Randomly Stopped Minimum, Maximum, Minimum of Sums and Maximum of Sums with Generalized Subexponential Distributions
Abstract
:1. Introduction
- Let , for , and let
- Let , for , and let
- For the sequence of r.v.s and the counting r.v. , let , if , and in addition, let
2. Generalized Subexponentiality
- A d.f. of a real-valued r.v. is said to be generalized subexponential, denoted , if
3. Main Results
4. Results for Other Regularity Classes
- A d.f. of a real-valued r.v. ξ is said to be dominatedly varying, denoted , if
- (i)
- for some ,
- (ii)
- ,
- (iii)
- for some .
- A d.f. of a real-valued r.v. ξ is said to be consistently varying, denoted , if
- (i)
- for some ,
- (ii)
- for each , either or ,
- (iii)
- ,
- (i)
- for each ,
- (ii)
- ,
- (iii)
- for some .
- A d.f. of a real-valued r.v. ξ is said to be regularly varying with index , denoted , ifBy we denote all regularly varying d.f.s.
- A d.f. of a real-valued r.v. ξ is said to belong to the class of generalized long-tailed distributions if for any (equivalently, for some)
5. Auxiliary Lemmas
- (i)
- if and only if
- (ii)
- If and , then .
- (iii)
- If and , then .
- (iv)
- If , then i.e., .
- (v)
- If and , then and .
- At first, let us suppose that X and Y are absolutely continuous r.v.s. In such a case,If and are independent copies of Y, then
- Now, let us suppose that r.v.s X and Y are not necessarily absolutely continuous.At first, let us consider r.v. X. Since (see Lemma 1(iv)), we have that . If function belongs to , then the function , is nonincreasing O-regularly varying, according to Bingham [14], becauseFrom the representation Theorem-see Theorem 2.2.7 in [14], or Theorem A.1 together with Definition A.4 and Remark in page 100 of [15]-we have thatIn addition, the boundedness of function in (10) implies thatIn a similar way, we derive that
6. Proofs of the Main Results
6.1. Proof of Theorem 1
6.2. Proof of Theorem 2
6.3. Proof of Theorem 3
7. Construction of Generalized Subexponential Distributions
8. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Embrechts, P.; Goldie, C.M. On closure and factorization properties of subexponential and related distributions. J. Aust. Math. Soc. Ser. A 1980, 29, 243–256. [Google Scholar] [CrossRef]
- Rolski, T.; Schmidli, H.; Schmidt, V.; Teugels, J. Stochastic Processes for Insurance and Finance; John Wiley and Sons: Chichester, UK, 1999. [Google Scholar]
- Asmussen, S.; Albrecher, H. Ruin Probabilities; World Scientific: Singapore, 2010. [Google Scholar]
- Buhlmann, H. Mathematical Methods in Risk Theory; Springer: Berlin/Heidelberg, Germany, 1970. [Google Scholar]
- Gerber, H.U. An Introduction to Mathematical Risk Theory; S.S. Huebner Foundation for Insurance Education, Wharton School, University of Pennsylvania: Philadelphia, PA, USA, 1979. [Google Scholar]
- Grandell, J. Aspects of Risk Theory; Springer: New York, NY, USA, 1991. [Google Scholar]
- Schmidli, H. Stochastic Control in Insurance; Springer: London, UK, 2008. [Google Scholar]
- Klüppelberg, C. Asymptotic ordering of risks and ruin probabilities. Insur. Math. Econ. 1993, 12, 259–264. [Google Scholar] [CrossRef]
- Shimura, T.; Watanabe, T. Infinite divisibility and generalized subexponentiality. Bernoulli 2005, 11, 445–469. [Google Scholar] [CrossRef]
- Yu, C.; Wang, Y. Tail behaviour of supremum of a random walk when Cramer’s condition fails. Front. Math. China 2014, 9, 432–453. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, H.; Cheng, D.; Yu, C. The local asymptotic estimation for the supremum of a random walk with generalized strong subexponential summands. Stat. Pap. 2018, 59, 99–126. [Google Scholar] [CrossRef]
- Cheng, F. A note on randomly weighted sums of dependent subexponential random variables. Chin. Ann. Math. Ser. B 2018, 41, 441–450. [Google Scholar] [CrossRef]
- Shimura, T.; Watanabe, T. Subexponential densities of compound Poisson sums and the supremum of a random walk. Kyoto J. Math. 2023, 63, 223–239. [Google Scholar] [CrossRef]
- Bingham, N.H.; Goldie, C.M.; Teugels, J.L. Regular Variation; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Seneta, E. Regularly Varying Functions. Lecture Notes in Mathematics, Volume 508; Springer: Berlin/Heidelberg, Germany, 1976. [Google Scholar]
- Resnick, S.I. Extreme Values, Regular Variation and Point Process; Springer: New York, NY, USA, 1987. [Google Scholar]
- Leipus, R.; Šiaulys, J.; Konstantinides, D. Closure Properties for Heavy-Tailed and Related Distributions; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Klüppelberg, C. Asymptotic ordering of distribution functions and convolution semigroups. Semigr. Forum 1990, 40, 77–92. [Google Scholar] [CrossRef]
- Baltrūnas, A.; Omey, E.; Van Gulck, S. Hazard rates and subexponential distributions. Publ. l’Institut Math. 2006, 80, 29–46. [Google Scholar] [CrossRef]
- Watanabe, T.; Yamamuro, K. Ratio of the tail of an infinitely divisible distribution on the line to that of its Lévy measure. Electron. J. Probab. 2010, 15, 44–74. [Google Scholar] [CrossRef]
- Cheng, D.; Wang, Y. Asymptotic behavior of the ratio of tail probabilities of sum and maximum of independent random variables. Lith. Math. J. 2012, 52, 29–39. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Y. New examples of heavy tailed O-subexponential distributions and related closure properties. Stat. Probab. Lett. 2012, 82, 427–432. [Google Scholar] [CrossRef]
- Hägele, M.; Lehtomaa, J. Large deviation for a class of multivariate heavy-tailed risk processes used in insurance and finance. J. Risk. Financ. Manag. 2021, 14, 202. [Google Scholar] [CrossRef]
- Konstantinides, D.; Leipus, R.; Šiaulys, J. A note on product-convolution for generalized subexponential distributions. Nonlinear Anal. Model. Control 2022, 27, 1054–1067. [Google Scholar] [CrossRef]
- Yao, H.; Taimre, T. Estimating tail probabilities of random sums of phase-type-scale mixture random variables. Algorithms 2022, 15, 350. [Google Scholar] [CrossRef]
- Mikutavičius, G.; Šiaulys, J. Product convolution of generalized subexponential distributions. Mathematics 2023, 11, 248. [Google Scholar] [CrossRef]
- Karasevičiene, J.; Šiaulys, J. Randomly stopped sums with generalized subexponential distributions. Axioms 2023, 12, 641. [Google Scholar] [CrossRef]
- Feller, W. One-sided analogues of Karamata’s regular variation. Enseign. Math. 1969, 15, 107–121. [Google Scholar]
- Tang, Q.; Yan, J. A sharp inequality for the tail probabilities of i.i.d. r.v.’s with dominatedly varying tails. Sci. China Ser. A 2002, 45, 1006–1011. [Google Scholar] [CrossRef]
- Tang, Q.; Tsitsiashvili, G. Precise estimates for the ruin probability in the finite horizon in a discrete-time risk model with heavy-tailed insurance and financial risks. Stoch. Process. Appl. 2003, 108, 299–325. [Google Scholar] [CrossRef]
- Cai, J.; Tang, Q. On max-type equivalence and convolution closure of heavy-tailed distributions and their applications. J. Appl. Probab. 2004, 41, 117–130. [Google Scholar] [CrossRef]
- Konstantinides, D. A class of heavy tailed distributions. J. Numer. Appl. Math. 2008, 96, 127–138. [Google Scholar]
- Leipus, R.; Šiaulys, J. Closure of some heavy-tailed distribution classes under random convolution. Lith. Math. J. 2012, 52, 249–258. [Google Scholar] [CrossRef]
- Danilenko, S.; Šiaulys, J. Randomly stopped sums of not identically distributed heavy tailed random variables. Stat. Probab. Lett. 2016, 113, 84–93. [Google Scholar] [CrossRef]
- Cline, D.B.H. Intermediate regular and Π variation. Proc. Lond. Math. Soc. 1994, 68, 594–611. [Google Scholar] [CrossRef]
- Cline, D.B.H.; Samorodnitsky, G. Subexponentiallity of the product of independent random variables. Stoch. Process. Appl. 1994, 49, 75–98. [Google Scholar] [CrossRef]
- Schlegel, S. Ruin probabilities in perturbed risk models. Insur. Math. Econ. 1998, 22, 93–104. [Google Scholar] [CrossRef]
- Jelenković, P.R.; Lazar, A.A. Asymptotic results for multiplexing subexponential on-off processes. Adv. Appl. Probab. 1999, 31, 394–421. [Google Scholar] [CrossRef]
- Ng, K.W.; Tang, Q.; Yan, J.; Yang, H. Precise large deviations for sums of random variables with consistently varying tails. J. Appl. Probab. 2004, 41, 93–107. [Google Scholar] [CrossRef]
- Tang, Q. Asymptotics for the finite time ruin probability in the renewal model with consistent variation. Stoch. Models 2004, 20, 281–297. [Google Scholar] [CrossRef]
- Aleškevičienė, A.; Leipus, L.; Šiaulys, J. Tail behavior of random sums under consistent variation with application to the compound renewal risk model. Extremes 2008, 11, 261–279. [Google Scholar] [CrossRef]
- Foss, S.; Korshunov, D.; Zachary, S. An Introduction to Heavy-Tailed and Subexponential Distributions, 2nd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Andrulytė, I.M.; Manstavičius, M.; Šiaulys, J. Randomly stopped maximum and maximum of sums with consistently varying distributions. Mod. Stoch. Theory Appl. 2017, 4, 67–78. [Google Scholar] [CrossRef]
- Buldygin, V.V.; Indlekofer, K.H.; Klesov, O.I.; Steinebach, J.G. Pseudo-Regularly Varying Functions and Generalized Renewal Processes; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Paukštys, S.; Šiaulys, J.; Leipus, R. Truncated moments for heavy-tailed and related distribution classes. Mathematics 2023, 11, 2172. [Google Scholar] [CrossRef]
- Karamata, J. Sur un mode de croissance régulière. Théorèmes fundamentoux. Bull. Soc. Math. Fr. 1933, 61, 55–62. [Google Scholar] [CrossRef]
- Embrechts, P.; Klüppelberg, C.; Mikosch, T. Modelling Extremal Events for Insurance and Finance; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Bingham, N.H. Regular variation and probability: The early years. J. Comput. Appl. Math. 2007, 200, 357–363. [Google Scholar] [CrossRef]
- Jessen, A.; Mikosch, T. Regularly varying functions. Publ. Ins. Math. Nouv. Sér. 2006, 94, 172–192. [Google Scholar] [CrossRef]
- Sprindys, J.; Šiaulys, J. Regularly distributed randomly stopped sum, minimum and maximum. Nonlinear Anal. Model. Control 2020, 25, 509–522. [Google Scholar] [CrossRef]
- Su, C.; Chen, Y. Behaviors of the product of independent random variables. Int. J. Math. Anal. 2007, 1, 21–35. [Google Scholar] [CrossRef]
- Albin, J.M.P.; Sunden, M. On the asymptotic behaviour of Lévy processes, part I: Subexponential and exponential processes. Stoch. Process. Their Appl. 2009, 119, 281–304. [Google Scholar] [CrossRef]
- Xu, H.; Scheutzov, M.; Wang, Y. On a transformation between distributions obeing the principle of a single big jump. J. Math. Anal. Appl. 2015, 430, 672–684. [Google Scholar] [CrossRef]
- Danilenko, S.; Šiaulys, J.; Stepanauskas, G. Closure properties of O-exponential distributions. Stat. Probab. Lett. 2018, 140, 63–70. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, Y. On the long tail property of product convolution. Lith. Math. J. 2020, 60, 315–329. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y.; Cheng, D.; Yu, C. On the closure under infinitely divisible distribution roots. Lith. Math. J. 2022, 62, 259–287. [Google Scholar] [CrossRef]
- Leipus, R.; Šiaulys, J.; Konstantinides, D. Minimum of heavy-tailed random variables is not heavy-tailed. AIMS Math. 2023, 8, 13066–13072. [Google Scholar] [CrossRef]
- Cline, D.B.H. Convolution tails, product tails and domain of attraction. Probab. Theory Relat. Fields 1986, 72, 529–557. [Google Scholar] [CrossRef]
- Watanabe, T. The Wiener condition and the conjectures of Embrechts and Goldie. Ann. Probab. 2019, 47, 1221–1239. [Google Scholar] [CrossRef]
- Pakes, A.G. Tails of stopped random products: The factoid and some relatives. J. Appl. Probab. 2008, 45, 1161–1180. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karasevičienė, J.; Šiaulys, J. Randomly Stopped Minimum, Maximum, Minimum of Sums and Maximum of Sums with Generalized Subexponential Distributions. Axioms 2024, 13, 85. https://doi.org/10.3390/axioms13020085
Karasevičienė J, Šiaulys J. Randomly Stopped Minimum, Maximum, Minimum of Sums and Maximum of Sums with Generalized Subexponential Distributions. Axioms. 2024; 13(2):85. https://doi.org/10.3390/axioms13020085
Chicago/Turabian StyleKarasevičienė, Jūratė, and Jonas Šiaulys. 2024. "Randomly Stopped Minimum, Maximum, Minimum of Sums and Maximum of Sums with Generalized Subexponential Distributions" Axioms 13, no. 2: 85. https://doi.org/10.3390/axioms13020085
APA StyleKarasevičienė, J., & Šiaulys, J. (2024). Randomly Stopped Minimum, Maximum, Minimum of Sums and Maximum of Sums with Generalized Subexponential Distributions. Axioms, 13(2), 85. https://doi.org/10.3390/axioms13020085