A Few Kinds of Loop Algebras and Some Applications
Abstract
:1. Introduction
2. Applications of the Lie Algebra H
2.1. Applications of the Loop Algebra
2.1.1. Isospectral Integrable Hierarchy
2.1.2. Nonisospectral Integrable Hierarchy
2.2. Applications of the Loop Algebra
2.3. Applications of the Loop Algebra
3. Applications of the Lie Algebra
3.1. Applications of the Loop Algebra
3.2. Applications of the Loop Algebra
3.2.1. An Isospectral Integrable Hierarchy
3.2.2. A Nonisospectral Integrable Hierarchy
3.2.3. Hamiltonian Structure of the Integrable Hierarchy (50)
4. Applications of the Associative Algebra
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Magri, F. Nonlinear Evolution Equations and Dynamical Systems; Springer Lecture Notes in Physics 120; Springer: Berlin/Heidelberg, Germany, 1980; p. 233. [Google Scholar]
- Ablowitz, M.J.; Segur, H. Solitons and the Inverse Scattering Transform; SIAM: Philadelphia, PA, USA, 1981. [Google Scholar]
- Ablowitz, M.J.; Chakravarty, S.; Halburd, R.G. Integrable systems and reductions of the self-dual Yang–Mills equations. J. Math. Phys. 2003, 44, 3147. [Google Scholar] [CrossRef]
- Newell, A.C. Solitons in Mathematics and Physics; SIAM: Philadelphia, PA, USA, 1985. [Google Scholar]
- Ma, W.X. A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction. Chin. J. Contemp. Math. 1992, 13, 79–89. [Google Scholar]
- Ma, W.X. A hierarchy of Liouville integrable finite-dimensional Hamiltonian systems. Appl. Math. Mech. 1992, 13, 369. [Google Scholar]
- Hu, X.B. A powerful approach to generate new integrable systems. J. Phys. A. 1994, 27, 2497. [Google Scholar] [CrossRef]
- Fan, E.G. Quasi-periodic waves and asymptotic property for the asymmetrical Nizhnik- Norikov-Veselov equation. J. Phys. A. 2009, 42, 095206. [Google Scholar] [CrossRef]
- Geng, X.G.; Ma, W.X. A multipotential generalization of the nonlinear diffusion equation. J. Phys. Soc. Jpn. 2000, 69, 985. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Zhang, H.Q. A direc method for integrable couplings of TD hierarchy. J. Math. Phys. 2002, 43, 466. [Google Scholar] [CrossRef]
- Tu, G.Z. A family of new integrable hierarchy and Hamiltonian structure. China Sci. 1988, 12, 1243–1252. (In Chinese) [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1993. [Google Scholar]
- Li, Y.S. A kind of evolution equations and the deform of spectral. Sci. Sin. A 1982, 25, 385–387. (In Chinese) [Google Scholar]
- Lou, S.Y.; Yao, R.X. Invariant functions, symmetries and primary branch solutions of first-order autonomous systems. Commun. Theor. Phys. 2017, 68, 21–28. [Google Scholar] [CrossRef]
- Fokas, A.S. A unified transformation method for solving linear and certain nonlinear PDEs. Proc. R. Soc. Lond. A. 1997, 453, 1411–1443. [Google Scholar] [CrossRef]
- Xu, J.; Fan, E.G. The unified method for the Sasa-Satsuma equation on the half-line. Proc. R. Soc. A 2013, 469, 20130068. [Google Scholar] [CrossRef] [PubMed]
- Doktorov, E.V.; Leble, S.B. A Dressing Method in Mathematical Physics; Springer: Dordrecht, The Netherlands, 2007; Chapter 10; p. 319. [Google Scholar]
- Tu, G.Z. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J. Math. Phys. 1989, 30, 330–338. [Google Scholar] [CrossRef]
- Ma, W.X.; Chen, M. Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras. J. Phys. A 2006, 39, 10787–10801. [Google Scholar] [CrossRef]
- Guo, F.K.; Zhang, Y.F. The quadratic-form identity for constructing the Hamiltonian structure of integrable systems. J. Phys. A 2005, 38, 8537–8548. [Google Scholar] [CrossRef]
- Ma, W.X. Variational identities and applications to Hamiltonian structures of soliton equations. Nonlinear Anal. Theory Methods Appl. 2009, 71, 1716–1726. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Mei, J.Q.; Guan, H.Y. A method for generating isospectral and nonisospectral hierarchies of equations as well as symmetries. J. Geom. Phys. 2020, 147, 103538. [Google Scholar] [CrossRef]
- Lu, H.H.; Zhang, Y.F.; Mei, J.Q. A generalized isospectral-nonisospectral of heat equation hierarchy and its expanding integrable model. Adv. Differ. Eq. 2020, 2020, 471. [Google Scholar] [CrossRef]
- Wang, H.F.; Zhang, Y.F. Generating of Nonisospectral Integrable Hierarchies via the Lie-Algebraic Recursion Scheme. Mathematics 2020, 8, 621. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Guo, F.K. Matrix Lie Algebras and Integrable Couplings. Commun. Theor. Phys. 2006, 46, 812–818. [Google Scholar]
- Blaszak, M.; Sergyeyev, A. Dispersionless (3+1)-dimensional integrable hierarchies. Proc. R. Soc. A 2017, 473, 20160857. [Google Scholar] [CrossRef] [PubMed]
- Sergyeyev, A. A simple construction of recursion operators for multidimensional dispersionless integrable systems. J. Math. Anal. Appl. 2017, 454, 468–480. [Google Scholar] [CrossRef]
- Sergyeyev, A. New integrable (3+1)-dimensional systems and contact geometry. Lett. Math. Phys. 2018, 108, 3590376. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Zhang, W.; Xue, N.; Zhang, Y. A Few Kinds of Loop Algebras and Some Applications. Axioms 2024, 13, 830. https://doi.org/10.3390/axioms13120830
Sun Y, Zhang W, Xue N, Zhang Y. A Few Kinds of Loop Algebras and Some Applications. Axioms. 2024; 13(12):830. https://doi.org/10.3390/axioms13120830
Chicago/Turabian StyleSun, Yanmei, Weiwei Zhang, Nina Xue, and Yufeng Zhang. 2024. "A Few Kinds of Loop Algebras and Some Applications" Axioms 13, no. 12: 830. https://doi.org/10.3390/axioms13120830
APA StyleSun, Y., Zhang, W., Xue, N., & Zhang, Y. (2024). A Few Kinds of Loop Algebras and Some Applications. Axioms, 13(12), 830. https://doi.org/10.3390/axioms13120830