Poisson Bracket Filter for the Effective Lagrangians
Abstract
:1. Introduction
2. Lagrange Density Functions for the Schrödinger Field of Free Particles
3. Canonical Momenta, Hamiltonian, and Poisson Bracket Expressions
4. Discussion of Lagrangians
5. Resolution of the Problem
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morse, P.M.; Feshbach, H. Methods of Theoretical Physics I; McGraw-Hill: New York, NY, USA, 1953; pp. 275–347. [Google Scholar]
- Kristály, A.; Rǎdulescu, V.D.; Varga, C.G. Variational Principles in Mathematical Physics, Geometry, and Economics. Qualitative Analysis of Nonlinear Equations and Unilateral Problems; Encyclopedia of Mathematics and its Applications; Cambridge University Press: Cambridge, UK, 2010; Volume 136. [Google Scholar]
- Tar, J.K.; Rudas, I.J.; Bitó, J.F.; Kaynak, O.M. A New Utilization of the Hamiltonian Formalism in the Adaptive Control of Mechanical Systems Under External Perturbation. Intell. Autom. Soft Comput. 1999, 5, 303–312. [Google Scholar] [CrossRef]
- Brown, H.R.; Holland, P. Simple applications of Noether’s first theorem in quantum mechanics and electromagnetism. Am. J. Phys. 2004, 72, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Anastasiou, B. Quantum Field Theory I; ETH Zürich: Zürich, Switzerland, 2020. [Google Scholar]
- Rayleigh, J.W.S. The Theory of Sound; Macmillan: London, UK, 1896. [Google Scholar]
- Onsager, L. Reciprocal Relations in Irreversible Processes I. Phys. Rev. 1931, 37, 405. [Google Scholar] [CrossRef] [Green Version]
- Onsager, L. Reciprocal Relations in Irreversible Processes II. Phys. Rev. 1931, 38, 2265. [Google Scholar] [CrossRef] [Green Version]
- Casimir, H.B.G. On Onsager’s Principle of Microscopic Reversibility. Rev. Mod. Phys. 1945, 17, 343. [Google Scholar] [CrossRef] [Green Version]
- Onsager, L.; Machlup, S. Fluctuations and Irreversible Processes. Phys. Rev. 1953, 91, 1505. [Google Scholar] [CrossRef]
- Machlup, S.; Onsager, L. Fluctuations and Irreversible Process. II. Systems with Kinetic Energy. Phys. Rev. 1953, 91, 1512. [Google Scholar] [CrossRef]
- Gyarmati, I. ; Non-Equilibrium Thermodynamics; Springer: Berlin/Heidelberg, Germany, 1970. [Google Scholar]
- Glansdorff, P.; Prigogine, I. Thermodynamics Theory of Structure Stability and Fluctuations; John Wiley and Sons: New York, NY, USA, 1971. [Google Scholar]
- Sieniutycz, S.; Berry, R.S. Conservation laws from Hamilton’s principle for nonlocal thermodynamic equilibrium fluids with heat flow. Phys. Rev. A 1989, 40, 348. [Google Scholar] [CrossRef]
- Sieniutycz, S.; Berry, R.S. Least-entropy generation: Variational principle of Onsager’s type for transient hyperbolic heat and mass transfer. Phys. Rev. A 1992, 46, 6359. [Google Scholar] [CrossRef]
- Sieniutycz, S.; Berry, R.S. Canonical formalism, fundamental equation, and generalized thermomechanics for irreversible fluids with heat transfer. Phys. Rev. E 1993, 47, 1765. [Google Scholar] [CrossRef]
- Sieniutycz, S. Conservation Laws in Variational Thermo-Hydrodynamics; Kluwer: Dordrecht, The Netherlands, 1994. [Google Scholar]
- Sieniutycz, S.; Shiner, J. Variational and extremum properties of homogeneous chemical kinetics. I. Lagrangian- and Hamiltonian-like formulations. Open Sys. Inf. Dyn. 1992, 1, 149. [Google Scholar] [CrossRef]
- Sieniutycz, S.; Shiner, J. Variational and extremum properties of homogeneous chemical kinetics. II. Minimum dissipation approaches. Open Sys. Inf. Dyn. 1992, 1, 327. [Google Scholar] [CrossRef]
- Sieniutycz, S.; Ratkje, S.K. Variational principle for entropy in electrochemical transport phenomena. Int. J. Eng. Sci. 1996, 34, 549. [Google Scholar] [CrossRef]
- Sieniutycz, S.; Ratkje, S.K. Perturbational thermodynamics of coupled electrochemical heat and mass transfer. Int. J. Heat Mass Trans. 1996, 39, 3293. [Google Scholar] [CrossRef]
- Meixner, J.; Reik, H.G. Thermodynamik der Irreversiblen Prozesse; Encyclopedia of Physics Volume III/2, Principles of Thermodynamics and Statistics; Springer: Berlin/Heidelberg, Germany, 1959. [Google Scholar]
- de Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; North-Holland: Amsterdam, The Netherlands, 1962. [Google Scholar]
- Prigogine, I. Introduction to Thermodynamics; Interscience: New York, NY, USA, 1969. [Google Scholar]
- Biot, M. Variational Principles in Heat Transfer; Oxford University Press: Oxford, UK, 1970. [Google Scholar]
- Djukic, D.; Vujanovic, B. On a New Variational Principle of Hamiltonian Type for Classical Field Theory. Z. Angew. Math. Mech. 1971, 51, 611. [Google Scholar] [CrossRef]
- Keizer, J. Variational principles in nonequilibrium thermodynamics. Biosystems 1977, 8, 219. [Google Scholar] [CrossRef]
- Lebon, G.; Perzyna, P. Variational Principles in Thermomechanics; Recent Developments in Thermomechanics of Solids; Lebon, G.; Perzyna, P. Springer: Wien, Austria, 1980. [Google Scholar]
- Kreuzer, H.J. Nonequilibrium Thermodynamics and its Statistical Foundations; Clarendon: Oxford, UK, 1981. [Google Scholar]
- Gerjuoy, E.; Rau, A.R.P.; Spruch, L. A unified formulation of the construction of variational principles. Rev. Mod. Phys. 1983, 55, 725. [Google Scholar] [CrossRef]
- Kupershmidt, B.A. Hamiltonian formalism for reversible non-equilibrium fluids with heat flow. J. Phys. A 1990, 23, L529. [Google Scholar] [CrossRef]
- Lampinen, M.J. A problem of the Principle of Minimum Entropy Production. J. Non-Equilib. Thermodyn. 1990, 15, 397. [Google Scholar]
- Grmela, M.; Lebon, G. Hamiltonian extended thermodynamics. J. Phys. A 1990, 23, 3341. [Google Scholar] [CrossRef]
- Grmela, M.; Jou, D. A Hamiltonian formulation for two hierarchies of thermodynamic evolution equations. J. Phys. A 1991, 24, 741. [Google Scholar] [CrossRef]
- Eu, B.C. Kinetic Theory and Irreversible Thermodynamics; Wiley: New York, NY, USA, 1992. [Google Scholar]
- Ichiyanagi, M. On a Variational Principle of Hamilton’s Type for Irreversible Processes. J. Phys. Soc. Japan 1993, 62, 2650. [Google Scholar] [CrossRef]
- Ichiyanagi, M. Variational principles of irreversible processes. Phys. Rep. 1994, 243, 125. [Google Scholar] [CrossRef]
- Ciancio, V.; Verhás, J. On the Nonlinear Generalizations of Onsager’s Reciprocal Relations. J. Non-Equilib. Thermodyn. 1994, 19, 184. [Google Scholar] [CrossRef]
- Ván, P.; Muschik, W. Structure of variational principles in nonequilibrium thermodynamics. Phys. Rev. E 1995, 52, 3584. [Google Scholar] [CrossRef] [PubMed]
- Verhás, J. Thermodynamics and Rheology; Kluwer: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Kazinski, P.O. Stochastic deformation of a thermodynamic symplectic structure. Phys. Rev. E 2009, 79, 011105. [Google Scholar] [CrossRef] [Green Version]
- Kim, Eun-jin; Nicholson, S. B. Complementary relations in non-equilibrium stochastic processes. Phys. Lett. A 2015, 379, 1613. [Google Scholar] [CrossRef]
- Schiff, L.I. Quantum Mechanics; McGraw-Hill: New York, NY, USA, 1986. [Google Scholar]
- Arsenović, D.; Burić, N.; Davidović, D.M.; Prvanović, S. Lagrangian form of Schrödinger equation. Found Phys. 2014, 44, 725. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, S. The Quantum Theory of Fields; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Anthony, K.-H. Hamilton’s action principle and thermodynamics of irreversible processes—A unifying procedure for reversible and irreversible processes. J. Non-Newton. Fluid Mech. 2001, 96, 291. [Google Scholar] [CrossRef]
- Anthony, K.-H. Lagrange Formalism and Irreversible Thermodynamics: The Second Law of Thermodynamics and the Principle of Least Entropy Production. In Variational and Extremum Principles in Macroscopic Systems; Sieniutycz, S., Farkas, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 25–56. [Google Scholar]
- Glavatskiy, K.S. Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics. J. Chem. Phys. 2015, 142, 204106. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, J.C. Treatise on Electricity and Magnetism; Dover: New York, NY, USA, 1954. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics; John Wiley and Sons: New York, NY, USA, 1999. [Google Scholar]
- Gambár, K.; Márkus, F. Hamilton–Lagrange formalism of nonequilibrium thermodynamics. Phys. Rev. E 1994, 50, 1227–1231. [Google Scholar] [CrossRef]
- Szegleti, A.; Márkus, F. Dissipation in Lagrangian formalism. Entropy 2020, 22, 930. [Google Scholar] [CrossRef]
- Márkus, F.; Gambár, K. A potential-based quantization procedure of the damped oscillator. Quantum Rep. 2022, 4, 390–400. [Google Scholar] [CrossRef]
- Kristály, A. Multiple solutions of a sublinear Schrödinger equation. NoDEA Nonlinear Differ. Eqs. Appl. 2007, 14, 291–301. [Google Scholar] [CrossRef] [Green Version]
- Kristály, A. A double eigenvalue problem for Schrödinger equations involving sublinear nonlinearities at infinity. Electron. J. Differ. Eqs. 2007, 42, 11. [Google Scholar]
- Kristály, A.; Repovš, D. On the Schrödinger-Maxwell system involving sublinear terms. Nonlinear Anal. Real World Appl. 2012, 13, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Kristály, A.; Moroṣanu, G.; O’Regan, D. A dimension-depending multiplicity result for a perturbed Schrödinger equation. Dynam. Syst. Appl. 2013, 22, 325–335. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gambár, K.; Márkus, F. Poisson Bracket Filter for the Effective Lagrangians. Axioms 2023, 12, 706. https://doi.org/10.3390/axioms12070706
Gambár K, Márkus F. Poisson Bracket Filter for the Effective Lagrangians. Axioms. 2023; 12(7):706. https://doi.org/10.3390/axioms12070706
Chicago/Turabian StyleGambár, Katalin, and Ferenc Márkus. 2023. "Poisson Bracket Filter for the Effective Lagrangians" Axioms 12, no. 7: 706. https://doi.org/10.3390/axioms12070706
APA StyleGambár, K., & Márkus, F. (2023). Poisson Bracket Filter for the Effective Lagrangians. Axioms, 12(7), 706. https://doi.org/10.3390/axioms12070706