Bergman Space Properties of Fractional Derivatives of the Cauchy Transform of a Certain Self-Similar Measure
Abstract
:1. Introduction
2. Preliminaries
3. Fractional Derivatives of
4. A Value Distribution Property
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mandelbrot, B.B. Les Objects Fractals: Forme, Hasard et Dimension; Flammarion: Paris, France, 1975. [Google Scholar]
- Strichartz, R.S. Fourier asymptotics of fractal measures. J. Funct. Anal. 1990, 89, 154–187. [Google Scholar] [CrossRef]
- Strichartz, R.S. Self-similar measures and their Fourier transforms I. Indiana Univ. Math. J. 1990, 39, 797–817. [Google Scholar] [CrossRef]
- Strichartz, R.S. Self-similar measures and their Fourier transforms II. Trans. Am. Math. Soc. 1993, 336, 335–361. [Google Scholar] [CrossRef]
- Strichartz, R.S. Self-similar measures and their Fourier transforms III. Indiana Univ. Math. J. 1993, 42, 367–411. [Google Scholar] [CrossRef]
- Strichartz, R.S. Self-similarity in harmonic analysis. J. Fourier Anal. Appl. 1994, 1, 1–37. [Google Scholar] [CrossRef]
- Mattila, P. Geometry Sets and Measures in Euclidean Spaces: Fractals and Rectifiability; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Tolsa, X. Bilipschitz maps, analytic capacity, and the Cauchy integral. Ann. Math. 2005, 162, 1243–1304. [Google Scholar] [CrossRef]
- Tolsa, X. Growth estimates for Cauchy integrals of measures and rectifiability. Geom. Funct. Anal. 2007, 17, 605–643. [Google Scholar] [CrossRef]
- Lund, J.P.; Strichartz, R.S.; Vinson, J.P. Cauchy transforms of self-similar measures. Exp. Math. 1998, 7, 177–190. [Google Scholar] [CrossRef]
- Dong, X.H.; Lau, K.S. Cauchy transforms of self-similar measures: The Laurent coefficients. J. Funct. Anal. 2003, 202, 67–97. [Google Scholar] [CrossRef]
- Dong, X.H.; Lau, K.S. An integral related to the Cauchy transform on the Sierpinski gasket. Exp. Math. 2004, 13, 415–419. [Google Scholar] [CrossRef]
- Dong, X.H.; Lau, K.S.; Liu, J.C. Cantor boundary behavior of analytic functions. Adv. Math. 2013, 232, 543–570. [Google Scholar] [CrossRef]
- Dong, X.H.; Lau, K.S.; Wu, H.H. Cauchy transform of self-similar measures: Starlikeness and univalence. Trans. Am. Math. Soc. 2017, 369, 4817–4842. [Google Scholar] [CrossRef]
- Dong, X.H.; Lau, K.S. Cantor boundary behavior of analytic functions. In Recent Developments in Fractals and Related Fields; Birkhäuser Boston, Inc.: Boston, MA, USA, 2010; pp. 283–294. [Google Scholar] [CrossRef]
- Li, H.P.; Dong, X.H.; Zhang, P.F.; Wu, H.H. Estimates for Taylor coefficients of Cauchy transforms of some Hausdorff measures I. J. Funct. Anal. 2021, 280, 108653. [Google Scholar] [CrossRef]
- Li, H.G.; Dong, X.H.; Zhang, P.F. Estimates for Taylor coefficients of Cauchy transforms of some Hausdorff measures II. J. Funct. Anal. 2021, 280, 108654. [Google Scholar] [CrossRef]
- Folconer, K.J. Fractal Geometry-Mathematical Foundations and Applications; John Wiley & Sons: New York, NY, USA, 1990. [Google Scholar]
- Wang, S.R.; Wang, Z.M. Function space properties of the Cauchy transform on the Sierpinski gasket. AIMS Math. 2023, 8, 6064–6073. [Google Scholar] [CrossRef]
- Hutchinson, J. Fractals and self-similarity. Indiana Univ. Math. J. 1981, 30, 713–747. [Google Scholar] [CrossRef]
- Hardy, G.H.; Littlewood, J.E. Some properties of fractional integrals II. Math. Zeit. 1932, 34, 403–489. [Google Scholar] [CrossRef]
- MacGregor, T.H.; Sterner, M.P. Limits of fractional derivatives and compositions of analytic functions. J. Aust. Math. Soc. 2017, 103, 104–115. [Google Scholar] [CrossRef]
- TMacGregor, H.; Sterner, M.P. Boundary limits of fractional derivatives of univalent functions. Complex Var. Elliptic Equ. 2018, 63, 1529–1538. [Google Scholar] [CrossRef]
- MacGregor, T.H.; Sterner, M.P. Hadamard products with power functions and multipliers of Hardy spaces. J. Math. Anal. Appl. 2003, 282, 163–176. [Google Scholar] [CrossRef]
- Duren, P. Theory of HP Spaces; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Duren, P.; Schuster, A. Bergman Spaces, Mathematical Surveys and Monographs; American Mathematical Society: Providence, RI, USA, 2004; Volume 100. [Google Scholar]
- Hedenmalm, H.; Korenblum, B.; Zhu, K.H. Theory of Bergman Spaces; Springer: New York, NY, USA, 2000. [Google Scholar]
- Peläez, J.A.; Rxaxttyxax, J.; Sierra, K. Embedding Bergman spaces into tent spaces. Math. Z. 2015, 281, 1215–1237. [Google Scholar] [CrossRef]
- Peläez, J.A.; Rxaxttyxax, J.; Sierra, K. Berezin transform and Toeplitz operators on Bergman spaces induced by regular weights. J. Geom. Anal. 2018, 28, 656–687. [Google Scholar] [CrossRef]
- He, B.; Jreis, J.; Lefévre, P.; Lou, Z.J. Absolutely summing Carleson embeddings on Bergman spaces. Adv. Math. 2024, 439, 109495. [Google Scholar] [CrossRef]
- Jreis, J.; Lefévre, P. Some operator ideal properties of Volterra operators on Bergman and Bloch spaces. Integral Equ. Oper. Theory 2024, 96, 1. [Google Scholar] [CrossRef]
- Tong, C.Z.; Li, J.F. Carleson measures on the weighted Bergman spaces with Békollé weights. Chin. Ann. Math. Ser. B 2021, 42, 583–600. [Google Scholar] [CrossRef]
- Macgregor, T.H. Analytic and univalent function with integral representations involving complex measures. Indiana Univ. Math. J. 1987, 86, 109–130. [Google Scholar] [CrossRef]
- Hibschweiler, R.A.; Macgregor, T.H. Closure properties of families of Cauchy-Stieltjes transforms. Proc. Am. Math. Soc. 1989, 105, 615–621. [Google Scholar] [CrossRef]
- Hibschweiler, R.A.; Macgregor, T.H. Multipliers of families of Cauchy- Stieltjes transforms. Trans. Am. Math. Soc. 1992, 331, 377–394. [Google Scholar] [CrossRef]
- Hallenbeck, D.J.; Macgregor, T.H. Fractional Cauchy transforms, inner functions and multipliers. Proc. Lond. Math. Soc. 1996, 72, 157–187. [Google Scholar] [CrossRef]
- Hallenbeck, D.J.; Samotij, K. On Cauchy integrals of logarithmic potentials and their multipliers. J. Math. Anal. Appl. 1993, 174, 614–634. [Google Scholar] [CrossRef]
- Gautschi, W. Some elementary inequalities relating to the gamma and incomplete gamma function. J. Math. Phys. 1959, 38, 77–81. [Google Scholar] [CrossRef]
- Cherry, W.; Ye, Z. Nevanlinna’s Theory of Value Distribution; Springer Monographs in Mathematics; Springer: Berlin, Germany, 2001. [Google Scholar]
- Vojta, P. Diophantine Approximation and Nevanlinna Theory; Springer: Berlin, Germany, 2011; pp. 111–230. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, Z. Bergman Space Properties of Fractional Derivatives of the Cauchy Transform of a Certain Self-Similar Measure. Axioms 2024, 13, 268. https://doi.org/10.3390/axioms13040268
Wang S, Wang Z. Bergman Space Properties of Fractional Derivatives of the Cauchy Transform of a Certain Self-Similar Measure. Axioms. 2024; 13(4):268. https://doi.org/10.3390/axioms13040268
Chicago/Turabian StyleWang, Songran, and Zhimin Wang. 2024. "Bergman Space Properties of Fractional Derivatives of the Cauchy Transform of a Certain Self-Similar Measure" Axioms 13, no. 4: 268. https://doi.org/10.3390/axioms13040268
APA StyleWang, S., & Wang, Z. (2024). Bergman Space Properties of Fractional Derivatives of the Cauchy Transform of a Certain Self-Similar Measure. Axioms, 13(4), 268. https://doi.org/10.3390/axioms13040268