ ,   , θ ,   υ , and κ 0 ,   1 , we have
G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , p υ κ G ȵ , + υ 1 κ G ȵ , θ + 1 υ κ G ȶ , + 1 υ ( 1 κ ) G ȶ , θ .
Therefore, again from Equation (18), we have
G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , = G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , ,   G ȵ + 1 υ ʎ 1 ȶ , ȵ , + 1 κ ʎ 2 θ , .
Again, by Equations (3) and (5), we obtain
υ κ G ȵ , + υ 1 κ G ȵ , θ + 1 υ κ G ȶ , + 1 υ 1 κ G ȶ , θ = υ κ G ȵ , ,   G ȵ , + υ 1 κ G ȵ , θ ,   G ȵ , θ + κ 1 υ G ȵ , ,   G ȵ , + 1 υ 1 κ G ȵ , θ ,   G ȵ , θ ,
for all x , ω and υ 0 ,   1 . Then, from (21) and (22), we have for all x , ω and υ 0 ,   1   such that
G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , υ κ G ȵ , + υ 1 κ G ȵ , θ + 1 υ κ G ȶ , + 1 υ 1 κ G ȶ , θ ,
and
G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , υ κ G ȵ , + υ 1 κ G ȵ , θ + 1 υ κ G ȶ , + 1 υ 1 κ G ȶ , θ ,
Hence, the result follows. □
Example 1.
We consider the Ι · V - M   G : 0 ,   1 × 0 ,   1 R I + defined by,
G x = x y , 6 + e x 6 + e y .
Since endpoint functions G x , y ,   G x , y are C - -pre-invex functions. Hence, G x , y is C · L · R - -pre-invex Ι · V - M .
From Lemma 1 and Example 1, we can easily note that each L R - -pre-invex Ι · V - M is C · L · R - - pre-invex Ι · V - M . However, the converse is not true.
Remark 2.
Assuming that   G x , y = G x , y , then G is referred to be as a classical C · L · R - -pre-invex function if G meets the stated inequality here:
G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , υ κ G ȵ , + υ 1 κ G ȵ , θ + κ 1 υ G ȵ , + 1 υ 1 κ G ȵ , θ .
Assuming that   υ = υ ,   κ = κ and G x , y = G x , y , then G is referred to be as a classical C -pre-invex function if G meets the stated inequality here:
G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , υ κ G ȵ , + υ 1 κ G ȵ , θ + 1 υ κ G ȶ , + 1 υ 1 κ G ȶ , θ .
Let υ = υ ,   κ = κ . If G x , y and G x , y are affine and pre-concave functions with G x , y G x , y , respectively, then the stated inequality we have, see [35],
G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , υ κ G ȵ , + υ 1 κ G ȵ , θ + 1 υ κ G ȶ , + 1 υ 1 κ G ȶ , θ ,
is true.
Definition 4.
Let G : R I + be a Ι · V - M on . Then, we obtain
G x , y = G x , y ,   G x , y ,
for all x , y . Then, G is left- C · L · R - - pre-invex (pre-concave) Ι · V - M on , if and only if, G x , y and G x , y are C - - pre-invex (pre-concave) and affine functions on , respectively.
Definition 5.
Let G : R I + be a Ι · V - M on . Then, we obtain
G x , y = G x , y , G x , y ,  
for all x , y . Then, G is right- C · L · R - - pre-invex (pre-concave) Ι · V - M on , if and only if, G x , y and G x , y are C - -affine and -(pre-concave) functions on , respectively.
Theorem 4.
Let be a coordinated invex set, and let G : R I + be a Ι · V - M , defined by
G x , y = G x , y ,   G x , y ,  
for all x , y . Then, G is C · L · R - -pre-concave Ι · V - M on , if and only if, G x , y and G x , y are C - -pre-concave and C - -pre-concave functions, respectively.
Proof. 
The demonstration of proof of Theorem 4 is similar to the demonstration proof of Theorem 3. □
Example 2.
We consider the Ι · V - M s G : 0 ,   1 × 0 ,   1 R I + defined by,
G x , y = 6 e x 6 e y , 40 x y .
Then, we have since endpoint functions G x , y ,   G x , y which are both C - - pre-concave functions. Hence G x , y is C · L · R - - pre-concave Ι · V - M .
In the next results, to avoid confusion, we will not include the symbols ( R ) , ( I R ) , and ( I D ) before the integral sign.

3. Main Results

In this section, Hermite–Hadamard and Pachpatte-type inequalities for interval-value functions are given. We first present an inequality of Hermite–Hadamard via C · L · R - -pre-convex Ι · V - M s.
Theorem 5.
Let G : R I + be a C · L · R - -pre-invex Ι · V - M on , where G x , y = G x , y ,   G x , y for all x , y and let : 0 ,   1 R + . If G F O , then the following inequalities holds:
1 2 1 2 G 2 ȵ + ʎ 1 ȶ , ȵ 2 ,   2 + ʎ 2 θ , 2 p Γ i + 1 2 1 2 ʎ 1 ȶ , ȵ i I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , 2 + I ȵ + ʎ 1 ȶ , ȵ i G ȵ , + ʎ 2 θ , 2                                                                                 + Γ j + 1 2 1 2 ʎ 2 θ , j I + j G ȵ + ʎ 1 ȶ , ȵ 2 , + ʎ 2 θ , + I + ʎ 2 θ , j G ȵ + ʎ 1 ȶ , ȵ 2 , p Γ i + 1 Γ j + 1 ʎ 1 ȶ , ȵ i ʎ 2 θ , j I ȵ + , + i , j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I ȵ + , + ʎ 2 θ , i , j G ȵ + ʎ 1 ȶ , ȵ ,                                                                                               + I ȵ + ʎ 1 ȶ , ȵ , + i , j G ȵ , + ʎ 2 θ , + I ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , i , j G ȵ , p j Γ i + 1 ʎ 1 ȶ , ȵ i I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I ȵ + ʎ 1 ȶ , ȵ i G ȵ , + I ȵ + ʎ 1 ȶ , ȵ i G ȵ , + ʎ 2 θ , × 0 1 κ j 1 κ + 1 κ d κ + i Γ j + 1 ʎ 2 θ , j I + j G ȵ , + ʎ 2 θ , + I + ʎ 2 θ , j G ȵ + ʎ 1 ȶ , ȵ , + I + j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I + ʎ 2 θ , j G ȵ + ʎ 1 ȶ , ȵ , × 0 1 υ i 1 υ + 1 υ d υ p i j G ȵ , + G ȶ , + G ȵ , θ + G ȶ , θ × 0 1 κ j 1 κ + 1 κ d κ 0 1 υ i 1 υ + 1 υ d υ .
If G is C · L · R - -pre-concave, then the inequality (28) is reversed such that
  1 2 1 2 G 2 ȵ + ʎ 1 ȶ , ȵ 2 ,   2 + ʎ 2 θ , 2 p Γ i + 1 2 1 2 ʎ 1 ȶ , ȵ i I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , 2 + I ȵ + ʎ 1 ȶ , ȵ i G ȵ , + ʎ 2 θ , 2                                                                                   + Γ j + 1 2 1 2 ʎ 2 θ , j I + j G ȵ + ʎ 1 ȶ , ȵ 2 , + ʎ 2 θ , + I + ʎ 2 θ , j G ȵ + ʎ 1 ȶ , ȵ 2 , p Γ i + 1 Γ j + 1 ʎ 1 ȶ , ȵ i ʎ 2 θ , j I ȵ + , + i , j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I ȵ + , + ʎ 2 θ , i , j G ȵ + ʎ 1 ȶ , ȵ , + I ȵ + ʎ 1 ȶ , ȵ , + i , j G ȵ , + ʎ 2 θ , + I ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , i , j G ȵ , p j Γ i + 1 ʎ 1 ȶ , ȵ i I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I ȵ + ʎ 1 ȶ , ȵ i G ȵ , + I ȵ + ʎ 1 ȶ , ȵ i G ȵ , + ʎ 2 θ , × 0 1 κ j 1 κ + 1 κ d κ + i Γ j + 1 ʎ 2 θ , j I + j G ȵ , + ʎ 2 θ , + I + ʎ 2 θ , j G ȵ + ʎ 1 ȶ , ȵ , + I + j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I + ʎ 2 θ , j G ȵ + ʎ 1 ȶ , ȵ , × 0 1 υ i 1 υ + 1 υ d υ p i j G ȵ , + G ȶ , + G ȵ , θ + G ȶ , θ                                                                                                                                                                                   × 0 1 κ j 1 κ + 1 κ d κ 0 1 υ i 1 υ + 1 υ d υ .
Proof. 
Let G : ȵ ,   ȵ + ʎ 1 ȶ , ȵ R I + be a C · L · R - - pre-invex Ι · V - M . Then, by hypothesis, we have
1 2 1 2 G 2 ȵ + ʎ 1 ȶ , ȵ 2 , 2 + ʎ 2 θ , 2 p G ȵ + 1 υ ʎ 1 ȶ , ȵ ,                                                                                                   + 1 κ ʎ 2 θ , + G ȵ + υ ʎ 1 ȶ , ȵ ,   1 υ + υ θ .
By using Theorem 4, we have
1 2 1 2 G 2 ȵ + ʎ 1 ȶ , ȵ 2 , 2 + ʎ 2 θ , 2                                                                                           G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , + G ȵ + υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , ,     1 2 1 2 G 2 ȵ + ʎ 1 ȶ , ȵ 2 , 2 + ʎ 2 θ , 2                                                                                           G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , + G ȵ + υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , .
By using Lemma 1, we have
1 1 2 G x , 2 + ʎ 2 θ , 2 G x ,   + 1 κ ʎ 2 θ , + G x ,   + κ ʎ 2 θ , ,     1 1 2 G x , 2 + ʎ 2 θ , 2 G x ,   + 1 κ ʎ 2 θ , + G x ,   + κ ʎ 2 θ , ,
and
1 1 2 G 2 ȵ + ʎ 1 ȶ , ȵ 2 , y G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   y + G ȵ + υ ʎ 1 ȶ , ȵ ,   y ,     1 1 2 G 2 ȵ + ʎ 1 ȶ , ȵ 2 , y G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   y + G ȵ + υ ʎ 1 ȶ , ȵ ,   y .
From (30) and (31), we have
1 1 2 G x , 2 + ʎ 2 θ , 2 , G x , 2 + ʎ 2 θ , 2 p G x ,   + 1 κ ʎ 2 θ , , G x ,   + 1 κ ʎ 2 θ , + G x ,   + κ ʎ 2 θ , , G x ,   + κ ʎ 2 θ , ,
and
1 1 2 G 2 ȵ + ʎ 1 ȶ , ȵ 2 , y , G 2 ȵ + ʎ 1 ȶ , ȵ 2 , y p G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   y , G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   y                                                           + G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   y , G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   y ,
It follows that
1 1 2 G x , 2 + ʎ 2 θ , 2 p G x ,   + 1 κ ʎ 2 θ , + G x ,   + κ ʎ 2 θ , ,
and
1 1 2 G 2 ȵ + ʎ 1 ȶ , ȵ 2 , y p G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   y + G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   y .
Since G x , . and G . , y , both are C · L · R - L R - - pre-invex - Ι · V - M s, then, we have
1 j 1 2 G x 2 + ʎ 2 θ , 2 p Γ j ʎ 2 θ , j I + j G x + ʎ 2 θ , + I + ʎ 2 θ , j G x p G x + G x θ 0 1 κ j 1 κ + 1 κ d κ
and
1 i 1 2 G y 2 ȵ + ʎ 1 ȶ , ȵ 2 p Γ i ʎ 1 ȶ , ȵ i I ȵ + i G y ȵ + ʎ 1 ȶ , ȵ + I ȵ + ʎ 1 ȶ , ȵ i G y ȵ p G y ȵ + G y ȶ 0 1 υ i 1 υ + 1 υ d υ
Since G x w = G x , w , then (34) can be written as
1 j 1 2 G x , 2 + ʎ 2 θ , 2 p Γ j ʎ 2 θ , j I + i G x , + ʎ 2 θ , + I + ʎ 2 θ , i G x , p G x , + G x , + ʎ 2 θ , 0 1 κ j 1 κ + 1 κ d κ .
That is
1 j 1 2 G x , 2 + ʎ 2 θ , 2 p 1 ʎ 2 θ , j   + ʎ 2 θ , + ʎ 2 θ , κ j 1 G x , κ d κ + + ʎ 2 θ , κ j 1 G x , κ d κ p G x , + G x , θ 0 1 κ j 1 κ + 1 κ d κ .
Multiplying the double inequality (36) by ȵ + ʎ 1 ȶ , ȵ x i 1 ʎ 1 ȶ , ȵ i and integrating with respect to x over ȵ ,   ȵ + ʎ 1 ȶ , ȵ , we have
1 j ʎ 1 ȶ , ȵ i 1 2 ȵ ȵ + ʎ 1 ȶ , ȵ G x , + ʎ 2 θ , 2 ȵ + ʎ 1 ȶ , ȵ x i 1 d x p 1 ʎ 1 ȶ , ȵ i ʎ 2 θ , j ȵ ȵ + ʎ 1 ȶ , ȵ + ʎ 2 θ , ȵ + ʎ 1 ȶ , ȵ x i 1 + ʎ 2 θ , κ j 1 G x , κ d κ d x + ȵ ȵ + ʎ 1 ȶ , ȵ + ʎ 2 θ , ȵ + ʎ 1 ȶ , ȵ x i 1 κ j 1 G x , κ d κ d x p 1 ʎ 1 ȶ , ȵ i ȵ ȵ + ʎ 1 ȶ , ȵ ȵ + ʎ 1 ȶ , ȵ x i 1 G x , d x + ȵ ȵ + ʎ 1 ȶ , ȵ ȵ + ʎ 1 ȶ , ȵ x i 1 G x , + ʎ 2 θ , d x 0 1 κ j 1 κ + 1 κ d κ .
Again, multiplying the double inequality (36) by x ȵ i 1 ʎ 1 ȶ , ȵ i and integrating with respect to x over ȵ ,   ȵ + ʎ 1 ȶ , ȵ , we have
1 j ʎ 1 ȶ , ȵ i 1 2 ȵ ȵ + ʎ 1 ȶ , ȵ G x , + ʎ 2 θ , 2 x ȵ i 1 d x p 1 ʎ 1 ȶ , ȵ i ʎ 2 θ , j ȵ ȵ + ʎ 1 ȶ , ȵ + ʎ 2 θ , x ȵ i 1 + ʎ 2 θ , κ j 1 G x , κ d κ d x + 1 ʎ 1 ȶ , ȵ i ʎ 2 θ , j ȵ ȵ + ʎ 1 ȶ , ȵ + ʎ 2 θ , x ȵ i 1 κ j 1 G x , κ d κ d x p 1 ʎ 1 ȶ , ȵ i ȵ ȵ + ʎ 1 ȶ , ȵ x ȵ i 1 G x , d x + ȵ ȵ + ʎ 1 ȶ , ȵ x ȵ i 1 G x , + ʎ 2 θ , d x 0 1 κ j 1 κ + 1 κ d κ .
From (37), we have
Γ i + 1 2 1 2 ʎ 1 ȶ , ȵ i I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , 2 p Γ i + 1 Γ j + 1 ʎ 1 ȶ , ȵ i ʎ 2 θ , j I ȵ + , + i , j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I ȵ + ʎ 1 ȶ , ȵ , + i , j G ȵ + ʎ 1 ȶ , ȵ , p j Γ i + 1 ʎ 1 ȶ , ȵ i I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , 0 1 κ j 1 κ + 1 κ d κ .
From (38), we have
Γ i + 1 2 1 2 ʎ 1 ȶ , ȵ i I ȵ + ʎ 1 ȶ , ȵ i G ȵ , + ʎ 2 θ , 2 p Γ i + 1 Γ j + 1 ʎ 1 ȶ , ȵ i ʎ 2 θ , j I ȵ + ʎ 1 ȶ , ȵ , + i , j G ȵ , + ʎ 2 θ , + I ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , i , j G ȵ , p j Γ i + 1 ʎ 1 ȶ , ȵ i I ȵ + ʎ 1 ȶ , ȵ i G ȵ , + I ȵ + ʎ 1 ȶ , ȵ i G ȵ , + ʎ 2 θ , 0 1 κ j 1 κ + 1 κ d κ
Similarly, since G y z = G z , y then, from (35), (41), and (42), we have
Γ j + 1 2 1 2 ʎ 2 θ , j I + j G ȵ + ʎ 1 ȶ , ȵ 2 ,   + ʎ 2 θ , p Γ i + 1 Γ j + 1 ʎ 1 ȶ , ȵ i ʎ 2 θ , j I ȵ + , + i , j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I ȵ + ʎ 1 ȶ , ȵ , + i , j G ȵ , + ʎ 2 θ , p i Γ j + 1 ʎ 2 θ , j I +   j G ȵ , + ʎ 2 θ , + I + j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , .
and
Γ j + 1 2 1 2 ʎ 2 θ , i I + ʎ 2 θ , j G ȵ + ʎ 1 ȶ , ȵ 2 , p Γ i + 1 Γ j + 1 ʎ 1 ȶ , ȵ i ʎ 2 θ , j I ȵ + , + ʎ 2 θ , i , j G ȵ + ʎ 1 ȶ , ȵ , + I ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , i , j G ȵ , p i Γ j + 1 ʎ 2 θ , j I + ʎ 2 θ , j G ȵ , + I + ʎ 2 θ , j G ȵ + ʎ 1 ȶ , ȵ , .
The second, third, and fourth inequalities of (28) result from combining inequalities (41) and (42).
Now, we have the left portion of the inequality (11):
1 2 1 2 G 2 ȵ + ʎ 1 ȶ , ȵ 2 , 2 + ʎ 2 θ , 2 p Γ j + 1 1 2 ʎ 2 θ , j I + j G ȵ + ʎ 1 ȶ , ȵ 2 , + ʎ 2 θ , + I + ʎ 2 θ , j G ȵ + ʎ 1 ȶ , ȵ 2 , ,
and
1 2 1 2 G 2 ȵ + ʎ 1 ȶ , ȵ 2 , 2 + ʎ 2 θ , 2 p Γ i + 1 1 2 ʎ 1 ȶ , ȵ i I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , 2 + I ȵ + ʎ 1 ȶ , ȵ i G ȵ , + ʎ 2 θ , 2
The following inequality results from combining inequalities (43) and (44):
1 2 1 2 G 2 ȵ + ʎ 1 ȶ , ȵ 2 , 2 + ʎ 2 θ , 2 p Γ i + 1 1 2 ʎ 1 ȶ , ȵ i I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , 2 + I ȵ + ʎ 1 ȶ , ȵ i G ȵ , + ʎ 2 θ , 2 + Γ j + 1 1 2 ʎ 2 θ , j I + j G ȵ + ʎ 1 ȶ , ȵ 2 , + ʎ 2 θ , + I + ʎ 2 θ , j G ȵ + ʎ 1 ȶ , ȵ 2 , .
Similarly, given the set of Ι of Ι · V - M s G : R I + , the inequality can be expressed as follows:
1 2 1 2 G 2 ȵ + ʎ 1 ȶ , ȵ 2 , 2 + ʎ 2 θ , 2 p Γ i + 1 1 2 ʎ 1 ȶ , ȵ i I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , 2 + I ȵ + ʎ 1 ȶ , ȵ i G ȵ , + ʎ 2 θ , 2                                                                             + Γ j + 1 1 2 ʎ 2 θ , j I + j G ȵ + ʎ 1 ȶ , ȵ 2 , + ʎ 2 θ ,     + I + ʎ 2 θ , j G ȵ + ʎ 1 ȶ , ȵ 2 , .
This gives the first inequality in (28).
Again, we have the right-hand side of the inequality (11):
Γ j ʎ 2 θ , j I + j G ȵ , + ʎ 2 θ , + I + ʎ 2 θ , j G ȵ , p G ȵ , + G ȵ , θ × 0 1 κ j 1 κ + 1 κ d κ
Γ j ʎ 2 θ , j I + j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ ,                                                                                 + I + ʎ 2 θ , j G ȵ + ʎ 1 ȶ , ȵ , p G ȶ , + G ȶ , θ × 0 1 κ j 1 κ + 1 κ d κ
Γ i ʎ 1 ȶ , ȵ i I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + I ȵ + ʎ 1 ȶ , ȵ i G ȵ , p G ȵ , + G ȶ , × 0 1 υ i 1 υ + 1 υ d υ
Γ i ʎ 1 ȶ , ȵ i I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ ,                                                                                             + I ȵ + ʎ 1 ȶ , ȵ i G ȵ , + ʎ 2 θ , p G ȵ , θ + G ȶ , θ × 0 1 υ i 1 υ + 1 υ d υ
By summing inequalities (46) to (49), and then multiplying the result by i j , we obtain
j Γ i + 1 ʎ 1 ȶ , ȵ i I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + I ȵ + ʎ 1 ȶ , ȵ i G ȵ , + I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I ȵ + ʎ 1 ȶ , ȵ i G ȵ , + ʎ 2 θ , + i Γ j + 1 ʎ 2 θ , j I + j G ȵ , + ʎ 2 θ , + I + ʎ 2 θ , j G ȵ , + I + j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I + ʎ 2 θ , j G ȵ + ʎ 1 ȶ , ȵ , p G ȵ , + G ȵ , θ + G ȶ , + G ȶ , θ                                                                                       × 0 1 κ j 1 κ + 1 κ d κ 0 1 υ i 1 υ + 1 υ d υ .
The final inequality of (28) marks the conclusion of the derivation.□
Example 3.
We assume the Ι · V - M s G : 0 ,   2 × 0 ,   2 R I + defined by,
G x , y = 2 x 2 y , 2 2 x 2 y ,
then, for each γ 0 ,   1 , we have. Since the endpoint functions G x , y ,   G x , y are -pre-invex functions with respect to ʎ 1 ȶ , ȵ = and ʎ 2 θ , . Hence, G ~ x , y is C · L · R - -pre-invex Ι · V - M .
G 2 ȵ + ʎ 1 ȶ , ȵ 2 ,   2 + ʎ 2 θ , 2 = 1 , 2 Γ i + 1 4 ʎ 1 ȶ , ȵ i I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , 2 + I ȵ + ʎ 1 ȶ , ȵ i G ȵ , + ʎ 2 θ , 2 + Γ j + 1 4 ʎ 2 θ , j I + j G ȵ + ʎ 1 ȶ , ȵ 2 , + ʎ 2 θ , + I + ʎ 2 θ , j G ȵ + ʎ 1 ȶ , ȵ 2 , = 2 2 4 2 8 ʎ · 1 , 2 Γ i + 1 Γ j + 1 4 ʎ 1 ȶ , ȵ i ʎ 2 θ , j I ȵ + , + i , j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I ȵ + , + ʎ 2 θ , i , j G ȵ + ʎ 1 ȶ , ȵ , + I ȵ + ʎ 1 ȶ , ȵ , + i , j G ȵ , + ʎ 2 θ , + I ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , i , j G ȵ , = 33 8 2 2 2 ʎ + ʎ 8 + ʎ 2 32 · 1 , 2 Γ i + 1 8 ʎ 1 ȶ , ȵ i I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I ȵ + ʎ 1 ȶ , ȵ i G ȵ , + I ȵ + ʎ 1 ȶ , ȵ i G ȵ , + ʎ 2 θ , + Γ j + 1 8 ʎ 2 θ , j I + j G ȵ , + ʎ 2 θ , + I + j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I + ʎ 2 θ , j G ȵ , + I + ʎ 2 θ , j G ȵ + ʎ 1 ȶ , ȵ , = 34 2 + 2 4 ʎ 24 8 2 · 1 , 2 G , ȶ + G σ , ȶ + G , θ + G σ , θ 4 = 9 2 2 2 · 1 , 2 .
That is
1 , 2 p 2 2 4 2 8 ʎ · 1 , 2 p 33 8 2 2 2 ʎ + ʎ 8 + ʎ 2 32 · 1 , 2 p 34 2 + 2 4 ʎ 24 8 2 · 1 , 2 p 9 2 2 2 · 1 , 2 .
Hence, Theorem 5 has been verified.
Remark 3.
Assuming that i = 1 and j = 1 , and υ = υ ,   κ = κ , then from (28), the following inequality emerges, see [53]:
G 2 ȵ + ʎ 1 ȶ , ȵ 2 ,   2 + ʎ 2 θ , 2 p   1 2 1 ʎ 1 ȶ , ȵ ȵ ȵ + ʎ 1 ȶ , ȵ G x , + ʎ 2 θ , 2 d x                           + 1 ʎ 2 θ , + ʎ 2 θ , G ȵ + ʎ 1 ȶ , ȵ 2 , y d y p 1 ʎ 1 ȶ , ȵ ʎ 2 θ , ȵ ȵ + ʎ 1 ȶ , ȵ + ʎ 2 θ , G x , y d y d x p   1 4 ʎ 1 ȶ , ȵ ȵ ȵ + ʎ 1 ȶ , ȵ G x , d x + ȵ ȵ + ʎ 1 ȶ , ȵ G x , θ d x                                         +   1 4 ʎ 2 θ , + ʎ 2 θ , G ȵ , y d y + + ʎ 2 θ , G ȶ , y d y p G ȵ , + G ȶ , + G ȵ , θ + G ȶ , θ 4 .
Assuming that i = 1 and j = 1 , υ = υ ,     κ = κ , and G is left- C · L · R - - pre-invex, then from (28), the following inequality emerges, see [35]:
G 2 ȵ + ʎ 1 ȶ , ȵ 2 ,   2 + ʎ 2 θ , 2   1 2 1 ʎ 1 ȶ , ȵ ȵ ȵ + ʎ 1 ȶ , ȵ G x , + ʎ 2 θ , 2 d x                                                   + 1 ʎ 2 θ , + ʎ 2 θ , G ȵ + ʎ 1 ȶ , ȵ 2 , y d y                                                                                           1 ʎ 1 ȶ , ȵ ʎ 2 θ , ȵ ȵ + ʎ 1 ȶ , ȵ + ʎ 2 θ , G x , y d y d x   1 4 ʎ 1 ȶ , ȵ ȵ ȵ + ʎ 1 ȶ , ȵ G x , d x + ȵ ȵ + ʎ 1 ȶ , ȵ G x , θ d x                                                   +   1 4 ʎ 2 θ , + ʎ 2 θ , G ȵ , y d y + + ʎ 2 θ , G ȶ , y d y G ȵ , + G ȶ , + G ȵ , θ + G ȶ , θ 4 .
If υ = υ ,     κ = κ , and G x , y G x , y , then we can derive the following inequality from (28); for further information, see [53]:
G 2 ȵ + ʎ 1 ȶ , ȵ 2 ,   2 + ʎ 2 θ , 2 p Γ i + 1 4 ʎ 1 ȶ , ȵ i I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , 2 + I ȵ + ʎ 1 ȶ , ȵ i G ȵ , + ʎ 2 θ , 2 + Γ j + 1 4 ʎ 2 θ , j I + j G ȵ + ʎ 1 ȶ , ȵ 2 , + ʎ 2 θ , + I + ʎ 2 θ , j G ȵ + ʎ 1 ȶ , ȵ 2 , p Γ i + 1 Γ j + 1 4 ʎ 1 ȶ , ȵ i ʎ 2 θ , j   I ȵ + , + i , j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I ȵ + , + ʎ 2 θ , i , j G ȵ + ʎ 1 ȶ , ȵ , + I ȵ + ʎ 1 ȶ , ȵ , + i , j G ȵ , + ʎ 2 θ , + I ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , i , j G ȵ , p Γ i + 1 8 ʎ 1 ȶ , ȵ i I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I ȵ + ʎ 1 ȶ , ȵ i G ȵ , + I ȵ + ʎ 1 ȶ , ȵ i G ȵ , + ʎ 2 θ , + Γ j + 1 8 ʎ 2 θ , j I +   j G ȵ , + ʎ 2 θ , + I + ʎ 2 θ , j G ȵ , + I + j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I + ʎ 2 θ , j G ȵ + ʎ 1 ȶ , ȵ , p G ȵ , + G ȶ , + G ȵ , θ + G ȶ , θ 4 .
If υ = υ ,     κ = κ , and G x , y G x , y , then we can derive the following inequality from (28); for further information, see [58]:
G 2 ȵ + ʎ 1 ȶ , ȵ 2 ,   2 + ʎ 2 θ , 2 p   1 2 1 ʎ 1 ȶ , ȵ ȵ ȵ + ʎ 1 ȶ , ȵ G x , + ʎ 2 θ , 2 d x + 1 ʎ 2 θ , + ʎ 2 θ , G ȵ + ʎ 1 ȶ , ȵ 2 , y d y p 1 ʎ 1 ȶ , ȵ ʎ 2 θ ,   ȵ ȵ + ʎ 1 ȶ , ȵ + ʎ 2 θ , G x , y d y d x p   1 4 ʎ 1 ȶ , ȵ ȵ ȵ + ʎ 1 ȶ , ȵ G x , d x + ȵ ȵ + ʎ 1 ȶ , ȵ G x , θ d x +   1 4 ʎ 2 θ , + ʎ 2 θ , G ȵ , y d y + + ʎ 2 θ , G ȶ , y d y p G ȵ , + G ȶ , + G ȵ , θ + G ȶ , θ 4 .
If G is C · L · R - - pre-invex with υ = υ ,     κ = κ , and G x , y = G x , y , then we can derive the following classical inequality from (28):
G 2 ȵ + ʎ 1 ȶ , ȵ 2 ,   2 + ʎ 2 θ , 2 Γ i + 1 4 ʎ 1 ȶ , ȵ i I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , 2 + I ȵ + ʎ 1 ȶ , ȵ i G ȵ , + ʎ 2 θ , 2                                                             + Γ j + 1 4 ʎ 2 θ , j I + j G ȵ + ʎ 1 ȶ , ȵ 2 , + ʎ 2 θ , + I + ʎ 2 θ , j G ȵ + ʎ 1 ȶ , ȵ 2 , Γ i + 1 Γ j + 1 4 ʎ 1 ȶ , ȵ i ʎ 2 θ , j I ȵ + , + i , j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I ȵ + , + ʎ 2 θ , i , j G ȵ + ʎ 1 ȶ , ȵ ,                                                                                                                             + I ȵ + ʎ 1 ȶ , ȵ , + i , j G ȵ , + ʎ 2 θ , + I ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , i , j G ȵ ,                               Γ i + 1 8 ʎ 1 ȶ , ȵ i I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + G I ȵ + i G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I ȵ + ʎ 1 ȶ , ȵ i G ȵ , + I ȵ + ʎ 1 ȶ , ȵ i G ȵ , + ʎ 2 θ , + Γ j + 1 8 ʎ 2 θ , j I +   j G ȵ , + ʎ 2 θ , + I + ʎ 2 θ , j G ȵ ,                                                                         + I + j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I θ j G ȵ + ʎ 1 ȶ , ȵ ,           G ȵ , + G ȶ , + G ȵ , θ + G ȶ , θ 4 .
In the upcoming results, we will discover intriguing findings derived from the product of two C · L · R - -pre-invex Ι · V - M s. These findings are commonly referred to as Pachpatte’s inequalities.
Theorem 6.
Let G ,   J : R I + be two C · L · R - - pre-invex Ι · V - M s on , given by G x , y = G x , y ,   G x , y and J x , y = J x , y ,   J x , y for all x , y and let 1 , 2 : 0 ,   1 R + . If G × J F O , then the following inequalities holds:
Γ i Γ j ʎ 1 ȶ , ȵ i ʎ 2 θ , j I ȵ + , + i , j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , × J ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I ȵ + , + ʎ 2 θ , i , j G ȵ + ʎ 1 ȶ , ȵ , × J ȵ + ʎ 1 ȶ , ȵ , + Γ i Γ j ʎ 1 ȶ , ȵ i ʎ 2 θ , j I ȵ + ʎ 1 ȶ , ȵ , + i , j G ȵ , + ʎ 2 θ , × J ȵ , + ʎ 2 θ , + I ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , i , j G ȵ , × J ȵ , p M ȵ , ȶ , , θ 0 1 υ i 1 κ j 1 1 1 υ 2 1 υ 1 1 κ 2 1 κ       + 1 1 υ 2 1 υ 1 κ 2 κ       + 1 υ 2 υ 1 1 κ 2 1 κ + 1 υ 2 υ 1 κ 2 κ d υ d κ + P ȵ , ȶ , , θ 0 1 υ i 1 κ j 1 1 υ 2 1 υ 1 1 κ 2 1 κ + 1 1 υ 2 υ 1 1 κ 2 1 κ + 1 υ 2 1 υ 1 κ 2 κ + 1 1 υ 2 υ 1 κ 2 κ d υ d κ + N ȵ , ȶ , , θ 0 1 υ i 1 κ j 1 1 1 υ 2 1 υ 1 κ 2 1 κ                         + 1 1 υ 2 1 υ 1 1 κ 2 κ + 1 υ 2 υ 1 1 κ 2 κ                   + 1 υ 2 υ 1 κ 2 1 κ d υ d κ + Q ȵ , ȶ , , θ 0 1 υ i 1 κ j 1 1 υ 2 1 υ 1 κ 2 1 κ + 1 υ 2 1 υ 1 1 κ 2 κ + 1 1 υ 2 υ 1 κ 2 1 κ + 1 υ 2 1 υ 1 κ 2 1 κ d υ d κ .
If G is C · L · R - -pre-concave, then the inequality (57) is reversed such that
Γ i Γ j ʎ 1 ȶ , ȵ i ʎ 2 θ , j I ȵ + , + i , j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , × J ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I ȵ + , + ʎ 2 θ , i , j G ȵ + ʎ 1 ȶ , ȵ , × J ȵ + ʎ 1 ȶ , ȵ , + Γ i Γ j ʎ 1 ȶ , ȵ i ʎ 2 θ , j I ȵ + ʎ 1 ȶ , ȵ , + i , j G ȵ , + ʎ 2 θ , × J ȵ , + ʎ 2 θ , + I ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , i , j G ȵ , × J ȵ , p M ȵ , ȶ , , θ 0 1 υ i 1 κ j 1 1 1 υ 2 1 υ 1 1 κ 2 1 κ + 1 1 υ 2 1 υ 1 κ 2 κ + 1 υ 2 υ 1 1 κ 2 1 κ + 1 υ 2 υ 1 κ 2 κ d υ d κ + P ȵ , ȶ , , θ 0 1 υ i 1 κ j 1 1 υ 2 1 υ 1 1 κ 2 1 κ + 1 1 υ 2 υ 1 1 κ 2 1 κ + 1 υ 2 1 υ 1 κ 2 κ + 1 1 υ 2 υ 1 κ 2 κ d υ d κ + N ȵ , ȶ , , θ 0 1 υ i 1 κ j 1 1 1 υ 2 1 υ 1 κ 2 1 κ + 1 1 υ 2 1 υ 1 1 κ 2 κ + 1 υ 2 υ 1 1 κ 2 κ + 1 υ 2 υ 1 κ 2 1 κ d υ d κ + Q ȵ , ȶ , , θ 0 1 υ i 1 κ j 1 1 υ 2 1 υ 1 κ 2 1 κ + 1 υ 2 1 υ 1 1 κ 2 κ + 1 1 υ 2 υ 1 κ 2 1 κ + 1 υ 2 1 υ 1 κ 2 1 κ d υ d κ .
where
M ȵ , ȶ , , θ = G ȵ , × J ȵ , + G ȶ , × J ȶ , + G ȵ , θ × J ȵ , θ + G ȶ , θ × J ȶ , θ , P ȵ , ȶ , , θ = G ȵ , × J ȶ , + G ȶ , × J ȵ , + G ȵ , θ × J ȶ , θ + G ȶ , θ × J ȵ , θ , N ȵ , ȶ , , θ = G ȵ , × J ȵ , θ + G ȶ , × J ȶ , θ + G ȵ , θ × J ȵ , + G ȶ , θ × J ȶ , , Q ȵ , ȶ , , θ = G ȵ , × J ȶ , θ + G ȶ , × J ȵ , θ + G ȵ , θ × J ȶ , + G ȶ , θ × J ȵ , ,
and M ȵ , ȶ , , θ , P ȵ , ȶ , , θ , N ȵ , ȶ , , θ , and Q ȵ , ȶ , , θ are defined as follows:
M ȵ , ȶ , , θ = M ȵ , ȶ , , θ ,   M ȵ , ȶ , , θ , P ȵ , ȶ , , θ = P ȵ , ȶ , , θ ,   P ȵ , ȶ , , θ , N ȵ , ȶ , , θ = N ȵ , ȶ , , θ ,   N ȵ , ȶ , , θ , Q ȵ , ȶ , , θ = Q ȵ , ȶ , , θ ,   Q ȵ , ȶ , , θ .
Proof. 
Let G and J be two C · L · R - 1 and C · L · R - 2 - pre-invex Ι · V - M s on ȵ ,   ȵ + ʎ 1 ȶ , ȵ × ,   + ʎ 2 θ , , respectively. Then,
G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , p 1 υ 1 κ G ȵ , + 1 υ 1 1 κ G ȵ , θ + 1 1 υ 1 κ G ȶ , + 1 1 υ 1 1 κ G ȶ , θ ,                                 G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , p 1 υ 1 1 κ G ȵ , + 1 υ 1 κ G ȵ , θ + 1 1 υ 1 1 κ G ȶ , + 1 1 υ 1 κ G ȶ , θ ,                                                 G ȵ + υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , p 1 1 υ 1 κ G ȵ , + 1 1 υ 1 1 κ G ȵ , θ + 1 υ 1 κ G ȶ , + 1 υ 1 1 κ G ȶ , θ ,                                                       G ȵ + υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , p 1 1 υ 1 1 κ G ȵ , + 1 1 υ 1 κ G ȵ , θ + 1 υ 1 1 κ G ȶ , + 1 υ 1 κ G ȶ , θ ,
and
J ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , p 2 υ 2 κ J ȵ , + 2 υ 2 1 κ J ȵ , θ + 2 1 υ 2 κ J ȶ , + 2 1 υ 2 1 κ J ȶ , θ , J ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , p 2 υ 2 1 κ J ȵ , + 2 υ 2 κ J ȵ , θ + 2 1 υ 2 1 κ J ȶ , + 2 1 υ 2 κ J ȶ , θ , J ȵ + υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , p 2 1 υ 2 κ J ȵ , + 2 1 υ 2 1 κ J ȵ , θ + 2 υ 2 κ J ȶ , + 2 υ 2 1 κ J ȶ , θ , J ȵ + υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , p 2 1 υ 2 1 κ J ȵ , + 2 1 υ 2 κ J ȵ , θ + 2 υ 2 1 κ J ȶ , + 2 υ 2 κ J ȶ , θ ,
Since G and J both are C · L · R - 1 and C · L · R - 2 - pre-invex Ι · V - M s on ȵ , ȵ + ʎ 1 ȶ , ȵ × , + ʎ 2 θ , , we have
G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ ,                                                   × J ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , + G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , × J ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , + G ȵ + υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , × J ȵ + υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , + G ȵ + υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , × J ȵ + υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , p M ȵ , ȶ , , θ 1 1 υ 2 1 υ 1 1 κ 2 1 κ                                                               + 1 1 υ 2 1 υ 1 κ 2 κ                                                                                             + 1 υ 2 υ 1 1 κ 2 1 κ + 1 υ 2 υ 1 κ 2 κ + P ȵ , ȶ , , θ 1 υ 2 1 υ 1 1 κ 2 1 κ + 1 1 υ 2 υ 1 1 κ 2 1 κ                                                                               + 1 υ 2 1 υ 1 κ 2 κ + 1 1 υ 2 υ 1 κ 2 κ + N ȵ , ȶ , , θ 1 1 υ 2 1 υ 1 κ 2 1 κ + 1 1 υ 2 1 υ 1 1 κ 2 κ                                                                               + 1 υ 2 υ 1 1 κ 2 κ + 1 υ 2 υ 1 κ 2 1 κ + Q ȵ , ȶ , , θ 1 υ 2 1 υ 1 κ 2 1 κ + 1 υ 2 1 υ 1 1 κ 2 κ + 1 1 υ 2 υ 1 κ 2 1 κ     + 1 υ 2 1 υ 1 κ 2 1 κ .
Taking the multiplication of the above fuzzy inclusion with υ i 1 κ j 1 and then taking the double integration of the resultant over 0 ,   1 × 0 ,   1 with respect to ( υ ,   κ ) such that
0 1 0 1 υ i 1 κ j 1 G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , × J ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , d υ d κ + 0 1 0 1 υ i 1 κ j 1 G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , × J ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , d υ d κ + 0 1 0 1 υ i 1 κ j 1 G ȵ + υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , × J ȵ + υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , d υ d κ + 0 1 0 1 υ i 1 κ j 1 G ȵ + υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , × J ȵ + υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , d υ d κ p M ȵ , ȶ , , θ 0 1 0 1 υ i 1 κ j 1 1 1 υ 2 1 υ 1 1 κ 2 1 κ + 1 1 υ 2 1 υ 1 κ 2 κ + 1 υ 2 υ 1 1 κ 2 1 κ + 1 υ 2 υ 1 κ 2 κ d υ d κ + P ȵ , ȶ , , θ 0 1 0 1 υ i 1 κ j 1 1 υ 2 1 υ 1 1 κ 2 1 κ + 1 1 υ 2 υ 1 1 κ 2 1 κ + 1 υ 2 1 υ 1 κ 2 κ + 1 1 υ 2 υ 1 κ 2 κ d υ d κ + N ȵ , ȶ , , θ 0 1 0 1 υ i 1 κ j 1 1 1 υ 2 1 υ 1 κ 2 1 κ + 1 1 υ 2 1 υ 1 1 κ 2 κ + 1 υ 2 υ 1 1 κ 2 κ + 1 υ 2 υ 1 κ 2 1 κ d υ d κ + Q ȵ , ȶ , , θ 0 1 0 1 υ i 1 κ j 1 1 υ 2 1 υ 1 κ 2 1 κ + 1 υ 2 1 υ 1 1 κ 2 κ + 1 1 υ 2 υ 1 κ 2 1 κ + 1 υ 2 1 υ 1 κ 2 1 κ d υ d κ
From the right hand side of (59), we have
0 1 0 1 υ i 1 κ j 1 G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , × J ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , d υ d κ + 0 1 0 1 υ i 1 κ j 1 G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , × J ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , d υ d κ + 0 1 0 1 υ i 1 κ j 1 G ȵ + υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , × J ȵ + υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , d υ d κ + 0 1 0 1 υ i 1 κ j 1 G ȵ + υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , × J ȵ + υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , d υ d κ = Γ i Γ j ʎ 1 ȶ , ȵ i ʎ 2 θ , j I ȵ + , + i , j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , × J ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I ȵ + , + ʎ 2 θ , i , j G ȵ + ʎ 1 ȶ , ȵ , × J ȵ + ʎ 1 ȶ , ȵ , .
Combining (59) and (60), we have
Γ i Γ j ʎ 1 ȶ , ȵ i ʎ 2 θ , j I ȵ + , + i , j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , × J ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I ȵ + , + ʎ 2 θ , i , j G ȵ + ʎ 1 ȶ , ȵ , × J ȵ + ʎ 1 ȶ , ȵ , p M ȵ , ȶ , , θ 0 1 0 1 υ i 1 κ j 1 1 1 υ 2 1 υ 1 1 κ 2 1 κ + 1 1 υ 2 1 υ 1 κ 2 κ + 1 υ 2 υ 1 1 κ 2 1 κ + 1 υ 2 υ 1 κ 2 κ d υ d κ + P ȵ , ȶ , , θ 0 1 0 1 υ i 1 κ j 1 1 υ 2 1 υ 1 1 κ 2 1 κ + 1 1 υ 2 υ 1 1 κ 2 1 κ + 1 υ 2 1 υ 1 κ 2 κ + 1 1 υ 2 υ 1 κ 2 κ d υ d κ + N ȵ , ȶ , , θ 0 1 0 1 υ i 1 κ j 1 1 1 υ 2 1 υ 1 κ 2 1 κ + 1 1 υ 2 1 υ 1 1 κ 2 κ + 1 υ 2 υ 1 1 κ 2 κ + 1 υ 2 υ 1 κ 2 1 κ d υ d κ + Q ȵ , ȶ , , θ 0 1 0 1 υ i 1 κ j 1 1 υ 2 1 υ 1 κ 2 1 κ + 1 υ 2 1 υ 1 1 κ 2 κ + 1 1 υ 2 υ 1 κ 2 1 κ + 1 υ 2 1 υ 1 κ 2 1 κ d υ d κ .
Hence, the required result. □
Remark 4.
Assuming that G is left- C · L · R - -pre-invex with   υ = υ ,     κ = κ , i = 1 , and j = 1 , then from (59), the following inequality emerges, see [54]:
1 ʎ 1 ȶ , ȵ ʎ 2 θ , ȵ ȵ + ʎ 1 ȶ , ȵ + ʎ 2 θ , G x , y × J x , y d y d x 1 9 M ȵ , ȶ , , θ + 1 18 P ȵ , ȶ , , θ + N ȵ , ȶ , , θ + 1 36 Q ȵ , ȶ , , θ .
If G is C · L · R - - pre-invex with υ = υ ,     κ = κ and one assumes that i = 1 and j = 1 , then from (59), the following inequality emerges, see [58]:
1 ʎ 1 ȶ , ȵ ʎ 2 θ , ȵ ȵ + ʎ 1 ȶ , ȵ + ʎ 2 θ , G x , y × J x , y d y d x p 1 9 M ȵ , ȶ , , θ + 1 18 P ȵ , ȶ , , θ + N ȵ , ȶ , , θ + 1 36 Q ȵ , ȶ , , θ .
If G x , y G x , y and υ = υ ,   κ = κ , then we can derive the following inequality from (57); for further information, see [53]:
Γ i + 1 Γ j + 1 4 ʎ 1 ȶ , ȵ i ʎ 2 θ , j I ȵ + , + i , j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , × J ȵ + ʎ 1 ȶ , ȵ , θ + I ȵ + , + ʎ 2 θ , i , j G ȵ + ʎ 1 ȶ , ȵ , × J ȵ + ʎ 1 ȶ , ȵ , + Γ i + 1 Γ j + 1 4 ʎ 1 ȶ , ȵ i ʎ 2 θ , j I ȵ + ʎ 1 ȶ , ȵ , + i , j G ȵ , + ʎ 2 θ , × J ȵ , + ʎ 2 θ , + I ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , i , j G ȵ , × J ȵ , p 1 2 i i + 1 i + 2 1 2 j j + 1 j + 2 M ȵ , ȶ , , θ + i ( i + 1 ) ( i + 2 ) 1 2 j ( j + 1 ) ( j + 2 ) P ȵ , ȶ , , θ + 1 2 i ( i + 1 ) ( i + 2 ) j ( j + 1 ) ( j + 2 ) N ȵ , ȶ , , θ + j ( j + 1 ) ( j + 2 ) i ( i + 1 ) ( i + 2 ) Q ȵ , ȶ , , θ .
If υ = υ ,   κ = κ , and G x , y G x , y , then we can derive the following inequality from (57); for further information, see [46]:
1 ʎ 1 ȶ , ȵ ʎ 2 θ , ȵ ȵ + ʎ 1 ȶ , ȵ + ʎ 2 θ , G x , y × J x , y d y d x p 1 9 M ȵ , ȶ , , θ + 1 18 P ȵ , ȶ , , θ + N ȵ , ȶ , , θ + 1 36 Q ȵ , ȶ , , θ .
If G x , y = G x , y and J x , y = J x , y and υ = υ ,   κ = κ , then we can derive the following classical inequality from (66):
Γ i + 1 Γ j + 1 4 ʎ 1 ȶ , ȵ i ʎ 2 θ , j I ȵ + , + i , j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , × J ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I ȵ + , + ʎ 2 θ , i , j G ȵ + ʎ 1 ȶ , ȵ , × J ȵ + ʎ 1 ȶ , ȵ , + Γ i + 1 Γ j + 1 4 ʎ 1 ȶ , ȵ i ʎ 2 θ , j   + I ȵ + ʎ 1 ȶ , ȵ , + i , j G ȵ , + ʎ 2 θ , × J ȵ , + ʎ 2 θ , + I ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , i , j G ȵ , × J ȵ , 1 2 i i + 1 i + 2 1 2 j j + 1 j + 2 M ȵ , ȶ , , θ + i ( i + 1 ) ( i + 2 ) 1 2 j ( j + 1 ) ( j + 2 ) P ȵ , ȶ , , θ + 1 2 i ( i + 1 ) ( i + 2 ) j ( j + 1 ) ( j + 2 ) N ȵ , ȶ , , θ + j ( j + 1 ) ( j + 2 ) i ( i + 1 ) ( i + 2 ) Q ȵ , ȶ , , θ .
Theorem 7.
Let G ,   J : R I + be two C · L · R - -pre-invex Ι · V - M s on , given by G x , y = G x , y ,   G x , y and J x , y = J x , y ,   J x , y for all x , y and let : 0 ,   1 R + . If G × J F O , then the following inequalities holds:
1 2 i j 1 2 1 2 2 2 1 2 G 2 ȵ + ʎ 1 ȶ , ȵ 2 ,   2 + ʎ 2 θ , 2 × J 2 ȵ + ʎ 1 ȶ , ȵ 2 ,   2 + ʎ 2 θ , 2 p Γ i Γ j 2 ʎ 1 ȶ , ȵ i ʎ 2 θ , j I ȵ + , + i , j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , × J ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I ȵ + , + ʎ 2 θ , i , j G ȵ + ʎ 1 ȶ , ȵ , × J ȵ + ʎ 1 ȶ , ȵ , + Γ i Γ j 2 ʎ 1 ȶ , ȵ i ʎ 2 θ , j I ȵ + ʎ 1 ȶ , ȵ , + i , j G ȵ , + ʎ 2 θ , × J ȵ , + ʎ 2 θ , + I ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , i , j G ȵ , × J ȵ , + M ȵ , ȶ , , θ 0 1 υ i 1 κ j 1 1 υ 1 κ 2 υ 2 1 κ + 2 1 υ 2 κ + 2 1 υ 2 1 κ + 1 υ 1 1 κ 2 υ 2 κ + 2 1 υ 2 1 κ + 2 1 υ 2 κ d υ d κ + P ȵ , ȶ , , θ 0 1 υ i 1 κ j 1 1 υ 1 κ 2 1 υ 2 1 κ + 2 υ 2 κ + 2 υ 2 1 κ + 1 υ 1 1 κ 2 1 υ 2 κ + 2 υ 2 1 κ + 2 υ 2 κ d υ d κ + N ȵ , ȶ , , θ 0 1 υ i 1 κ j 1 1 υ 1 κ 2 υ 2 κ + 2 1 υ 2 1 κ + 2 1 υ 2 κ + 1 υ 1 1 κ 2 υ 2 1 κ + 2 1 υ 2 κ + 2 1 υ 2 1 κ d υ d κ + Q ȵ , ȶ , , θ 0 1 υ i 1 κ j 1 1 υ 1 κ 2 1 υ 2 κ + 2 υ 2 1 κ + 2 υ 2 κ + 1 υ 1 1 κ 2 1 υ 2 1 κ + 2 υ 2 κ + 2 υ 2 1 κ d υ d κ .
If G is C · L · R - -pre-concave, then the inequality (66) is reversed such that
1 2 i j 1 2 1 2 2 2 1 2 G 2 ȵ + ʎ 1 ȶ , ȵ 2 ,   2 + ʎ 2 θ , 2 × J 2 ȵ + ʎ 1 ȶ , ȵ 2 ,   2 + ʎ 2 θ , 2 p Γ i Γ j 2 ʎ 1 ȶ , ȵ i ʎ 2 θ , j I ȵ + , + i , j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , × J ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I ȵ + , + ʎ 2 θ , i , j G ȵ + ʎ 1 ȶ , ȵ , × J ȵ + ʎ 1 ȶ , ȵ , + Γ i Γ j 2 ʎ 1 ȶ , ȵ i ʎ 2 θ , j I ȵ + ʎ 1 ȶ , ȵ , + i , j G ȵ , + ʎ 2 θ , × J ȵ , + ʎ 2 θ , + I ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , i , j G ȵ , × J ȵ , + M ȵ , ȶ , , θ 0 1 υ i 1 κ j 1 1 υ 1 κ 2 υ 2 1 κ + 2 1 υ 2 κ + 2 1 υ 2 1 κ + 1 υ 1 1 κ 2 υ 2 κ + 2 1 υ 2 1 κ + 2 1 υ 2 κ d υ d κ + P ȵ , ȶ , , θ 0 1 υ i 1 κ j 1 1 υ 1 κ 2 1 υ 2 1 κ + 2 υ 2 κ + 2 υ 2 1 κ + 1 υ 1 1 κ 2 1 υ 2 κ + 2 υ 2 1 κ + 2 υ 2 κ d υ d κ + N ȵ , ȶ , , θ 0 1 υ i 1 κ j 1 1 υ 1 κ 2 υ 2 κ + 2 1 υ 2 1 κ + 2 1 υ 2 κ + 1 υ 1 1 κ 2 υ 2 1 κ + 2 1 υ 2 κ + 2 1 υ 2 1 κ d υ d κ + Q ȵ , ȶ , , θ 0 1 υ i 1 κ j 1 1 υ 1 κ 2 1 υ 2 κ + 2 υ 2 1 κ + 2 υ 2 κ + 1 υ 1 1 κ 2 1 υ 2 1 κ + 2 υ 2 κ + 2 υ 2 1 κ d υ d κ .
where M ȵ , ȶ , , θ , P ȵ , ȶ , , θ , N ȵ , ȶ , , θ , and Q ȵ , ȶ , , θ are given in Theorem 6.
Proof. 
Since G , J : R I + be two L R - - pre-invex Ι · V - M s, then from the inequality (17) , we have
G 2 ȵ + ʎ 1 ȶ , ȵ 2 , 2 + ʎ 2 θ , 2 × J 2 ȵ + ʎ 1 ȶ , ȵ 2 , 2 + ʎ 2 θ , 2 = G ȵ + 1 υ ʎ 1 ȶ , ȵ 2 + ȵ + υ ʎ 1 ȶ , ȵ 2 , + 1 κ ʎ 2 θ , 2 + + κ ʎ 2 θ , 2 × J ȵ + 1 υ ʎ 1 ȶ , ȵ 2 + ȵ + υ ʎ 1 ȶ , ȵ 2 , + 1 κ ʎ 2 θ , 2 + + κ ʎ 2 θ , 2 p 1 2 1 2 2 2 1 2 × G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , + G ȵ + υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , + G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , + G ȵ + υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , × J ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , + J ȵ + υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , + J ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , + J ȵ + υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , p 1 2 1 2 2 2 1 2 × G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , × J ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , + G ȵ + υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , × J ȵ + υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , + G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , × J ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , + G ȵ + υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , × J ȵ + υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , + 1 2 1 2 2 2 1 2 × 1 υ 1 κ 2 υ 2 1 κ + 2 1 υ 2 κ + 2 1 υ 2 1 κ + 1 υ 1 1 κ 2 υ 2 κ + 2 1 υ 2 1 κ + 2 1 υ 2 κ + 1 1 υ 1 κ 2 1 υ 2 1 κ + 2 υ 2 κ + 2 υ 2 1 κ + 1 1 υ 1 1 κ 2 υ 2 κ + 2 1 υ 2 κ + 2 υ 2 1 κ M ȵ , ȶ , , θ + 1 2 1 2 2 2 1 2 × 1 υ 1 κ 2 1 υ 2 1 κ + 2 υ 2 κ + 2 υ 2 1 κ + 1 υ 1 1 κ 2 1 υ 2 κ + 2 υ 2 1 κ + 2 υ 2 κ + 1 1 υ 1 κ 2 υ 2 1 κ + 2 1 υ 2 κ + 2 1 υ 2 1 κ + 1 1 υ 1 1 κ 2 υ 2 κ + 2 1 υ 2 1 κ + 2 1 υ 2 κ P ȵ , ȶ , , θ + 1 2 1 2 2 2 1 2 × 1 υ 1 κ 2 υ 2 κ + 2 1 υ 2 1 κ + 2 1 υ 2 κ + 1 υ 1 1 κ 2 υ 2 1 κ + 2 1 υ 2 κ + 2 1 υ 2 1 κ + 1 1 υ 1 κ 2 1 υ 2 κ + 2 υ 2 1 κ + 2 υ 2 κ + 1 1 υ 1 1 κ 2 1 υ 2 1 κ + 2 υ 2 κ + 2 υ 2 1 κ N ȵ , ȶ , , θ + 1 2 1 2 2 2 1 2 × 1 υ 1 κ 2 1 υ 2 κ + 2 υ 2 1 κ + 2 υ 2 κ + 1 υ 1 1 κ 2 1 υ 2 1 κ + 2 υ 2 κ + 2 υ 2 1 κ + 1 1 υ 1 κ 2 υ 2 κ + 2 1 υ 2 1 κ + 2 1 υ 2 κ + 1 υ 1 1 κ 2 υ 2 1 κ + 2 1 υ 2 1 κ + 2 1 υ 2 κ Q ȵ , ȶ , , θ .
Taking the multiplication of the above fuzzy inclusion with υ i 1 κ j 1 and then taking the double integration of the resultant over 0 ,   1 × 0 ,   1 with respect to ( υ ,   κ ), we have
0 1 0 1 υ i 1 κ j 1 G ȵ + ʎ 1 ȶ , ȵ 2 , + ʎ 2 θ , 2 × J ȵ + ʎ 1 ȶ , ȵ 2 , + ʎ 2 θ , 2 d υ d κ p 1 2 1 2 2 2 1 2 × 0 1 0 1 υ i 1 κ j 1 G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , × J ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , + G ȵ + υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , × J ȵ + υ ʎ 1 ȶ , ȵ ,   + 1 κ ʎ 2 θ , + G ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , × J ȵ + 1 υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , + G ȵ + υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , × J ȵ + υ ʎ 1 ȶ , ȵ ,   + κ ʎ 2 θ , d υ d κ + 1 2 1 2 2 2 1 2 M ȵ , ȶ , , θ × 0 1 0 1 υ i 1 κ j 1 1 υ 1 κ 2 υ 2 1 κ + 2 1 υ 2 κ + 2 1 υ 2 1 κ + 1 υ 1 1 κ 2 υ 2 κ + 2 1 υ 2 1 κ + 2 1 υ 2 κ + 1 1 υ 1 κ 2 1 υ 2 1 κ + 2 υ 2 κ + 2 υ 2 1 κ + 1 1 υ 1 1 κ 2 υ 2 κ + 2 1 υ 2 κ + 2 υ 2 1 κ d υ d κ + 1 2 1 2 2 2 1 2 P ȵ , ȶ , , θ × 0 1 0 1 υ i 1 κ j 1 1 υ 1 κ 2 1 υ 2 1 κ + 2 υ 2 κ + 2 υ 2 1 κ + 1 υ 1 1 κ 2 1 υ 2 κ + 2 υ 2 1 κ + 2 υ 2 κ + 1 1 υ 1 κ 2 υ 2 1 κ + 2 1 υ 2 κ + 2 1 υ 2 1 κ + 1 1 υ 1 1 κ 2 υ 2 κ + 2 1 υ 2 1 κ + 2 1 υ 2 κ d υ d κ + 1 2 1 2 2 2 1 2 N ȵ , ȶ , , θ × 0 1 0 1 υ i 1 κ j 1 1 υ 1 κ 2 υ 2 κ + 2 1 υ 2 1 κ + 2 1 υ 2 κ + 1 υ 1 1 κ 2 υ 2 1 κ + 2 1 υ 2 κ + 2 1 υ 2 1 κ + 1 1 υ 1 κ 2 1 υ 2 κ + 2 υ 2 1 κ + 2 υ 2 κ + 1 1 υ 1 1 κ 2 1 υ 2 1 κ + 2 υ 2 κ + 2 υ 2 1 κ d υ d κ + 1 2 1 2 2 2 1 2 Q ȵ , ȶ , , θ × 0 1 0 1 υ i 1 κ j 1 1 υ 1 κ 2 1 υ 2 κ + 2 υ 2 1 κ + 2 υ 2 κ + 1 υ 1 1 κ 2 1 υ 2 1 κ + 2 υ 2 κ + 2 υ 2 1 κ + 1 1 υ 1 κ 2 υ 2 κ + 2 1 υ 2 1 κ + 2 1 υ 2 κ + 1 υ 1 1 κ 2 υ 2 1 κ + 2 1 υ 2 1 κ + 2 1 υ 2 κ d υ d κ ,
which implies that
1 i j G 2 ȵ + ʎ 1 ȶ , ȵ 2 ,   2 + ʎ 2 θ , 2 × J 2 ȵ + ʎ 1 ȶ , ȵ 2 ,   2 + ʎ 2 θ , 2 p Γ i Γ j 1 2 1 2 2 2 1 2 ʎ 1 ȶ , ȵ i ʎ 2 θ , j [ I ȵ + , + i , j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , × J ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I ȵ + , + ʎ 2 θ , i , j G ȵ + ʎ 1 ȶ , ȵ , × J ȵ + ʎ 1 ȶ , ȵ , ] + Γ i Γ j 1 2 1 2 2 2 1 2 ʎ 1 ȶ , ȵ i ʎ 2 θ , j [ I ȵ + ʎ 1 ȶ , ȵ , + i , j G ȵ , + ʎ 2 θ , × J ȵ , + ʎ 2 θ , + I ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , i , j G ȵ , × J ȵ , ] + 2 1 2 1 2 2 2 1 2 M ȵ , ȶ , , θ 0 1 υ i 1 κ j 1 1 υ 1 κ 2 υ 2 1 κ + 2 1 υ 2 κ + 2 1 υ 2 1 κ + 1 υ 1 1 κ 2 υ 2 κ + 2 1 υ 2 1 κ + 2 1 υ 2 κ d υ d κ + 2 1 2 1 2 2 2 1 2 P ȵ , ȶ , , θ 0 1 υ i 1 κ j 1 1 υ 1 κ 2 1 υ 2 1 κ + 2 υ 2 κ + 2 υ 2 1 κ + 1 υ 1 1 κ 2 1 υ 2 κ + 2 υ 2 1 κ + 2 υ 2 κ d υ d κ + 2 1 2 1 2 2 2 1 2 N ȵ , ȶ , , θ 0 1 υ i 1 κ j 1 1 υ 1 κ 2 υ 2 κ + 2 1 υ 2 1 κ + 2 1 υ 2 κ + 1 υ 1 1 κ 2 υ 2 1 κ + 2 1 υ 2 κ + 2 1 υ 2 1 κ d υ d κ + 2 1 2 1 2 2 2 1 2 Q ȵ , ȶ , , θ 0 1 υ i 1 κ j 1 1 υ 1 κ 2 1 υ 2 κ + 2 υ 2 1 κ + 2 υ 2 κ + 1 υ 1 1 κ 2 1 υ 2 1 κ + 2 υ 2 κ + 2 υ 2 1 κ d υ d κ ,
hence, the required result. □
Remark 5.
Assuming that G is left- C · L · R - - pre-invex with υ = υ ,   κ = κ and i = 1 and j = 1 , then from (66), the following inequality emerges, see [35]:
4 G 2 ȵ + ʎ 1 ȶ , ȵ 2 , 2 + ʎ 2 θ , 2 × J 2 ȵ + ʎ 1 ȶ , ȵ 2 , 2 + ʎ 2 θ , 2 1 ʎ 1 ȶ , ȵ ʎ 2 θ , ȵ ȵ + ʎ 1 ȶ , ȵ + ʎ 2 θ , G x , y × J x , y d y d x + 5 36 M ȵ , ȶ , , θ + 7 36 P ȵ , ȶ , , θ + N ȵ , ȶ , , θ + 2 9 Q ȵ , ȶ , , θ .
If G is C · L · R - -pre-invex with υ = υ ,   κ = κ and one assumes that i = 1 and j = 1 , then from (66), the following inequality emerges, see [46]:
4 G 2 ȵ + ʎ 1 ȶ , ȵ 2 , 2 + ʎ 2 θ , 2 × J 2 ȵ + ʎ 1 ȶ , ȵ 2 , 2 + ʎ 2 θ , 2 p 1 ʎ 1 ȶ , ȵ ʎ 2 θ , ȵ ȵ + ʎ 1 ȶ , ȵ + ʎ 2 θ , G x , y × J x , y d y d x + 5 36 M ȵ , ȶ , , θ + 7 36 P ȵ , ȶ , , θ + N ȵ , ȶ , , θ + 2 9 Q ȵ , ȶ , , θ .
If G is left- C · L · R - -pre-invex and G x , y G x , y with υ = υ ,   κ = κ , then from (66), we derive the following inequality, see [53]:
4 G 2 ȵ + ʎ 1 ȶ , ȵ 2 ,   2 + ʎ 2 θ , 2 × J 2 ȵ + ʎ 1 ȶ , ȵ 2 ,   2 + ʎ 2 θ , 2 Γ i + 1 Γ j + 1 4 ʎ 1 ȶ , ȵ i ʎ 2 θ , j I ȵ + , + i , j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , × J ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I ȵ + , + ʎ 2 θ , i , j G ȵ + ʎ 1 ȶ , ȵ , × J ȵ + ʎ 1 ȶ , ȵ , + I ȶ , + i , j G ȵ , + ʎ 2 θ , × J ȵ , + ʎ 2 θ , + I ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , i , j G ȵ , × J ȵ , + i 2 i + 1 i + 2 + j j + 1 j + 2 1 2 i i + 1 i + 2 M ȵ , ȶ , , θ + 1 2 1 2 i i + 1 i + 2 + i ( i + 1 ) ( i + 2 ) j j + 1 j + 2 P ȵ , ȶ , , θ + 1 2 1 2 j j + 1 j + 2 + i ( i + 1 ) ( i + 2 ) j j + 1 j + 2 N ȵ , ȶ , , θ + 1 4 i ( i + 1 ) ( i + 2 ) j j + 1 j + 2 Q ȵ , ȶ , , θ .
If G x , y G x , y and υ = υ ,   κ = κ , then we can derive the following inequality from (66); for further information, see [53]:
4 G 2 ȵ + ʎ 1 ȶ , ȵ 2 ,   2 + ʎ 2 θ , 2 × J 2 ȵ + ʎ 1 ȶ , ȵ 2 ,   2 + ʎ 2 θ , 2 p Γ i + 1 Γ j + 1 4 ʎ 1 ȶ , ȵ i ʎ 2 θ , j I ȵ + , + i , j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , × J ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I ȵ + , + ʎ 2 θ , i , j G ȵ + ʎ 1 ȶ , ȵ , × J ȵ + ʎ 1 ȶ , ȵ , + I ȵ + ʎ 1 ȶ , ȵ , +   i , j G ȵ , + ʎ 2 θ , × J ȵ , + ʎ 2 θ , + I ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , i , j G ȵ , × J ȵ , + i 2 i + 1 i + 2 + j j + 1 j + 2 1 2 i i + 1 i + 2 M ȵ , ȶ , , θ + 1 2 1 2 i i + 1 i + 2 + i ( i + 1 ) ( i + 2 ) j j + 1 j + 2 P ȵ , ȶ , , θ + 1 2 1 2 j j + 1 j + 2 + i ( i + 1 ) ( i + 2 ) j j + 1 j + 2 N ȵ , ȶ , , θ + 1 4 i ( i + 1 ) ( i + 2 ) j j + 1 j + 2 Q ȵ , ȶ , , θ .
If G x , y = G x , y and J x , y = J x , y and υ = υ ,   κ = κ , then we can derive the following inequality from (66) such that
4 G 2 ȵ + ʎ 1 ȶ , ȵ 2 ,   2 + ʎ 2 θ , 2 × J 2 ȵ + ʎ 1 ȶ , ȵ 2 ,   2 + ʎ 2 θ , 2 Γ i + 1 Γ j + 1 4 ʎ 1 ȶ , ȵ i ʎ 2 θ , j I ȵ + , + i , j G ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , × J ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , + I ȵ + , + ʎ 2 θ , i , j G ȵ + ʎ 1 ȶ , ȵ , × J ȵ + ʎ 1 ȶ , ȵ , + I ȵ + ʎ 1 ȶ , ȵ , + i , j G ȵ , + ʎ 2 θ , × J ȵ , + ʎ 2 θ , + I ȵ + ʎ 1 ȶ , ȵ , + ʎ 2 θ , i , j G ȵ , × J ȵ , + i 2 i + 1 i + 2 + j j + 1 j + 2 1 2 i i + 1 i + 2 M ȵ , ȶ , , θ + 1 2 1 2 i i + 1 i + 2 + i i + 1 i + 2 j j + 1 j + 2 P ȵ , ȶ , , θ + 1 2 1 2 j j + 1 j + 2 + i i + 1 i + 2 j j + 1 j + 2 N ȵ , ȶ , , θ + 1 4 i i + 1 i + 2 j j + 1 j + 2 Q ȵ , ȶ , , θ .

4. Conclusions and Future Plans

This article aims to establish Hermite–Hadamard and Pachpatte’s type integral inequalities for the newly defined nonconvex class which is known as C · L · R - -pre-invex Ι · V - M s using the interval fractional operator. First, we present integral equalities that are crucial for deriving the main results of the paper by employing the fractional integral operators, where integrable mappings are Ι · V - M s. Additionally, the obtained results generalize many previous findings [53,54]. We also provide some exceptional cases as applications for the main results. In future work, we plan to expand and generalize our results using different classes of convex functions and other generalized fractional integral operators. We believe that our results and techniques will be useful to researchers working with various classes of convex functions and other generalized fractional integral operators.

Author Contributions

Conceptualization, A.S.A. and L.C.; validation, A.S.A. and Y.S.; formal analysis, A.S.A. and Y.S.; investigation, L.C. and A.F.S.; resources, L.C. and A.F.S.; writing—original draft, L.C. and A.F.S.; writing—review and editing, L.C., A.S.A. and Y.S.; visualization, A.F.S. and L.C.; supervision, A.F.S. and L.C.; project administration, A.F.S. and L.C. All authors have read and agreed to the published version of the manuscript.

Funding

This study is supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R183), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Data Availability Statement

Data are contained within the article.

Acknowledgments

This study is supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R183), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. Additionally, this study is also supported via funding from Prince Sattam bin Abdulaziz University with project number (PSAU/2024/R/1445).

Conflicts of Interest

The authors claim to have no conflicts of interest.

References

  1. Todinov, M. Interpretation of Algebraic Inequalities: Practical Engineering Optimisation and Generating New Knowledge; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
  2. Qin, Y. Integral and Discrete Inequalities and Their Applications; Birkhäuser: Berlin, Germany, 2016. [Google Scholar]
  3. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
  4. Zhang, T.; Deng, F.; Shi, P. Non-fragile finite-time stabilization for discrete mean-field stochastic systems. IEEE Trans. Autom. Control. 2023, 68, 6423–6430. [Google Scholar] [CrossRef]
  5. Jiang, X.; Wang, Y.; Zhao, D.; Shi, L. Online Pareto optimal control of mean-field stochastic multi-player systems using policy iteration. Sci. China Inf. Sci. 2024, 67, 140202. [Google Scholar] [CrossRef]
  6. Jia, G.; Luo, J.; Cui, C.; Kou, R.; Tian, Y.; Schubert, M. Valley quantum interference modulated by hyperbolic shear polaritons. Phys. Rev. B 2023, 109, 155417. [Google Scholar] [CrossRef]
  7. Ullah, N.; Khan, M.B.; Aloraini, N.; Treanțǎ, S. Some New Estimates of Fixed Point Results under Multi-Valued Mappings in G-Metric Spaces with Application. Symmetry 2023, 15, 517. [Google Scholar] [CrossRef]
  8. Tian, F.; Liu, Z.; Zhou, J.; Chen, L.; Feng, X.T. Quantifying Post-peak Behavior of Rocks with Type-I, Type-II, and Mixed Fractures by Developing a Quasi-State-Based Peridynamics. Rock Mech. Rock Eng. 2024, 1–37. [Google Scholar] [CrossRef]
  9. Guo, S.; Zuo, X.; Wu, W.; Yang, X.; Zhang, J.; Li, Y.; Huang, C.; Bu, J.; Zhu, S. Mitigation of tropospheric delay induced errors in TS-InSAR ground deformation monitoring. Int. J. Digit. Earth 2024, 17, 2316107. [Google Scholar] [CrossRef]
  10. Guo, J.; Liu, Y.; Zou, Q.; Ye, L.; Zhu, S.; Zhang, H. Study on optimization and combination strategy of multiple daily runoff prediction models coupled with physical mechanism and LSTM. J. Hydrol. 2023, 624, 129969. [Google Scholar] [CrossRef]
  11. Chang, X.; Guo, J.; Qin, H.; Huang, J.; Wang, X.; Ren, P. Single-Objective and Multi-Objective Flood Interval Forecasting Considering Interval Fitting Coefficients. Water Resour. Manag. 2024, 1–20. [Google Scholar] [CrossRef]
  12. Lin, Q. Jensen inequality for superlinear expectations. Stat. Probab. Lett. 2019, 151, 79–83. [Google Scholar] [CrossRef]
  13. White, C.C., III; Harrington, D.P. Application of Jensen’s inequality to adaptive suboptimal design. J. Optim. Theory Appl. 1980, 32, 89–99. [Google Scholar] [CrossRef]
  14. Dou, J.; Liu, J.; Wang, Y.; Zhi, L.; Shen, J.; Wang, G. Surface activity, wetting, and aggregation of a perfluoropolyether quaternary ammonium salt surfactant with a hydroxyethyl group. Molecules 2023, 28, 7151. [Google Scholar] [CrossRef] [PubMed]
  15. Han, D.; Zhou, H.; Weng, T.H.; Wu, Z.; Han, B.; Li, K.C.; Pathan, A.S.K. LMCA: A lightweight anomaly network traffic detection model integrating adjusted mobilenet and coordinate attention mechanism for IoT. Telecommun. Syst. 2023, 84, 549–564. [Google Scholar] [CrossRef]
  16. Zhang, G.; Li, W.; Yu, M.; Huang, H.; Wang, Y.; Han, Z.; Xiao, M. Electric-Field-Driven Printed 3D Highly Ordered Microstructure with Cell Feature Size Promotes the Maturation of Engineered Cardiac Tissues. Adv. Sci. 2023, 10, 2206264. [Google Scholar] [CrossRef] [PubMed]
  17. Fei, R.; Guo, Y.; Li, J.; Hu, B.; Yang, L. An improved BPNN method based on probability density for indoor location. IEICE Trans. Inf. Syst. 2023, 106, 773–785. [Google Scholar] [CrossRef]
  18. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
  19. Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. arXiv 2016, arXiv:1602.03408. [Google Scholar] [CrossRef]
  20. Chen, D.; Zhao, T.; Han, L.; Feng, Z. Single-Stage Multi-Input Buck Type High-Frequency Link’s Inverters with Series and Simultaneous Power Supply. IEEE Trans. Power Electron. 2021, 37, 7411–7421. [Google Scholar] [CrossRef]
  21. Chen, D.; Zhao, T.; Xu, S. Single-stage multi-input buck type high-frequency link’s inverters with multiwinding and time-sharing power supply. IEEE Trans. Power Electron. 2022, 37, 12763–12773. [Google Scholar] [CrossRef]
  22. Chen, D.; Zhao, J.; Qin, S. SVM strategy and analysis of a three-phase quasi-Z-source inverter with high voltage transmission ratio. Sci. China Technol. Sci. 2023, 66, 2996–3010. [Google Scholar] [CrossRef]
  23. Meng, S.; Meng, F.; Chi, H.; Chen, H.; Pang, A. A robust observer based on the nonlinear descriptor systems application to estimate the state of charge of lithium-ion batteries. J. Frankl. Inst. 2023, 360, 11397–11413. [Google Scholar] [CrossRef]
  24. Kashuri, A.; Almalki, Y.; Mahnashi, A.M.; Sahoo, S.K. New estimates on Hermite–Hadamard type inequalities via generalized tempered fractional integrals for convex functions with applications. Fractal Fract. 2023, 7, 579. [Google Scholar] [CrossRef]
  25. Chen, C.; Han, D.; Shen, X. CLVIN: Complete language-vision interaction network for visual question answering. Knowl.-Based Syst. 2023, 275, 110706. [Google Scholar] [CrossRef]
  26. Junjua, M.U.D.; Qayyum, A.; Munir, A.; Budak, H.; Saleem, M.M.; Supadi, S.S. A study of some new Hermite Hadamard inequalities via specific convex functions with applications. Mathematics 2024, 12, 478. [Google Scholar] [CrossRef]
  27. Shi, S.; Han, D.; Cui, M. A multimodal hybrid parallel network intrusion detection model. Connect. Sci. 2023, 35, 2227780. [Google Scholar] [CrossRef]
  28. Usta, F.; Budak, H.; Sarikaya, M.Z.; Set, E. On generalization of trapezoid type inequalities for s-convex functions with generalized fractional integral operators. Filomat 2018, 32, 2153–2171. [Google Scholar] [CrossRef]
  29. Chen, C.; Han, D.; Chang, C.C. MPCCT: Multimodal vision-language learning paradigm with context-based compact Transformer. Pattern Recognit. 2024, 147, 110084. [Google Scholar] [CrossRef]
  30. Yang, H.; Qaisar, S.; Munir, A.; Naeem, M. New inequalities via Caputo-Fabrizio integral operator with applications. Aims Math. 2023, 8, 19391–19412. [Google Scholar] [CrossRef]
  31. Wang, H.; Han, D.; Cui, M.; Chen, C. NAS-YOLOX: A SAR ship detection using neural architecture search and multi-scale attention. Connect. Sci. 2023, 35, 1–32. [Google Scholar] [CrossRef]
  32. Klasoom, H.; Minhyung, C. Trapezoidal (p,q)-integral inequalities related to (η1,η2)-convex functions with applications. Int. J. Theor. Phys. 2021, 60, 2627–2641. [Google Scholar] [CrossRef]
  33. Khan, Z.A.; Rashid, S.; Ashraf, R.; Baleanu, D.; Chu, Y.M. Generalized trapezium-type inequalities in the settings of fractal sets for functions having generalized convexity property. Adv. Differ. Equ. 2020, 2020, 1–24. [Google Scholar] [CrossRef]
  34. Chuai, Y.; Dai, B.; Liu, X.; Hu, M.; Wang, Y.; Zhang, H. Association of vitamin K, fibre intake and progression of periodontal attachment loss in American adults. BMC Oral Health 2023, 23, 303. [Google Scholar] [CrossRef] [PubMed]
  35. Zhao, D.; Ali, M.A.; Murtaza, G.; Zhang, Z. On the Hermite-Hadamard inequalities for interval-valued coordinated convex functions. Adv. Differ. Equ. 2020, 2020, 570. [Google Scholar] [CrossRef]
  36. Liu, X.; Dai, B.; Chuai, Y.; Hu, M.; Zhang, H. Associations between vitamin D levels and periodontal attachment loss. Clin. Oral Investig. 2023, 27, 4727–4733. [Google Scholar] [CrossRef]
  37. Lai, K.K.; Mishra, S.K.; Bisht, J.; Hassan, M. Hermite-Hadamard type inclusions for interval-valued coordinated preinvex functions. Symmetry 2022, 14, 771. [Google Scholar] [CrossRef]
  38. Wannalookkhee, F.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K. On Hermite-Hadamard type inequalities for coordinated convex functions via (p,q)-calculus. Mathematics 2021, 9, 698. [Google Scholar] [CrossRef]
  39. Kalsoom, H.; Rashid, S.; Idrees, M.; Safdar, F.; Akram, S.; Baleanu, D.; Chu, Y.-M. Post quantum integral inequalities of Hermite-Hadamard-type associated with coordinated higher order generalized strongly pre-invex and quasi-pre-invex mappings. Symmetry 2020, 12, 443. [Google Scholar] [CrossRef]
  40. Akkurt, A.; Sarıkaya, M.Z.; Budak, H.; Yıldırım, H. On the Hadamard’s type inequalities for coordinated convex functions via fractional integrals. J. King Saud. Univ. Sci. 2017, 29, 380–387. [Google Scholar] [CrossRef]
  41. Shi, F.; Ye, G.; Zhao, D.; Liu, W. Some fractional Hermite-Hadamard type inequalities for interval valued functions. Mathematics 2020, 8, 534. [Google Scholar] [CrossRef]
  42. Saeed, T.; C˘atas, A.; Khan, M.B.; Alshehri, A.M. Some new fractional inequalities for coordinated convexity over convex set pertaining to fuzzy-number-valued settings governed by fractional integrals. Fractal Fract. 2023, 7, 856. [Google Scholar] [CrossRef]
  43. Wu, X.; Wang, J.; Zhang, J. Hermite-Hadamard-type inequalities for convex functions via the fractional integrals with exponential kernel. Mathematics 2019, 7, 845. [Google Scholar] [CrossRef]
  44. Ahmad, B.; Alsaedi, A.; Kirane, M.; Torebek, B.T. Hermite-Hadamard, Hermite Hadamard-Fej’er, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math. 2019, 353, 120–129. [Google Scholar] [CrossRef]
  45. Khan, M.B.; Othman, H.A.; Santos-Garc’ıa, G.; Saeed, T.; Soliman, M.S. On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings. Chaos Soliton Fract. 2023, 169, 113274. [Google Scholar] [CrossRef]
  46. Khan, M.B.; Nwaeze, E.R.; Lee, C.-C.; Zaini, H.G.; Lou, D.-C.; Hakami, K.H. Weighted Fractional Hermite–Hadamard Integral Inequalities for up and down Ԓ-Convex Fuzzy Mappings over Coordinates. Mathematics 2023, 11, 4974. [Google Scholar] [CrossRef]
  47. Khan, M.B.; Macías-Díaz, J.E.; Althobaiti, A.; Althobaiti, S. Some New Properties of Exponential Trigonometric Convex Functions Using Up and Down Relations over Fuzzy Numbers and Related Inequalities through Fuzzy Fractional Integral Operators Having Exponential Kernels. Fractal Fract. 2023, 7, 567. [Google Scholar] [CrossRef]
  48. Khan, M.B.; Guiro, J.L.G. Riemann Liouville fractional-like integral operators, convex-like real-valued mappings and their applications over fuzzy domain. Chaos Solitons Fractals 2023, 177, 114196. [Google Scholar] [CrossRef]
  49. Alreshidi, N.A.; Khan, M.B.; Breaz, D.; Cotirla, L.-I. New Versions of Fuzzy-Valued Integral Inclusion Over p-Convex Fuzzy Number-Valued Mappings and Related Fuzzy Aumman’s Integral Inequalities. Symmetry 2023, 15, 2123. [Google Scholar] [CrossRef]
  50. Saeed, T.; Nwaeze, E.R.; Khan, M.B.; Hakami, K.H. New version of fractional Pachpatte-type integral inequalities via coordinated h-convexity via left and right order relation. Fractal Fract. 2024, 8, 125. [Google Scholar] [CrossRef]
  51. Stojiljkovic, V.; Ramaswamy, R.; Abdelnaby, O.A.A.; Radenović, S. Some novel inequalities for LR-(k,h-m)-p convex interval valued functions by means of pseudo order relation. Fractal Fract. 2022, 6, 726. [Google Scholar] [CrossRef]
  52. Stojiljkovic, V. Hermite–Hadamard–type fractional–integral inequalities for (p, h)–convex fuzzy–interval–valued mappings. Electron. J. Math 2023, 5, 18–28. [Google Scholar]
  53. Khan, M.B.; Cătaş, A.; Alsalami, O.M. Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 415. [Google Scholar] [CrossRef]
  54. Matłoka, M. On some Hadamard-type inequalities for (ℎ1,ℎ2)-preinvex functions on the co-ordinates. J. Inequal. Appl. 2013, 2013, 227. [Google Scholar] [CrossRef]
  55. Lupulescu, V. Fractional calculus for interval-valued functions. Fuzzy Set. Syst. 2015, 265, 63–85. [Google Scholar] [CrossRef]
  56. Budak, H.; Kara, H.; Ali, M.A.; Khan, S.; Chu, Y. Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions. Open Math. 2021, 19, 1081–1097. [Google Scholar] [CrossRef]
  57. Zhao, D.F.; An, T.; Ye, G.; Liu, W. Chebyshev type inequalities for interval-valued functions. Fuzzy Sets Syst. 2019, 396, 82–101. [Google Scholar] [CrossRef]
  58. Khan, M.B.; Treanțǎ, S.; Alrweili, H.; Saeed, T.; Soliman, M.S. Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings. AIMS Math 2022, 7, 15659–15679. [Google Scholar] [CrossRef]
  59. Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 404, 178–204. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Alshehry, A.S.; Ciurdariu, L.; Saber, Y.; Soliman, A.F. Some New Estimations of Left and Right Interval Fractional Pachpatte’s Type Integral Inequalities via Rectangle Plane. Axioms 2024, 13, 417. https://doi.org/10.3390/axioms13070417

AMA Style

Alshehry AS, Ciurdariu L, Saber Y, Soliman AF. Some New Estimations of Left and Right Interval Fractional Pachpatte’s Type Integral Inequalities via Rectangle Plane. Axioms. 2024; 13(7):417. https://doi.org/10.3390/axioms13070417

Chicago/Turabian Style

Alshehry, Azzh Saad, Loredana Ciurdariu, Yaser Saber, and Amal F. Soliman. 2024. "Some New Estimations of Left and Right Interval Fractional Pachpatte’s Type Integral Inequalities via Rectangle Plane" Axioms 13, no. 7: 417. https://doi.org/10.3390/axioms13070417

APA Style

Alshehry, A. S., Ciurdariu, L., Saber, Y., & Soliman, A. F. (2024). Some New Estimations of Left and Right Interval Fractional Pachpatte’s Type Integral Inequalities via Rectangle Plane. Axioms, 13(7), 417. https://doi.org/10.3390/axioms13070417

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop