Solvability Criterion for a System Arising from Monge–Ampère Equations with Two Parameters
Abstract
1. Introduction
2. Preliminaries
3. Main Results
4. Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Figalli, A. The Monge-Ampère Equation and Its Applications; European Mathematical Society: Helsinki, Finland, 2017. [Google Scholar]
- Caffarelli, L.A. Interior W2,p estimates for solutions of the Monge-Ampère equation. Ann. Math. 1990, 131, 135–150. [Google Scholar] [CrossRef]
- Mohammed, A. Singular boundary value problems for the Monge-Ampère equation. Nonlinear Anal-Theor. 2009, 70, 457–464. [Google Scholar] [CrossRef]
- Mooney, C. Partial regularity for singular solutions to the Monge-Ampère equation. Commun. Pure Appl. Math. 2015, 68, 1066–1084. [Google Scholar] [CrossRef]
- Aranda, C.; Godoy, T. Existence and multiplicity of positive solutions for a singular problem associated to the p-laplacian operator. Electron. J. Differ. Eq. 2004, 2004, 281–286. [Google Scholar]
- Son, B.; Wang, P. Analysis of positive radial solutions for singular superlinear p-Laplacian systems on the exterior of a ball. Nonlinear Anal. 2020, 192, 111657. [Google Scholar] [CrossRef]
- Feng, M. Eigenvalue problems for singular p-Monge-Ampère equations. J. Math. Anal. Appl. 2023, 528, 127538. [Google Scholar] [CrossRef]
- Bruno, F.; Nicolai, K.; Sergio, P. Nontrivial solutions for Monge-Ampère type operators in convex domains. Manuscripta Math. 1993, 79, 13–26. [Google Scholar] [CrossRef]
- Delanoë, P. Radially symmetric boundary value problems for real and complex elliptic Monge-Ampère equations. J. Differ. Equ. 1985, 58, 318–344. [Google Scholar] [CrossRef]
- Feng, M. A class of singular coupled systems of superlinear Monge-Ampère equations. Acta Math. Appl. Sin. Engl. Ser. 2022, 38, 925–942. [Google Scholar] [CrossRef]
- Feng, M. Convex solutions of Monge-Ampère equations and systems: Existence, uniqueness and asymptotic behavior. Adv. Nonlinear Anal. 2020, 10, 371–399. [Google Scholar] [CrossRef]
- Froese Hamfeldt, B. A strong comparison principle for the generalized Dirichlet problem for Monge-Ampère. arXiv 2023, arXiv:2306.01532v1. [Google Scholar]
- Gao, M.; Wang, F. Existence of convex solutions for systems of Monge-Ampère equations. Bound. Value Probl. 2015, 2015, 88–92. [Google Scholar] [CrossRef]
- Hu, S.; Wang, H. Convex solutions of boundary value problem arising from Monge-Ampère equations. Discret. Contin. Dyn. Syst. 2006, 16, 705–720. [Google Scholar] [CrossRef]
- Kutev, N.D. Nontrivial solutions for the equations of Monge-Ampère type. J. Math. Anal. 1988, 132, 424–433. [Google Scholar] [CrossRef]
- Li, Y.; Lu, S. Existence and nonexistence to exterior Dirichlet problem for Monge-Ampère equation. Calc. Var. Partial Differ. Equ. 2018, 57, 161. [Google Scholar] [CrossRef]
- Ma, R.; Gao, H. Positive convex solutions of boundary value problems arising from Monge-Ampère equations. Appl. Math. Comput. 2015, 259, 390–402. [Google Scholar] [CrossRef]
- Tso, K. On a real Monge-Ampère functional. Invent. Math. 1990, 101, 425–448. [Google Scholar] [CrossRef]
- Wang, F.; An, Y. Triple nontrivial radial convex solutions of systems of Monge-Ampère equations. Appl. Math. Lett. 2012, 25, 88–92. [Google Scholar] [CrossRef]
- Wang, H. Convex solutions of systems arising from Monge-Ampère equations. Electron. J. Qual. Theory Differ. Equ. 2009, 2009, 1–8. [Google Scholar]
- Wang, H. Convex solutions of systems of Monge-Ampère equations. arXiv 2010, arXiv:1007.3013v2. [Google Scholar]
- Zhang, X.; Du, Y. Sharp conditions for the existence of boundary blow-up solutions to the Monge-Ampère equation. Calc. Var. Partial Differ. Equ. 2018, 57, 30. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, M. Blow-up solutions to the Monge-Ampère equation with a gradient term: Sharp conditions for the existence and asymptotic estimates. Calc. Var. Partial Differ. Equ. 2022, 61, 208. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, M. Boundary blow-up solutions to the Monge-Ampère equation: Sharp conditions and asymptotic behavior. Adv. Nonlinear Anal. 2020, 9, 729–744. [Google Scholar] [CrossRef]
- Hao, X.; Wang, H.; Liu, L.; Cui, Y. Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters and p-Laplacian operator. Bound. Value Probl. 2017, 2017, 182. [Google Scholar] [CrossRef]
- Yang, X. Existence of positive solutions for 2m-order nonlinear differential systems. Nonlinear Anal-Theor. 2005, 61, 77–95. [Google Scholar] [CrossRef]
- Jiang, R.; Zhai, C. Positive solutions for a system of fourth-order differential equations with integral boundary conditions and two parameters. Nonlinear Anal-Model. 2018, 23, 401–422. [Google Scholar] [CrossRef]
- Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Cones; Academic Press: San Diego, CA, USA, 2014. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Li, H. Solvability Criterion for a System Arising from Monge–Ampère Equations with Two Parameters. Axioms 2024, 13, 175. https://doi.org/10.3390/axioms13030175
Wang L, Li H. Solvability Criterion for a System Arising from Monge–Ampère Equations with Two Parameters. Axioms. 2024; 13(3):175. https://doi.org/10.3390/axioms13030175
Chicago/Turabian StyleWang, Liangyu, and Hongyu Li. 2024. "Solvability Criterion for a System Arising from Monge–Ampère Equations with Two Parameters" Axioms 13, no. 3: 175. https://doi.org/10.3390/axioms13030175
APA StyleWang, L., & Li, H. (2024). Solvability Criterion for a System Arising from Monge–Ampère Equations with Two Parameters. Axioms, 13(3), 175. https://doi.org/10.3390/axioms13030175