N-Dimensional Lattice Integrable Systems and Their bi-Hamiltonian Structure on the Time Scale Using the R-Matrix Approach
Abstract
:1. Introduction
2. Basic Concepts about the Regular Time Scale and R-Matrix Theory
3. R-Matrix Approach to N-Dimensional Lattice Integrable Systems on the Regular Time Scale
4. R-Matrix Theory for bi-Hamiltonian Structures on the Regular Time Scale
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fokas, A.S.; Gel’fand, I.M. Bi-Hamiltonian structures and integrability. In Important Developments in Soliton Theory; Fokas, A.S., Zakharov, V.E., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 259–282. [Google Scholar] [CrossRef]
- Błaszak, M.; Szablikowski, B.M. Classical R-matrix theory of dispersionless systems: I. (1 + 1)-dimension theory. J. Phys. A Math. Gen. 2002, 35, 10325. [Google Scholar] [CrossRef]
- Hilger, S. Analysis on Measure Chains-A Unified Approach to Continuous and Discrete Calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Kuperschmidt, B.A. Discrete Lax equations and differential-difference calculus. Astérisque 1985, 123, 212. [Google Scholar]
- Suris, Y.B. On the bi-Hamiltonian structure of Toda and relativistic Toda lattices. Phys. Lett. A 1993, 180, 419. [Google Scholar] [CrossRef]
- Li, Q.; Wang, D.S.; Wen, X.Y.; Zhuang, J.H. An integrable lattice hierarchy based on Suris system: N-fold Darboux transformation and conservation laws. Nonlinear Dyn. 2018, 91, 625. [Google Scholar] [CrossRef]
- Wazwaz, A.M.; Xu, G.Q. Kadomtsev–Petviashvili hierarchy: Two integrable equations with time-dependent coefficients. Nonlinear Dyn. 2020, 100, 3711–3716. [Google Scholar] [CrossRef]
- Gelfand, I.M.; Dickey, L.A. Fractional powers of operators and Hamiltonian systems. Funct. Anal. Its Appl. 1976, 10, 259–273. [Google Scholar] [CrossRef]
- Kassel, C. Cyclic homology of differential operators, the Virasoro algebra and a q-analogue. Commun. Math. Phys. 1992, 146, 343–356. [Google Scholar] [CrossRef]
- Wang, J. Algebro-geometric solutions for some (2 + 1)-dimensional discrete systems. Nonlinear Anal. Real World Appl. 2008, 9, 1837–1850. [Google Scholar] [CrossRef]
- Khesin, B.; Lyubashenko, V.; Roger, C. Extensions and contractions of the Lie algebra of q-pseudodifferential symbols on the circle. J. Funct. Anal. 1997, 143, 55–97. [Google Scholar] [CrossRef]
- Wazwaz, A.M. New integrable (2 + 1)- and (3 + 1)-dimensional sinh-Gordon equations with constant and time-dependent coefficients. Phys. Lett. A 2020, 384, 126529. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Multi-soliton solutions for integrable (3 + 1)-dimensional modified seventh-order Ito and seventh-order Ito equations. Nonlinear Dyn. 2022, 110, 3713–3720. [Google Scholar] [CrossRef]
- Xia, Y.H.; Li, J.; Wong, P.J.Y. On the topological classification of dynamic equations on time scales. Nonlinear Anal. Real World Appl. 2013, 14, 2231–2248. [Google Scholar] [CrossRef]
- Błaszak, M.; Gürses, M.; Silindir, B.; Szablikowski, B.M. Integrable discrete systems on R and related dispersionless systems. J. Math. Phys. 2008, 49, 072702. [Google Scholar] [CrossRef]
- Konopelchenko, B.G.; Oevel, W. An r-matrix approach to nonstandard classes of integrable equations. Publ. Res. Inst. Math. Sci. 1993, 29, 581–666. [Google Scholar] [CrossRef]
- Semenov-Tian-Shansky, M.A. What is a classical r-matrix? Funct. Anal. Appl. 1983, 17, 259. [Google Scholar] [CrossRef]
- Dickey, L.A. Soliton Equations and Hamiltonian Systems; Advanced studies in mathematical physics; World Scientific Publishing: Singapore, 2003; Volume 26. [Google Scholar]
- Reiman, A.G.; Semenov-Tyan-Shanskii, M.A. A family of Hamiltonian structures, hierarchy of hamiltonians, and reduction for first-order matrix differential operators. Funct. Anal. Its Appl. 1980, 14, 146–148. [Google Scholar] [CrossRef]
- Błaszak, M.; Marciniak, K. R-matrix approach to lattice integrable systems. J. Math. Phys. 1994, 35, 4661. [Google Scholar] [CrossRef]
- Błaszak, M.; Szablikowski, B.M. Classical R-matrix theory of dispersionless systems: II. (2 + 1) dimension theory. J. Phys. A Math. Gen. 2002, 35, 10345. [Google Scholar] [CrossRef]
- Błaszak, M.; Sergyeyev, A. Dispersionless (3 + 1)-dimensional integrable hierarchies. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20160857. [Google Scholar] [CrossRef]
- Błaszak, M. Classical R-matrices on Poisson algebras and related dispersionless systems. Phys. Lett. A 2002, 297, 191–195. [Google Scholar] [CrossRef]
- Błaszak, M.; Silindir, B.; Szablikowski, B.M. The R-matrix approach to integrable systems on time scales. J. Phys. A Math. Theor. 2008, 41, 385203. [Google Scholar] [CrossRef]
- Błaszak, M.; Szablikowski, M.B. Classical R-matrix theory for bi-Hamiltonian field systems. J. Phys. A Math. Theor. 2009, 42, 404002. [Google Scholar] [CrossRef]
- Akhmet, M.U.; Turan, M. Differential equations on variable time scales. Nonlinear Anal. 2009, 70, 1175–1192. [Google Scholar] [CrossRef]
- Peterson, M.B.M.A. Dynamic Equations on a Time Scale: An Introduction with Applications; Springer Science and Business Media: Berlin, Germany, 2012. [Google Scholar]
- Błaszak, M.; Szum, A. Lie algebraic approach to the construction of (2 + 1)-dimensional lattice-field and field integrable Hamiltonian equations. J. Math. Phys. 2001, 42, 225–259. [Google Scholar] [CrossRef]
- Błaszak, M. On the construction of recursion operator and algebra of symmetries for field and lattice systems. Rep. Math. Phys. 2001, 48, 27–38. [Google Scholar] [CrossRef]
- Oevel, W.; Ragnisco, O. R-matrices and higher Poisson brackets for integrable systems. Physica A 1989, 161, 181–220. [Google Scholar] [CrossRef]
- Mohanasubha, R.; Senthilvelan, M. On the symmetries of a nonlinear non-polynomial oscillator. Commun. Nonlinear Sci. Numer. Simul. 2017, 43, 111–117. [Google Scholar] [CrossRef]
- Sodermark, B.M. Integrable Models and the Toda Lattice Hierarchy. arXiv 1999, arXiv:hep-th/9906159. [Google Scholar] [CrossRef]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 2000. [Google Scholar] [CrossRef]
- Adler, M. On a trace functional for formal pseudo-differential operators and the synmplectic structureof the Korteweg-deVries type equations. Invent. Math. 1978, 50, 219–248. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Sang, X.; Yuen, M.; Zhang, Y. N-Dimensional Lattice Integrable Systems and Their bi-Hamiltonian Structure on the Time Scale Using the R-Matrix Approach. Axioms 2024, 13, 136. https://doi.org/10.3390/axioms13030136
Fang Y, Sang X, Yuen M, Zhang Y. N-Dimensional Lattice Integrable Systems and Their bi-Hamiltonian Structure on the Time Scale Using the R-Matrix Approach. Axioms. 2024; 13(3):136. https://doi.org/10.3390/axioms13030136
Chicago/Turabian StyleFang, Yong, Xue Sang, Manwai Yuen, and Yong Zhang. 2024. "N-Dimensional Lattice Integrable Systems and Their bi-Hamiltonian Structure on the Time Scale Using the R-Matrix Approach" Axioms 13, no. 3: 136. https://doi.org/10.3390/axioms13030136
APA StyleFang, Y., Sang, X., Yuen, M., & Zhang, Y. (2024). N-Dimensional Lattice Integrable Systems and Their bi-Hamiltonian Structure on the Time Scale Using the R-Matrix Approach. Axioms, 13(3), 136. https://doi.org/10.3390/axioms13030136