Commutative Chain Rings with Index of Nilpotency 5 and Residue Field
Abstract
:1. Introduction
2. Preliminaries
3. Chain Rings of Length 5
3.1. Chain Rings of Characteristic p
3.2. Chain Rings of Characteristic
3.3. Chain Rings of Characteristic
3.4. Chain Rings of Characteristic
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alabiad, S.; Alkhamees, Y. On classification of finite commutative chain rings. AIMS Math. 2021, 7, 1742–1757. [Google Scholar] [CrossRef]
- Whelan, E.A. A note of finite local rings. Rocky Mt. J. Math. 1992, 22, 757–759. [Google Scholar] [CrossRef]
- Kuzmina, A.S.; Maltsev, Y.N. Finite rings with regular nilpotent graphs. Sib. Èlektron. Mat. Izv. 2015, 12, 810–817. [Google Scholar]
- Krull, W. Algebraische Theorie der Ringe II. Math. Ann. 1924, 91, 1–46. [Google Scholar] [CrossRef]
- Norton, G.; Salagean, A. On the structure of linear cyclic codes over finite chain rings. Appl. Algebra Eng. Commun. Comput. 2000, 10, 489–506. [Google Scholar] [CrossRef]
- Alabiad, S.; Alhomaidhi, A.A.; Alsarori, N.A. On linear codes over finite singleton local rings. Mathematics 2024, 12, 1099. [Google Scholar] [CrossRef]
- Alabiad, S.; Alhomaidhi, A.A.; Alsarori, N.A. MacWilliams identities and generator matrices for linear codes over . Axioms 2024, 13, 552. [Google Scholar] [CrossRef]
- Dougherty, S.T.; Saltürk, E.; Szabo, S. On codes over Frobenius rings: Generating characters, MacWilliams identities and generator matrices. Appl. Algebra Eng. Commun. Comput. 2019, 30, 193–206. [Google Scholar] [CrossRef]
- Honold, T. Characterization of finite Frobenius rings. Arch. Math. 2001, 76, 406–415. [Google Scholar] [CrossRef]
- Alabiad, S.; Alhomaidhi, A.A.; Alsarori, N.A. On linear codes over local rings of order p4. Mathematics 2024, 12, 3069. [Google Scholar] [CrossRef]
- Gassner, N.; Greferath, M.; Rosenthal, J.; Weger, V. Bounds for Coding Theory over Rings. Entropy 2022, 24, 1473. [Google Scholar] [CrossRef] [PubMed]
- Alfarano, G.N.; Gruica, A.; Lieb, J.; Rosenthal, J. Convolutional codes over finite chain rings, MDP codes and their characterization. Adv. Math. Commun. 2023, 17, 1–22. [Google Scholar]
- Wood, J.A. Duality for modules over finite rings and applications to coding theory. Am. J. Math. 1999, 121, 555–575. [Google Scholar] [CrossRef]
- Raghavendran, R. Finite associative rings. Compos. Math. 1969, 21, 195–229. [Google Scholar]
- Corbas, B.; Williams, G. Rings of order p5 Part II. Local Rings J. Algebra 2000, 231, 691–704. [Google Scholar] [CrossRef]
- Ayoub, C. On the group of units of certain rings. J. Number Theory 1972, 4, 383–403. [Google Scholar] [CrossRef]
- Wilson, R. Representations of finite rings. Pacific J. Math. 1974, 53, 643–649. [Google Scholar] [CrossRef]
- McDonald, B.R. Finite Rings with Identity; Marcel Dekker: New York, NY, USA, 1974. [Google Scholar]
- Zariski, O.; Samuel, P. Commutative Algebra; Springer: New York, NY, USA, 1960; Volume II. [Google Scholar]
- Matsumura, H. Commutative Ring Theory; Cambridge University Press: Cambridge, UK, 1986. [Google Scholar]
Char (R) | Number of Non-Isomorphic Classes |
---|---|
1 | |
and | |
and | |
0 | |
1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhomaidhi, A.A.; Alabiad, S.; Alsarori, N.A.
Commutative Chain Rings with Index of Nilpotency 5 and Residue Field
Alhomaidhi AA, Alabiad S, Alsarori NA.
Commutative Chain Rings with Index of Nilpotency 5 and Residue Field
Alhomaidhi, Alhanouf Ali, Sami Alabiad, and Nawal A. Alsarori.
2024. "Commutative Chain Rings with Index of Nilpotency 5 and Residue Field
Alhomaidhi, A. A., Alabiad, S., & Alsarori, N. A.
(2024). Commutative Chain Rings with Index of Nilpotency 5 and Residue Field