Parameter Estimation in Spatial Autoregressive Models with Missing Data and Measurement Errors
Abstract
:1. Introduction
- (1)
- We establish a parameter estimation method for spatial autoregressive models with missing data and measurement errors, which uses a combination of corrected likelihood estimation and IPW with mean imputation to eliminate biases caused by missing data and measurement errors.
- (2)
- We apply the proposed method to revise and optimize traditional spatial autoregressive models. Based on this, the log-likelihood function of the modified model is presented, and explicit mathematical expressions and analyses are provided for some key parameters, offering deeper insights into the theoretical foundation and practical application of the model.
- (3)
- Under some mild conditions, we prove that the proposed estimates have consistency and oracle properties. Additionally, we conduct extensive numerical studies, proving that our method is superior to others in terms of parameter estimation.
2. Parameter Estimation in Spatial Autoregressive Models with Measurement Errors and Missing Data
2.1. Spatial Autoregressive Models
2.2. Spatial Autoregressive Model with Missing Data and Measurement Errors
- 1.
- is globally identifiable, and is a consistent estimate of .
- 2.
- , where .
3. Simulation
- (I)
- Both measurement errors and missing data are considered;
- (II)
- Measurement errors are ignored;
- (III)
- Missing data are ignored (By dropping observations with missing covariates.);
- (IV)
- Both measurement errors and missing data are ignored.
4. Real Data Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
- 1.
- converges uniformly to 0 in ;
- 2.
- For is a complement set of a neighborhood with a diameter.
- (a)
- Sinceand can be written asIt can be shown that on ,Therefore,Hence,
- (b)
References
- Luo, G. Statistical Inference in Spatial Autoregressive Models with Complex Data; Beijing University of Technology: Beijing, China, 2023. [Google Scholar] [CrossRef]
- Chen, Q. Advanced Econometrics and Stata Application; Higher Education Press: Beijing, China, 2010. [Google Scholar]
- Bai, Y.; Tian, M.; Tang, M.-L.; Lee, W.-Y. Variable selection for ultra-high dimensional quantile regression with missing data and measurement error. Stat. Methods Med. Res. 2021, 30, 129–150. [Google Scholar] [CrossRef] [PubMed]
- Li, W. Parameter Estimation of Spatial Autoregressive Models with Measurement Error; Yunnan University: Kunming, China, 2020. [Google Scholar]
- Anselin, L. SpaceStat Tutorial: A Workbook for Using SpaceStat in the Analysis of Spatial Data; West Virginia University: Urbana, IL, USA, 1992. [Google Scholar]
- Tobler, R.W. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 2016, 46, 234–240. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models. J. Am. Stat. Assoc. 1990, 85, 160. [Google Scholar] [CrossRef]
- Anselin, L. Thirty Years of Spatial Econometrics. Pap. Reg. Sci. 2010, 89, 3–25. [Google Scholar] [CrossRef]
- Cox, T.F. Spatial Processes: Models and Applications. J. R. Stat. Soc. Ser. A 1984, 147, 515. [Google Scholar] [CrossRef]
- Prucha, K.I.R. A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model. Int. Econ. Rev. 2010, 40, 509–533. [Google Scholar] [CrossRef]
- Lesage, J.P. Bayesian Estimation of Spatial Autoregressive Models. Int. Reg. Sci. Rev. 1997, 20, 113–129. [Google Scholar] [CrossRef]
- Lee, L.F. GMM and 2SLS estimation of mixed regressive, spatial autoregressive models. J. Econ. 2007, 137, 489–514. [Google Scholar] [CrossRef]
- Lee, L.F.; Liu, X. Efficient GMM estimation of high order spatial autoregressive models. Econ. Theory 2010, 26, 187–230. [Google Scholar] [CrossRef]
- Wei, C.; Guo, S.; Zhai, S. Statistical inference of partially linear varying coefficient spatial autoregressive models. Econ. Model. 2017, 64, 553–559. [Google Scholar] [CrossRef]
- Ma, M.; Zhang, X. Spatial Effects of China’s Haze Pollution and the Impact of Economy and Energy Structure. China Ind. Econ. 2014, 19–31. [Google Scholar] [CrossRef]
- Wang, Y.F.; Ni, P.F. Economic Growth Spillovers and Regional Spatial Optimization Under the Influence of High-Speed Rail. China Ind. Econ. 2016, 21–36. [Google Scholar] [CrossRef]
- Cheng, Y.; Dong, C. Study on the Spatial Effects of Trade Facilitation on China’s Industrial Manufactured Goods Export. Quant. Econ. Tech. Econ. Res. 2021, 38, 98–115. [Google Scholar] [CrossRef]
- Shen, T.; Feng, D.; Sun, T. Spatial Econometrics; Peking University Press: Beijing, China, 2010. [Google Scholar]
- Yi, L.; Tang, H.; Lin, X. Spatial Linear Mixed Models with Covariate Measurement Errors. Stat. Sin. 2009, 19, 1077. [Google Scholar]
- Huque, M.H.; Bondell, H.D.; Ryan, L. On the impact of covariate measurement error on spatial regression modelling. Environmetrics 2015, 25, 560–570. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, P. Estimation and Testing of Spatial Autoregressive Models with Measurement Error. Stat. Res. 2010, 27, 103–109. [Google Scholar] [CrossRef]
- He, X.; Hu, X. Parameter Estimation of Univariate Spatial Autoregressive Measurement Error Models. Sci. China Math. 2020, 50, 613–628. [Google Scholar] [CrossRef]
- You, P. Estimation of Semiparametric Spatial Autoregressive Models with Random Missing; Yunnan University: Kunming, China, 2018. [Google Scholar]
- Cheng, D. Modeling and Analysis of Residents’ Travel Behavior Based on Multiple Differences; Dalian Jiaotong University: Dalian, China, 2019. [Google Scholar] [CrossRef]
- Yang, Z.; Yu, J.; Chen, J. A Missing Data Imputation Method Based on Clustering and Spatial Autoregressive Model. Intelligent Information Technology Application Association. In Proceedings of the 2011 International Conference on Ecological Protection of Lakes-Wetlands-Watershed and Application of 3S Technology (EPLWW3S 2011 V2), Nanchang, China, 25–26 June 2011; pp. 554–557. [Google Scholar]
- Wang, W.; Lee, L. Estimation of spatial autoregressive models with randomly missing data in the dependent variable. Econ. J. 2013, 16, 73–102. [Google Scholar] [CrossRef]
- Lee, L.F. Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models. Econometrica 2004, 72, 1899–1925. [Google Scholar] [CrossRef]
- Kelejian, H.H.; Prucha, I.R. On the Asymptotic Distribution of the Moran I Test Statistic with Applications. J. Econom. 2001. [Google Scholar] [CrossRef]
- Case, A.C. Spatial Patterns in Household Demand. Econometrica 1991, 59, 953–965. [Google Scholar] [CrossRef]
- Li, F.R. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties. Publ. Am. Stat. Assoc. 2001, 96, 1348–1360. [Google Scholar] [CrossRef]
- Nakamura, T. Corrected Score Function for Errors-in-Variables Models: Methodology and Application to Generalized Linear Models. Biometrika 1990, 77, 127–137. [Google Scholar] [CrossRef]
- David, H., Jr. Hedonic housing prices and the demand for clean air. J. Environ. Econ. Manag. 1978. [Google Scholar] [CrossRef]
- Sun, Y.; Yan, H.; Zhang, W. A semiparametric spatial dynamic model. Ann. Stats. 2014, 42, 700–727. [Google Scholar] [CrossRef]
- Du, J.; Sun, X.; Cao, R. Statistical inference for partially linear additive spatial autoregressive models. Spat. Stat. 2018, 52–67. [Google Scholar] [CrossRef]
- Liu, X.; Chen, J.; Cheng, S. A Penalized Quasi-Maximum Likelihood Method for Variable Selection in the Spatial Autoregressive Model. Spat. Stat. 2018, 25, 86–104. [Google Scholar] [CrossRef]
- Pace, R.K.; Gilley, O.W. Using the Spatial Configuration of the Data to Improve Estimation. J. Real Estate Financ. Econ. 1997, 14, 333–340. [Google Scholar] [CrossRef]
n = 100 | n = 150 | n = 200 | n = 250 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
e | m = 10 | m = 15 | m = 20 | m = 10 | m = 15 | m = 20 | m = 15 | m = 20 | m = 25 | m = 15 | m = 20 | m = 25 | |
Incorporating measurement errors and missing data | |||||||||||||
0.5 | 0.5 | 1.627E+01 | 9.324E-01 | 5.839E+01 | 4.618E-02 | 4.189E-02 | 4.618E-02 | 3.850E-02 | 3.492E-02 | 3.850E-02 | 2.462E-02 | 3.809E-02 | 2.610E-02 |
−0.5 | 8.240E+00 | 2.289E+00 | 3.887E+00 | 4.440E-02 | 4.288E-02 | 4.440E-02 | 3.938E-02 | 2.922E-02 | 3.938E-02 | 2.435E-02 | 3.501E-02 | 2.692E-02 | |
1 | 0.5 | 2.184E-01 | 2.354E-01 | 2.102E-01 | 1.552E-01 | 1.353E-01 | 1.555E-01 | 1.487E-01 | 1.248E-01 | 1.185E-01 | 1.078E-01 | 1.304E-01 | 1.073E-01 |
−0.5 | 2.081E-01 | 2.065E-01 | 2.159E-01 | 1.480E-01 | 1.437E-01 | 1.562E-01 | 1.524E-01 | 1.312E-01 | 1.207E-01 | 1.138E-01 | 1.281E-01 | 1.112E-01 | |
1.5 | 0.5 | 4.731E-01 | 4.785E-01 | 4.959E-01 | 3.910E-01 | 3.290E-01 | 3.192E-01 | 3.803E-01 | 2.695E-01 | 2.539E-01 | 2.395E-01 | 2.561E-01 | 2.375E-01 |
−0.5 | 4.632E-01 | 5.174E-01 | 4.847E-01 | 3.844E-01 | 3.290E-01 | 3.267E-01 | 3.723E-01 | 2.694E-01 | 2.819E-01 | 2.261E-01 | 2.668E-01 | 2.542E-01 | |
Ignoring missing data | |||||||||||||
0.5 | 0.5 | 1.320E+02 | 1.603E+02 | 1.368E+03 | 9.288E+02 | 2.599E+02 | 8.833E+01 | 8.905E+02 | 8.535E+01 | 9.025E+01 | 7.097E+01 | 6.560E+01 | 1.963E+02 |
−0.5 | 1.403E+02 | 1.288E+02 | 6.390E+02 | 1.014E+03 | 2.685E+02 | 8.620E+01 | 9.785E+02 | 1.797E+02 | 1.074E+02 | 7.247E+01 | 6.491E+01 | 1.774E+02 | |
1 | 0.5 | 3.652E+03 | 6.698E+01 | 1.661E+03 | 7.315E+02 | 2.568E+02 | 9.291E+01 | 6.350E+02 | 1.839E+02 | 1.098E+02 | 7.515E+01 | 7.648E+01 | 1.835E+02 |
−0.5 | 3.840E+03 | 7.060E+01 | 1.649E+03 | 1.035E+03 | 3.026E+02 | 8.620E+01 | 5.711E+02 | 1.797E+02 | 1.081E+02 | 7.477E+01 | 7.326E+01 | 1.934E+02 | |
1.5 | 0.5 | 3.776E+03 | 6.636E+01 | 2.115E+03 | 9.394E+02 | 2.887E+02 | 9.215E+01 | 7.766E+02 | 1.727E+02 | 1.091E+02 | 7.751E+01 | 7.263E+01 | 1.949E+02 |
−0.5 | 3.692E+03 | 6.373E+01 | 1.862E+03 | 8.851E+02 | 2.952E+02 | 8.631E+01 | 7.435E+02 | 1.987E+02 | 1.167E+02 | 7.406E+01 | 6.734E+01 | 1.884E+02 | |
Ignoring measurement errors | |||||||||||||
0.5 | 0.5 | 5.054E-02 | 5.442E-02 | 5.727E-02 | 3.850E-02 | 3.523E-02 | 3.850E-02 | 3.140E-02 | 3.492E-02 | 2.867E-02 | 2.482E-02 | 3.501E-02 | 2.432E-02 |
−0.5 | 5.584E-02 | 4.883E-02 | 4.941E-02 | 3.938E-02 | 3.660E-02 | 3.938E-02 | 2.713E-02 | 2.922E-02 | 2.754E-02 | 2.403E-02 | 3.501E-02 | 2.692E-02 | |
1 | 0.5 | 2.101E-01 | 2.141E-01 | 2.100E-01 | 1.334E-01 | 1.487E-01 | 1.332E-01 | 1.199E-01 | 1.248E-01 | 1.185E-01 | 1.074E-01 | 1.314E-01 | 1.095E-01 |
−0.5 | 2.021E-01 | 2.038E-01 | 2.149E-01 | 1.428E-01 | 1.524E-01 | 1.490E-01 | 1.064E-01 | 1.312E-01 | 1.207E-01 | 1.109E-01 | 1.254E-01 | 1.102E-01 | |
1.5 | 0.5 | 4.449E-01 | 4.604E-01 | 4.668E-01 | 3.803E-01 | 3.180E-01 | 3.142E-01 | 2.530E-01 | 2.695E-01 | 2.539E-01 | 2.441E-01 | 2.509E-01 | 2.375E-01 |
−0.5 | 4.664E-01 | 4.983E-01 | 4.969E-01 | 3.723E-01 | 3.233E-01 | 3.121E-01 | 2.527E-01 | 2.694E-01 | 2.819E-01 | 2.309E-01 | 2.637E-01 | 2.568E-01 | |
Ignoring measurement errors and missing data | |||||||||||||
0.5 | 0.5 | 1.227E+02 | 1.543E+02 | 1.312E+03 | 8.905E+02 | 2.516E+02 | 8.535E+01 | 6.129E+02 | 1.699E+02 | 9.582E+01 | 6.998E+01 | 6.491E+01 | 1.921E+02 |
−0.5 | 1.299E+02 | 1.220E+02 | 6.024E+02 | 9.785E+02 | 2.573E+02 | 8.620E+01 | 6.237E+02 | 1.942E+02 | 1.035E+02 | 7.140E+01 | 6.491E+01 | 1.746E+02 | |
1 | 0.5 | 3.468E+03 | 6.335E+01 | 1.557E+03 | 7.074E+02 | 2.468E+02 | 8.876E+01 | 6.189E+02 | 1.827E+02 | 1.078E+02 | 7.358E+01 | 7.555E+01 | 1.799E+02 |
−0.5 | 3.493E+03 | 6.724E+01 | 1.557E+03 | 1.008E+03 | 2.891E+02 | 8.326E+01 | 5.566E+02 | 1.772E+02 | 1.062E+02 | 7.408E+01 | 7.166E+01 | 1.914E+02 | |
1.5 | 0.5 | 3.524E+03 | 6.336E+01 | 2.019E+03 | 8.924E+02 | 2.822E+02 | 8.807E+01 | 7.539E+02 | 1.677E+02 | 1.078E+02 | 7.674E+01 | 7.112E+01 | 1.918E+02 |
−0.5 | 3.375E+03 | 6.215E+01 | 1.734E+03 | 8.151E+02 | 2.867E+02 | 8.371E+01 | 7.322E+02 | 1.935E+02 | 1.143E+02 | 7.346E+01 | 6.638E+01 | 1.847E+02 |
n = 100 | n = 150 | n = 200 | n = 250 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
e | m = 10 | m = 15 | m = 20 | m = 10 | m = 15 | m = 20 | m = 15 | m = 20 | m = 25 | m = 15 | m = 20 | m = 25 | |
Incorporating measurement errors and missing data | |||||||||||||
0.5 | 0.5 | 1.801E-02 | 8.973E-04 | 6.942E-03 | 1.063E-07 | 2.664E-07 | 1.269E-06 | 5.714E-08 | 2.531E-07 | 6.536E-07 | 4.296E-07 | 2.436E-06 | 2.780E-07 |
−0.5 | 2.281E-02 | 2.045E-03 | 1.019E-03 | 1.119E-07 | 3.246E-07 | 1.563E-06 | 5.643E-08 | 1.796E-07 | 5.257E-07 | 4.646E-07 | 2.419E-06 | 2.300E-07 | |
1 | 0.5 | 1.784E-07 | 1.216E-05 | 5.359E-07 | 2.187E-07 | 9.488E-07 | 3.077E-06 | 1.683E-07 | 7.737E-07 | 2.334E-06 | 1.877E-06 | 3.835E-06 | 9.066E-07 |
−0.5 | 1.822E-07 | 1.164E-05 | 4.690E-07 | 2.171E-07 | 9.527E-07 | 3.141E-06 | 1.917E-07 | 8.920E-07 | 1.713E-06 | 1.825E-06 | 4.568E-06 | 1.024E-06 | |
1.5 | 0.5 | 4.202E-07 | 2.680E-05 | 1.040E-06 | 3.780E-07 | 1.599E-06 | 3.857E-06 | 4.070E-07 | 1.672E-06 | 4.307E-06 | 4.402E-06 | 5.968E-06 | 2.078E-06 |
−0.5 | 4.165E-07 | 2.693E-05 | 8.912E-07 | 3.953E-07 | 1.725E-06 | 6.557E-06 | 4.159E-07 | 1.475E-06 | 4.581E-06 | 4.567E-07 | 5.814E-06 | 2.216E-06 | |
Ignoring missing data | |||||||||||||
0.5 | 0.5 | 1.027E-06 | 1.165E-06 | 1.946E-07 | 6.254E-08 | 1.896E-07 | 9.387E-07 | 5.386E-08 | 2.548E-07 | 6.431E-07 | 4.499E-07 | 2.257E-06 | 2.740E-07 |
−0.5 | 1.329E-06 | 1.328E-06 | 2.800E-07 | 6.503E-08 | 2.004E-07 | 9.951E-07 | 5.913E-08 | 1.693E-07 | 5.375E-07 | 4.490E-07 | 2.253E-06 | 2.388E-07 | |
1 | 0.5 | 1.679E-07 | 1.181E-05 | 5.124E-07 | 2.171E-07 | 9.079E-07 | 3.141E-06 | 1.828E-07 | 7.743E-07 | 2.231E-06 | 2.041E-06 | 3.937E-06 | 9.629E-07 |
−0.5 | 1.866E-07 | 1.037E-05 | 4.678E-07 | 2.425E-07 | 9.527E-07 | 3.857E-06 | 1.939E-07 | 8.920E-07 | 1.685E-06 | 1.822E-06 | 3.700E-06 | 1.017E-06 | |
1.5 | 0.5 | 4.402E-07 | 2.404E-05 | 1.753E-06 | 3.953E-07 | 1.725E-06 | 6.790E-06 | 4.070E-07 | 1.654E-06 | 3.690E-06 | 4.567E-07 | 5.917E-06 | 1.985E-06 |
−0.5 | 4.567E-07 | 2.572E-05 | 9.034E-07 | 4.730E-07 | 1.725E-06 | 6.706E-06 | 4.159E-07 | 1.475E-06 | 4.581E-06 | 4.402E-07 | 5.814E-06 | 2.232E-06 | |
Ignoring measurement errors | |||||||||||||
0.5 | 0.5 | 1.801E-02 | 8.973E-04 | 6.942E-03 | 1.063E-07 | 2.664E-07 | 1.269E-06 | 5.714E-08 | 2.531E-07 | 6.536E-07 | 4.296E-07 | 2.436E-06 | 2.780E-07 |
−0.5 | 2.281E-02 | 2.045E-03 | 1.019E-03 | 1.119E-07 | 3.246E-07 | 1.563E-06 | 5.643E-08 | 1.796E-07 | 5.257E-07 | 4.646E-07 | 2.419E-06 | 2.300E-07 | |
1 | 0.5 | 1.784E-07 | 1.216E-05 | 5.359E-07 | 2.187E-07 | 9.488E-07 | 3.077E-06 | 1.683E-07 | 7.737E-07 | 2.334E-06 | 1.877E-06 | 3.835E-06 | 9.066E-07 |
−0.5 | 1.822E-07 | 1.164E-05 | 4.690E-07 | 2.171E-07 | 9.527E-07 | 3.141E-06 | 1.917E-07 | 8.920E-07 | 1.713E-06 | 1.825E-06 | 4.568E-06 | 1.024E-06 | |
1.5 | 0.5 | 4.202E-07 | 2.680E-05 | 1.040E-06 | 3.780E-07 | 1.599E-06 | 3.857E-06 | 4.070E-07 | 1.672E-06 | 4.307E-06 | 4.402E-06 | 5.968E-06 | 2.078E-06 |
−0.5 | 4.165E-07 | 2.693E-05 | 8.912E-07 | 3.953E-07 | 1.725E-06 | 6.557E-06 | 4.159E-07 | 1.475E-06 | 4.581E-06 | 4.567E-07 | 5.814E-06 | 2.216E-06 | |
Ignoring measurement errors and missing data | |||||||||||||
0.5 | 0.5 | 1.801E-02 | 8.973E-04 | 6.942E-03 | 1.063E-07 | 2.664E-07 | 1.269E-06 | 5.714E-08 | 2.531E-07 | 6.536E-07 | 4.296E-07 | 2.436E-06 | 2.780E-07 |
−0.5 | 2.281E-02 | 2.045E-03 | 1.019E-03 | 1.119E-07 | 3.246E-07 | 1.563E-06 | 5.643E-08 | 1.796E-07 | 5.257E-07 | 4.646E-07 | 2.419E-06 | 2.300E-07 | |
1 | 0.5 | 1.784E-07 | 1.216E-05 | 5.359E-07 | 2.187E-07 | 9.488E-07 | 3.077E-06 | 1.683E-07 | 7.737E-07 | 2.334E-06 | 1.877E-06 | 3.835E-06 | 9.066E-07 |
−0.5 | 1.822E-07 | 1.164E-05 | 4.690E-07 | 2.171E-07 | 9.527E-07 | 3.141E-06 | 1.917E-07 | 8.920E-07 | 1.713E-06 | 1.825E-06 | 4.568E-06 | 1.024E-06 | |
1.5 | 0.5 | 4.202E-07 | 2.680E-05 | 1.040E-06 | 3.780E-07 | 1.599E-06 | 3.857E-06 | 4.070E-07 | 1.672E-06 | 4.307E-06 | 4.402E-06 | 5.968E-06 | 2.078E-06 |
−0.5 | 4.165E-07 | 2.693E-05 | 8.912E-07 | 3.953E-07 | 1.725E-06 | 6.557E-06 | 4.159E-07 | 1.475E-06 | 4.581E-06 | 4.567E-07 | 5.814E-06 | 2.216E-06 |
n = 100 | n = 150 | n = 200 | n = 250 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
e | m = 10 | m = 15 | m = 20 | m = 10 | m = 15 | m = 20 | m = 15 | m = 20 | m = 25 | m = 15 | m = 20 | m = 25 | |
Incorporating measurement errors and missing data | |||||||||||||
0.5 | 0.5 | 8.838E+03 | 6.371E+00 | 1.498E+05 | 2.544E-02 | 2.725E-02 | 2.938E-02 | 1.402E-02 | 1.326E-02 | 1.413E-02 | 1.255E-02 | 5.831E-02 | 1.436E-02 |
−0.5 | 1.971E+03 | 3.881E+01 | 4.972E+02 | 2.515E-02 | 2.724E-02 | 2.161E-02 | 1.504E-02 | 1.285E-02 | 1.285E-02 | 1.087E-02 | 4.399E-02 | 1.340E-02 | |
1 | 0.5 | 2.497E-01 | 2.111E-01 | 2.422E-01 | 2.286E-01 | 2.451E-01 | 2.327E-01 | 2.655E-01 | 3.116E-01 | 2.646E-01 | 5.731E-01 | 7.831E-01 | 5.634E-01 |
−0.5 | 2.428E-01 | 2.424E-01 | 2.191E-01 | 2.618E-01 | 2.378E-01 | 2.618E-01 | 2.571E-01 | 3.228E-01 | 2.817E-01 | 5.984E-01 | 1.015E+00 | 5.455E-01 | |
1.5 | 0.5 | 1.039E+00 | 8.811E-01 | 8.929E-01 | 1.870E+00 | 1.237E+00 | 1.388E+00 | 1.751E+00 | 1.950E+00 | 1.752E+00 | 3.281E+00 | 4.377E+00 | 2.882E+00 |
−0.5 | 7.428E-01 | 1.214E+00 | 1.008E+00 | 2.276E+00 | 1.156E+00 | 1.197E+00 | 1.409E+00 | 2.525E+00 | 2.000E+00 | 3.183E+00 | 5.228E+00 | 3.731E+00 | |
Ignoring missing data | |||||||||||||
0.5 | 0.5 | 6.195E+05 | 7.860E+05 | 9.643E+07 | 9.921E+07 | 1.059E+07 | 6.249E+05 | 1.097E+08 | 6.918E+06 | 1.673E+06 | 1.590E+06 | 1.887E+06 | 9.845E+06 |
−0.5 | 7.591E+05 | 6.743E+05 | 1.409E+07 | 1.534E+08 | 1.149E+07 | 8.153E+05 | 8.139E+06 | 1.796E+06 | 8.070E+06 | 1.241E+06 | 1.750E+06 | 8.070E+06 | |
1 | 0.5 | 5.165E+08 | 8.849E+04 | 1.396E+08 | 8.536E+07 | 1.048E+07 | 8.269E+05 | 1.222E+08 | 7.143E+06 | 1.647E+06 | 1.489E+06 | 1.885E+06 | 8.864E+06 |
−0.5 | 8.202E+08 | 8.025E+04 | 1.175E+08 | 1.300E+08 | 9.951E+06 | 7.452E+05 | 1.033E+08 | 7.292E+06 | 1.689E+06 | 1.381E+06 | 1.962E+06 | 1.062E+07 | |
1.5 | 0.5 | 5.896E+08 | 9.098E+04 | 1.807E+08 | 1.364E+08 | 1.323E+07 | 7.982E+05 | 1.827E+08 | 8.376E+06 | 1.992E+06 | 1.701E+06 | 2.093E+06 | 9.215E+06 |
−0.5 | 5.829E+08 | 8.085E+04 | 1.362E+08 | 1.450E+08 | 1.148E+07 | 7.943E+05 | 1.349E+08 | 8.539E+06 | 1.874E+06 | 1.478E+06 | 2.036E+06 | 1.101E+07 | |
Ignoring measurement errors | |||||||||||||
0.5 | 0.5 | 1.552E-02 | 1.409E-02 | 1.635E-02 | 2.452E-02 | 1.870E-02 | 1.839E-02 | 3.074E-02 | 3.737E-02 | 3.452E-02 | 3.967E-02 | 1.438E-01 | 5.327E-02 |
−0.5 | 1.556E-02 | 1.611E-02 | 1.420E-02 | 1.966E-02 | 1.673E-02 | 1.157E-01 | 3.432E-02 | 3.214E-02 | 5.016E-02 | 4.095E-02 | 1.157E-01 | 5.016E-02 | |
1 | 0.5 | 1.575E-01 | 1.784E-01 | 1.942E-01 | 3.701E-01 | 4.468E-01 | 3.903E-01 | 4.643E-01 | 5.033E-01 | 4.763E-01 | 7.663E-01 | 1.166E+00 | 7.863E-01 |
−0.5 | 2.203E-01 | 1.996E-01 | 2.201E-01 | 4.989E-01 | 3.800E-01 | 3.196E-01 | 4.460E-01 | 5.350E-01 | 5.115E-01 | 8.282E-01 | 1.174E+00 | 7.716E-01 | |
1.5 | 0.5 | 1.071E+00 | 9.059E-01 | 1.040E+00 | 2.490E+00 | 1.723E+00 | 1.843E+00 | 2.196E+00 | 2.450E+00 | 2.661E+00 | 3.956E+00 | 4.853E+00 | 3.374E+00 |
−0.5 | 8.711E-01 | 1.130E+00 | 1.075E+00 | 2.974E+00 | 1.652E+00 | 1.563E+00 | 1.849E+00 | 3.028E+00 | 2.583E+00 | 3.761E+00 | 5.851E+00 | 4.455E+00 | |
Ignoring measurement errors and missing data | |||||||||||||
0.5 | 0.5 | 6.249E+05 | 7.933E+05 | 9.505E+07 | 1.007E+08 | 1.088E+07 | 6.285E+05 | 1.143E+08 | 8.101E+06 | 1.670E+06 | 1.592E+06 | 1.891E+06 | 1.008E+07 |
−0.5 | 8.039E+05 | 6.779E+05 | 1.376E+07 | 1.524E+08 | 1.148E+07 | 8.325E+05 | 8.101E+06 | 1.797E+06 | 8.078E+06 | 1.262E+06 | 1.754E+06 | 8.078E+06 | |
1 | 0.5 | 5.243E+08 | 8.745E+04 | 1.387E+08 | 8.553E+07 | 1.051E+07 | 8.309E+05 | 1.223E+08 | 7.152E+06 | 1.655E+06 | 1.490E+06 | 1.887E+06 | 8.866E+06 |
−0.5 | 8.338E+08 | 8.011E+04 | 1.187E+08 | 1.306E+08 | 1.015E+07 | 7.443E+05 | 1.036E+08 | 7.452E+06 | 1.691E+06 | 1.382E+06 | 1.965E+06 | 1.069E+07 | |
1.5 | 0.5 | 5.856E+08 | 8.961E+04 | 1.826E+08 | 1.371E+08 | 1.389E+07 | 7.982E+05 | 1.828E+08 | 8.344E+06 | 1.997E+06 | 1.726E+06 | 2.096E+06 | 9.126E+06 |
−0.5 | 5.829E+08 | 8.209E+04 | 1.369E+08 | 1.456E+08 | 1.156E+07 | 7.943E+05 | 1.357E+08 | 8.559E+06 | 1.843E+06 | 1.474E+06 | 2.039E+06 | 1.089E+07 |
Attribute | Explanation | Remarks |
---|---|---|
CRIM | Per capita crime rate by town | |
ZN | Proportion of residential land zoned for lots over 25,000 sq. ft. | Residential land proportion |
INDUS | Proportion of non-retail business acres per town | Non-retail business proportion |
CHAS | Charles River dummy variable | Charles River variable for regression analysis |
NOX | Nitrogen oxide concentration (ppm) | Environmental indicator |
RM | Average number of rooms per dwelling | Number of rooms in residential units |
AGE | Proportion of owner-occupied units built prior to 1940 | Pre-1940s-constructed units proportion |
DIS | Weighted distances to five Boston employment centers | Distance to employment hubs |
RAD | Index of accessibility to radial highways | Highway accessibility index |
TAX | Full-value property tax rate per 10,000 | Property tax rate |
PRATO | Pupil–teacher ratio by town | Pupil-teacher ratio |
B | , where Bk is the proportion of blacks by town | Proportion of black population |
LSTAT | Percentage of the population classified as lower income | Lower-income class proportion |
MEDV | Median value of owner-occupied homes | Typically, the target variable in an analysis |
Real parameters | 4.446E-01 | −1.770E-01 | −3.425E-02 | −4.261E-01 | −1.249E-01 | 4.102E-01 | 8.168E-03 |
Incorporating measurement errors and missing data | 8.870E-03 | 1.878E-03 | 8.669E-04 | 9.953E-03 | 1.716E-03 | 2.848E-01 | 9.182E-07 |
Ignoring missing data | 3.536E-02 | 2.045E-03 | 8.998E-04 | 9.691E-03 | 1.805E-03 | 1.746E-01 | 8.075E-06 |
Ignoring measurement errors | 1.043E-02 | 1.919E-03 | 8.840E-04 | 6.065E-03 | 2.132E-03 | 2.457E-01 | 8.077E-07 |
Ignoring measurement errors and missing data | 4.528E-02 | 2.094E-03 | 8.565E-04 | 3.985E-03 | 1.629E-03 | 1.208E-01 | 1.125E-05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Zhang, Z.; Song, Y. Parameter Estimation in Spatial Autoregressive Models with Missing Data and Measurement Errors. Axioms 2024, 13, 315. https://doi.org/10.3390/axioms13050315
Li T, Zhang Z, Song Y. Parameter Estimation in Spatial Autoregressive Models with Missing Data and Measurement Errors. Axioms. 2024; 13(5):315. https://doi.org/10.3390/axioms13050315
Chicago/Turabian StyleLi, Tengjun, Zhikang Zhang, and Yunquan Song. 2024. "Parameter Estimation in Spatial Autoregressive Models with Missing Data and Measurement Errors" Axioms 13, no. 5: 315. https://doi.org/10.3390/axioms13050315
APA StyleLi, T., Zhang, Z., & Song, Y. (2024). Parameter Estimation in Spatial Autoregressive Models with Missing Data and Measurement Errors. Axioms, 13(5), 315. https://doi.org/10.3390/axioms13050315