Optimizing Supplier Selection and Order Lot-Sizing Decisions in a Two-Stage Supply Chain
Abstract
:1. Introduction
2. Literature Review
2.1. Supplier Selection
2.2. Buyer–Supplier Coordination
3. Problem Statement
- Assumptions [1]:
1. Inventory shortage for the buyer and suppliers is not allowed. |
2. Suppliers produce the single product. |
3. The market’s demand rate for the product is known and constant over time. |
4. The buyer can purchase the required quantity of products from multiple suppliers. |
5. Lead-times are either negligible or constant. |
6. The production rate of each supplier is finite. |
7. None of the suppliers are preselected. |
8. The holding cost is proportional to the average inventory. |
- Indices:
. |
. |
. |
. |
- Parameters:
Demand rate for the buyer. | |
Fixed ordering cost for supplier . | |
Unit price for supplier . | |
Finite production rate for supplier . | |
Inventory holding cost per unit and unit time for the buyer. | |
Inventory holding cost per unit and unit time for supplier . | |
Production setup cost for supplier . | |
Variable production cost per unit for supplier . | |
Amount of the th input for supplier . | |
Amount of the th output for supplier . | |
wi | Weight assigned to objective function by the decision-maker. |
Extremely small positive number. | |
Extremely large positive number. | |
Maximum number of suppliers that the buyer can select. | |
Maximum number of orders submitted to suppliers per replenishment cycle. | |
Weight assigned to objective function by the decision-maker. | |
n | Number of candidate suppliers. |
l | Number of input elements of processes operating at each candidate supplier. |
s | Number of output elements of processes operating at each candidate supplier. |
- Sets:
S | Set of candidate suppliers, i.e., . |
Set of suppliers with a production rate greater than or equal to the demand rate, i.e., . | |
Set of suppliers with a production rate smaller than the demand rate, i.e., . |
- Variables and functions:
Buyer’s order quantity of each delivery from supplier . | |
Proportion of units produced by supplier k per cycle to the buyer’s total demand. | |
Total purchased quantity from all suppliers per cycle, . | |
Binary variable that indicates whether supplier is selected. | |
Total number of orders submitted to supplier per replenishment cycle. | |
Time needed for supplier to produce order of size . | |
Time needed to consume supplier ’s order of size . | |
Replenishment cycle time for the buyer, . | |
Objective function representing the supply chain’s total cost per time unit. | |
Objective function representing the supply chain efficiency. | |
Final bi-objective function. | |
Variable that helps simplify the objective function and has no practical meaning, . | |
Variable that helps simplify the objective function and has no practical meaning, . | |
Inefficiency score for supplier . | |
Value of the th input for supplier (non-negative). | |
Value of the th output for supplier (non-negative). | |
Improvement to the supply chain’s total cost when using different lot-sizing policies. | |
Utilization level of selected supplier . |
4. Model Development
4.1. Buyer’s Cost
4.2. Lot-for-Lot Policy
4.2.1. Suppliers’ Cost
4.2.2. Supply Chain’s Total Cost
4.2.3. Supply Chain Efficiency
4.2.4. Final Objective Function Z
4.2.5. Constraints
4.3. Order Frequency Policy
- Condition 1 :
- Condition 2 :
5. Numerical Example and Analysis
6. Conclusions and Extensions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ventura, J.A.; Bunn, K.A.; Venegas, B.B.; Duan, L. A coordination mechanism for supplier selection and order quantity allocation with price-sensitive demand and finite production rates. Int. J. Prod. Econ. 2021, 233, 108007. [Google Scholar] [CrossRef]
- Lumineau, F.; Henderson, J.E. The influence of relational experience and contractual governance on the negotiation strategy in buyer–supplier disputes. J. Oper. Manag. 2012, 30, 382–395. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.J. Structured methodology for supplier selection and evaluation in a supply chain. Inf. Sci. 2011, 181, 1651–1670. [Google Scholar] [CrossRef]
- Yousefi, S.; Rezaee, M.J.; Solimanpur, M. Supplier selection and order allocation using two-stage hybrid supply chain model and game-based order price. Oper. Res. 2021, 21, 553–588. [Google Scholar] [CrossRef]
- Hwang, C.L.; Masud, A.S.M. Multiple Objective Decision Making—Methods and Applications: A State-of-the-Art Survey; Springer: New York, NY, USA, 1979. [Google Scholar]
- Civi, H.; Doucette, J.; Alade, Y.; Lokhandwala, T. Six Ways for Retailers to Drive Rapid E-Commerce Growth. EY Parthenon. 11 September 2020. Available online: https://www.ey.com/en_us/strategy/six-ways-for-retailers-to-drive-rapid-e-commerce-growth (accessed on 27 February 2023).
- Dickson, G.W. An analysis of vendor selection: Systems and decisions. J. Purch. 1966, 2, 5–17. [Google Scholar] [CrossRef]
- Weber, C.A.; Current, J.R.; Benton, W.C. Vendor selection criteria and methods. Eur. J. Oper. Res. 1991, 50, 2–18. [Google Scholar] [CrossRef]
- Kleinsorge, I.K.; Schary, P.B.; Tanner, R.D. Data envelopment analysis for monitoring customer-supplier relationships. J. Account. Public Policy 1992, 11, 357–372. [Google Scholar] [CrossRef]
- Narasimhan, R.; Talluri, S.; Mendez, D. Supplier evaluation and rationalization via data envelopment analysis: An empirical examination. J. Supply Chain. Manag. 2006, 37, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Ho, W.; Xu, X.; Dey, P.K. Multi-criteria decision-making approaches for supplier evaluation and selection: A literature review. Eur. J. Oper. Res. 2010, 202, 16–24. [Google Scholar] [CrossRef]
- Chai, J.; Liu, J.N.K.; Ngai, E.W.T. Application of decision-making techniques in supplier selection: A systematic review of literature. Expert Syst. Appl. 2013, 40, 3872–3885. [Google Scholar] [CrossRef]
- Ordoobadi, S.M. Development of a supplier selection model using fuzzy logic. Supply Chain. Manag. Int. J. 2009, 14, 314–327. [Google Scholar] [CrossRef]
- Mendoza, A.; Ventura, J.A. Modeling actual transportation costs in supplier selection and order quantity allocation decisions. Oper. Res. 2013, 13, 5–25. [Google Scholar] [CrossRef]
- Choudhary, D.; Shankar, R. A goal programming model for joint decision making of inventory lot-size, supplier selection and carrier selection. Comput. Ind. Eng. 2014, 71, 1–9. [Google Scholar] [CrossRef]
- Deng, X.; Hu, Y.; Deng, Y.; Mahadevan, S. Supplier selection using AHP methodology extended by D numbers. Expert Syst. Appl. 2014, 41, 156–167. [Google Scholar] [CrossRef]
- Zhang, X.; Deng, Y.; Chan, F.T.; Mahadevan, S. A fuzzy extended analytic network process-based approach for global supplier selection. Appl. Intell. 2015, 43, 760–772. [Google Scholar] [CrossRef]
- Azadi, M.; Jafarian, M.; Saen, R.F.; Mirhedayatian, S.M. A new fuzzy DEA model for evaluation of efficiency and effectiveness of suppliers in sustainable supply chain management context. Comput. Oper. Res. 2015, 54, 274–285. [Google Scholar] [CrossRef]
- Zimmer, K.; Frohling, M.; Schultmann, F. Sustainable supplier management—A review of models supporting sustainable supplier selection, monitoring, and development. Int. J. Prod. Res. 2015, 54, 1412–1442. [Google Scholar] [CrossRef]
- Chai, J.; Ngai, E.W.T. Decision-making techniques in supplier selection: Recent accomplishments and what lies ahead. Expert Syst. Appl. 2020, 140, 112903. [Google Scholar] [CrossRef]
- Islam, S.; Amin, S.H.; Wardley, L.J. Machine learning and optimization models for supplier selection and order allocation planning. Int. J. Prod. Econ. 2021, 242, 108315. [Google Scholar] [CrossRef]
- Tong, L.Z.; Wang, J.; Pu, Z. Sustainable supplier selection for SMEs based on an extended PROMETHEE Ⅱ approach. J. Clean. Prod. 2022, 330, 129830. [Google Scholar] [CrossRef]
- Hanh, N.T.M.; Chen, J.M.; Van Hop, N. Pricing strategy and order quantity allocation with price-sensitive demand in three-echelon supply chain. Expert Syst. Appl. 2022, 206, 117873. [Google Scholar] [CrossRef]
- Joy, T.M.; Aneesh, K.S.; Sreekumar, V. Analysis of a decision support system for supplier selection in glove industry. Mater. Today Proc. 2023, 72, 3186–3192. [Google Scholar] [CrossRef]
- Saputro, T.E.; Figueira, G.; Almada-Lobo, B. Hybrid MCDM and simulation-optimization for strategic supplier selection. Expert Syst. Appl. 2023, 219, 119624. [Google Scholar] [CrossRef]
- Goyal, S.K. An integrated inventory model for a single supplier-single customer problem. Int. J. Prod. Res. 1976, 15, 107–111. [Google Scholar] [CrossRef]
- Cachon, G.; Lariviere, M. Supply chain coordination with revenue-sharing contracts: Strengths and limitations. Manag. Sci. 2005, 51, 30–44. [Google Scholar] [CrossRef] [Green Version]
- Jaber, M.Y.; Osman, I.H.; Guiffrida, A.L. Coordinating a three-level supply chain with price discounts, price dependent demand, and profit-sharing. Int. J. Integr. Supply Manag. 2006, 2, 28–48. [Google Scholar] [CrossRef]
- Sarmah, S.P.; Acharya, D.; Goyal, S.K. Coordination and profit-sharing between a manufacturer and a buyer with target profit under credit option. Eur. J. Oper. Res. 2007, 182, 1469–1478. [Google Scholar] [CrossRef]
- Goyal, S.K.; Gupta, Y.P. Integrated inventory models: The buyer-vendor coordination. Eur. J. Oper. Res. 1989, 41, 261–269. [Google Scholar] [CrossRef]
- Kamali, A.; Ghomi, S.M.T.F.; Jolai, F. A multi-objective quantity discount and joint optimization model for coordination of a single-buyer multi-vendor supply chain. Comput. Math. Appl. 2011, 62, 3251–3269. [Google Scholar] [CrossRef] [Green Version]
- Hammami, R.; Temponi, C.; Frein, Y. A scenario-based stochastic model for supplier selection in global context with multiple buyers, currency fluctuation uncertainties, and price discounts. Eur. J. Oper. Res. 2014, 233, 159–170. [Google Scholar] [CrossRef]
- Giri, B.C.; Bardhan, S. A vendor–buyer JELS model with stock dependent-demand and consigned inventory under buyer’s space constraint. Oper. Res. 2015, 15, 79–93. [Google Scholar] [CrossRef]
- Adeinat, H.; Ventura, J.A. Determining the retailer’s replenishment policy considering multiple capacitated suppliers and price-sensitive demand. Eur. J. Oper. Res. 2015, 247, 83–92. [Google Scholar] [CrossRef]
- Hariga, M.; Glock, C.H.; Kim, T. Integrated product and container inventory model for a single-vendor single-buyer supply chain with owned and rented returnable transport items. Int. J. Prod. Res. 2015, 54, 1964–1979. [Google Scholar] [CrossRef]
- Yousefi, S.; Mahmoudzadeh, H.; Rezaee, M.J. Using supply chain visibility and cost for supplier selection: A mathematical model. Int. J. Manag. Sci. Eng. Manag. 2016, 12, 196–205. [Google Scholar] [CrossRef]
- Adeinat, H.; Ventura, J.A. Integrated pricing and lot-sizing decisions in a serial supply chain. Appl. Math. Model. 2018, 54, 429–445. [Google Scholar] [CrossRef]
- Duan, L.; Ventura, J.A. Technical Note: A joint pricing, supplier selection, and inventory replenishment model using the logit demand function. Decis. Sci. 2020, 52, 512–534. [Google Scholar] [CrossRef]
- Liberopoulos, G.; Deligiannis, M. Optimal supplier inventory control policies when buyer purchase incidence is driven by past service. Eur. J. Oper. Res. 2022, 300, 917–936. [Google Scholar] [CrossRef]
- Schmelzle, U.; Mukandwal, P.S. The impact of supply chain relationship configurations on supplier performance: Investigating buyer–supplier relations in the aerospace industry. Int. J. Logist. Manag. 2022. [Google Scholar] [CrossRef]
- Ventura, J.A.; Golany, B.; Mendoza, A.; Li, C. A Multi-product dynamic supply chain inventory model with supplier selection, joint replenishment, and transportation cost. Ann. Oper. Res. 2022, 316, 729–762. [Google Scholar] [CrossRef]
- Rohaninejad, M.; Janota, M.; Hanzálek, Z. Integrated lot-sizing and scheduling: Mitigation of uncertainty in demand and processing time by machine learning. Eng. Appl. Artif. Intell. 2023, 118, 105676. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Klimberg, R.K.; Ratick, S.J. Modeling data envelopment analysis (DEA) efficient location/allocation decisions. Comput. Oper. Res. 2008, 35, 457–474. [Google Scholar] [CrossRef]
- Miettinen, K.M. Nonlinear Multi-Objective Optimization; International Series in Operations Research and Management Science, 12; Kluwer Academic Publishers: Boston, MA, USA, 1999. [Google Scholar]
- Friedman, L.; Sinuany-Stern, Z. Combining ranking scales and selecting variables in the DEA context: The case of industrial branches. Comput. Oper. Res. 1998, 25, 781–791. [Google Scholar] [CrossRef]
- Parasuraman, A.; Zeithaml, V.A.; Berry, L.L. A conceptual model of service quality and its implications for future research. J. Mark. 1985, 49, 41–50. [Google Scholar] [CrossRef]
- Talluri, S.; Baker, R.C. A multi-phase mathematical programming approach for effective supply chain design. Eur. J. Oper. Res. 2002, 141, 544–558. [Google Scholar] [CrossRef]
- Li, X.; Ventura, J.A.; Chandra, M.J. A joint supplier selection and lot-sizing problem considering a quality constraint and quantity discounts. In Proceedings of the 67th Annual Conference and Expo of the Institute of Industrial Engineers, New Orleans, LA, USA, 30 May–2 June 2017; pp. 325–330. [Google Scholar]
Parameter | Buyer’s Holding Cost (hB) ($/Unit/Year) | Max. # Suppliers (N) | Buyer’s Demand (D) (Unit/Year) |
---|---|---|---|
Value | 2.6 | 6 | 200,000 |
Supplier (k) | Fixed Ordering Cost (Ak) ($/Order) | Variable Ordering Cost (ck) ($/Unit) | Holding Cost () ($/Unit/Year) | Production Rate (Pk) (Units/Year) | Production Setup Cost (Sk) ($/Order) | Variable Production Cost (vk) ($/Unit) |
---|---|---|---|---|---|---|
1 | 40 | 9.0 | 2.29 | 42,000 | 43 | 4.04 |
2 | 19 | 9.1 | 1.96 | 34,000 | 39 | 6.48 |
3 | 25 | 8.7 | 2.74 | 36,500 | 42 | 7.17 |
4 | 39 | 10.5 | 0.54 | 63,000 | 30 | 5.87 |
5 | 27 | 9.5 | 1.50 | 45,500 | 38 | 6.30 |
6 | 33 | 8.9 | 1.25 | 64,000 | 42 | 4.85 |
7 | 30 | 8.7 | 2.00 | 41,500 | 40 | 5.08 |
8 | 23 | 10.4 | 2.09 | 36,000 | 39 | 7.00 |
9 | 20 | 9.0 | 1.90 | 66,500 | 38 | 6.00 |
10 | 34 | 10.5 | 1.71 | 61,000 | 32 | 5.25 |
Supplier (k) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
TC (Iuk, u = 1) ($/100 lbs./shipment) | 253 | 268 | 259 | 180 | 257 | 248 | 330 | 327 | 330 | 321 |
EXP (Ovk, v = 1) (points) | 240 | 210 | 270 | 200 | 160 | 230 | 170 | 180 | 170 | 200 |
CRE (Ovk, v = 2) (points) | 90 | 80 | 70 | 70 | 70 | 80 | 60 | 70 | 60 | 80 |
Objective Function Weights (w1, w2) | q1 (Units /Order) | q2 (Units /Order) | q3 (Units /Order) |
q4 (Units /Order) | q5 (Units /Order) | q6 (Units /Order) | q7 (Units /Order) | q8 (Units /Order) | q9 (Units /Order) | q10 (Units /Order) | Average Cost (Z1) ($/Year) | Supply Chain Efficiency (Z2) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(1, 0) | 1451.82 | 0.00 | 0.00 | 0.00 | 0.00 | 2212.29 | 1434.53 | 0.00 | 1814.77 | 0.00 | 2,803,487.31 | 6 |
(0.75, 0.25) | 1075.20 | 0.00 | 0.00 | 0.00 | 0.00 | 1638.40 | 1049.79 | 0.00 | 1356.61 | 0.00 | 2,804,864.61 | 10 |
(0.50, 0.50) | 2421.26 | 0.00 | 0.00 | 0.00 | 0.00 | 3689.54 | 2392.43 | 0.00 | 3026.57 | 0.00 | 2,805,625.74 | 10 |
(0.25, 0.75) | 675.57 | 0.00 | 0.00 | 0.00 | 0.00 | 1029.44 | 667.53 | 0.00 | 844.47 | 0.00 | 2,808,629.22 | 10 |
(0, 1) | 0.00 | 0.00 | 0.00 | 9.92 | 0.00 | 0.00 | 0.00 | 0.23 | 11.06 | 9.30 | 8,254,870.71 | 10 |
Entity | Order Quantity (qk) (Units/Order) | Number of Orders/Cycle (Yk) | Total Cost (Z1) ($/Year) | Utilization () (%) |
---|---|---|---|---|
Supplier 1 | 1451.82 | 1 | 172,586.29 | 100 |
Supplier 6 | 2212.29 | 1 | 312,997.71 | 100 |
Supplier 7 | 1434.53 | 1 | 213,411.70 | 100 |
Supplier 9 | 1814.77 | 1 | 317,460.39 | 78.9 |
Buyer | 6913.41 | - | 1,787,031.21 | - |
Supply Chain | - | - | 2,803,487.31 | - |
Entity | Order Quantity (qk) (Units/Order) | # Orders/Cycle (Yk) | Total Cost (Z1) ($/Year) | Utilization () (%) |
---|---|---|---|---|
Supplier 1 | 1662.66 | 4 | 172,660.28 | 100 |
Supplier 6 | 2002.58 | 5 | 312,993.87 | 100 |
Supplier 7 | 1623.10 | 4 | 213,465.84 | 100 |
Supplier 9 | 1642.66 | 5 | 317,446.51 | 78.9 |
Buyer | 31,369.24 | - | 1,786,913.55 | - |
Supply Chain | - | - | 2,803,480.04 | - |
Settings | Maximum Number of Orders /Cycle (m) | Selected Suppliers | Number of Orders/Cycle (Yk) | Total Cost (Z1) ($/Year) | Total Cost Improv. (ITC) ($/Year) | CPU Time (s) | Optimality Gap (%) |
---|---|---|---|---|---|---|---|
Holding cost: + 10 Prod. Setup cost: Sk × 2 | 4 | (1-6-7-9) | (1-1-1-1) | 2,833,103.28 | 105.42 | 0.09 | 0.0001 |
20 | (1-6-7-9) | (4-5-4-5) | 2,832,997.87 | 14.85 | 0.0097 | ||
Holding cost: + 20 Prod. Setup cost: Sk × 3 | 4 | (1-6-7-9) | (1-1-1-1) | 2,859,193.49 | 219.17 | 0.09 | 0.0004 |
20 | (1-6-7-9) | (4-5-4-5) | 2,858,974.49 | 31.61 | 0.0003 | ||
Holding cost: + 30 Prod. Setup cost: Sk × 5 | 4 | (1-6-7-9) | (1-1-1-1) | 2,894,392.41 | 356.93 | 0.12 | 0.0001 |
20 | (1-6-7-9) | (4-5-4-5) | 2,894,035.48 | 33.16 | 0.0009 |
Settings | Objective Function Weights (w1, w2) | Maximum Number of Orders /Cycle (m) | Selected Suppliers | Number of Orders /Cycle (Yk) | Total Cost (Z1) ($/Year) | Total Cost Improvement (ITC) ($/Year) | Supply Chain Efficiency (Z2) | CPU Time (s) | Optimality Gap (%) |
---|---|---|---|---|---|---|---|---|---|
Holding cost: Prod. setup cost: | (0.5, 0.5) | 4 | (1-6-7-9) | (1-1-1-1) | 2,836,278.26 | 2366.58 | 10 | 0.12 | 0.0001 |
20 | (1-6-7-9) | (3-3-4-3) | 2,833,911.68 | 10.34 | 0.0097 | ||||
(0, 1) | 4 | (1-6-9-10) | (1-1-1-1) | 6,798,597.37 | 0 | 10 | 0.03 | 0.0004 | |
20 | (1-6-9-10) | (1-1-1-1) | 6,798,597.37 | 21.61 | 0.0003 | ||||
Holding cost: Prod. setup cost: | (0.5, 0.5) | 4 | (1-6-7-9) | (1-1-1-1) | 2,864,705.23 | 4768.92 | 10 | 0.09 | 0.0001 |
20 | (1-6-7-9) | (4-5-4-3) | 2,859,936.31 | 32.57 | 0.0097 | ||||
(0, 1) | 4 | (4-6-9-10) | (1-1-1-1) | 9,468,356.33 | 0 | 10 | 0.09 | 0.0004 | |
20 | (4-6-9-10) | (1-1-1-1) | 9,468,356.33 | 31.61 | 0.0003 | ||||
Holding cost: Prod. setup cost: | (0.5, 0.5) | 4 | (1-6-7-9) | (1-1-1-1) | 2,894,444.24 | 0 | 10 | 0.09 | 0.0001 |
20 | (1-6-7-9) | (1-1-1-1) | 2,894,444.24 | 31.08 | 0.0097 | ||||
(0, 1) | 4 | (4-6-9-10) | (1-1-1-1) | 12,807,896.21 | 0 | 10 | 0.09 | 0.0004 | |
20 | (4-6-9-10) | (1-1-1-1) | 12,807,896.21 | 32.37 | 0.0003 |
Entity | Order Quantity (qk) (Units/Order) | Number of Orders/Cycle (Yk) | Total Cost (Z1) ($/year) | Utilization () (%) |
---|---|---|---|---|
Supplier 1 | 1451.82 | 1 | 172,586.29 | 100 |
Supplier 6 | 2212.29 | 1 | 312,997.71 | 100 |
Supplier 7 | 1434.53 | 1 | 213,411.70 | 100 |
Supplier 9 | 1814.77 | 1 | 317,460.39 | 78.9 |
Buyer | 6913.41 | - | 1,787,031.21 | - |
Supply chain | - | - | 2,803,487.31 | - |
Entity | Order Quantity (qk) (Units/Order) | Number of Orders/Cycle (Yk) | Total Cost (Z1) ($/Year) | Utilization () (%) |
---|---|---|---|---|
Supplier 1 | 1451.82 | 1 | 172,586.29 | 100 |
Supplier 6 | 2212.29 | 1 | 312,997.71 | 100 |
Supplier 7 | 1434.53 | 1 | 213,411.70 | 100 |
Supplier 9 | 1814.77 | 1 | 317,460.39 | 78.9 |
Buyer | 6913.41 | - | 1,787,031.21 | - |
Supply chain | - | - | 2,803,487.31 | - |
Production Setup Cost ($/Order) | Selected Suppliers | Number of Orders /Cycle (Yk) | Total Cost (Z1) ($/Year) | Total Cost Improvement (ITC) ($/Year) | Supply Chain Efficiency (Z2) | CPU Time (s) | Optimality Gap (%) | |
---|---|---|---|---|---|---|---|---|
Sk × 2 | Lot-for-lot | (1-6-7-9) | (1-1-1-1) | 2,807,644.99 | 507.52 | 6 | 20.92 | 0.0002 |
Order frequency | (1-6-7-9) | (1-2-1-2) | 2,807,137.47 | 34.65 | 0.0001 | |||
Sk × 3 | Lot-for-lot | (1-6-7-9) | (1-1-1-1) | 2,811,094.37 | 1048.91 | 6 | 23.72 | 0.0009 |
Order frequency | (1-6-7-9) | (2-2-2-3) | 2,810,045.46 | 34.32 | 0.0005 | |||
Sk × 5 | Lot-for-lot | (1-6-7-9) | (1-1-1-1) | 2,816,817.29 | 2348.52 | 6 | 27.27 | 0.0003 |
Order frequency | (1-6-7-9) | (2-3-2-3) | 2,814,468.77 | 40.60 | 0.0014 |
Production Setup Cost ($/Order) | Objective Function Weights (w1, w2) | Policy | Selected Suppliers | Number of Orders /Cycle (Yk) | Total Cost (Z1) ($/Year) | Total Cost Improvement (ITC) Y($/ear) | Supply Chain Efficiency (Z2) | CPU Time (s) | Optimality Gap (%) |
---|---|---|---|---|---|---|---|---|---|
Sk × 10 | (1, 0) | Lot-for-lot | (1-6-7-9) | (1-1-1-1) | 2,829,147.55 | 6346.49 | 6 | 78.32 | 0.0063 |
Order frequency | (1-6-7-9) | (3-4-3-5) | 2,825,827.99 | 117.34 | 0.0001 | ||||
(0.5, 0.5) | Lot-for-lot | (1-6-7-9) | (6-4-3-2) | 2,833,736.63 | 10,403.08 | 10 | 90.09 | 0.0038 | |
Order frequency | (1-6-7-9) | (3-8-3-5) | 2,823,333.55 | 85.57 | 0.0016 | ||||
(0, 1) | Lot-for-lot | (1-6-9-10) | (1-1-1-1) | 26,316,625.35 | 0 | 10 | 97.04 | 0.0004 | |
Order frequency | (1-6-9-10) | (1-1-1-1) | 26,316,625.35 | 83.61 | 0.0003 | ||||
Sk × 15 | (1, 0) | Lot-for-lot | (1-6-7-9) | (1-1-1-1) | 2,837,469.06 | 8270.18 | 6 | 77.81 | 0.0024 |
Order frequency | (1-6-7-9) | (3-5-4-6) | 2,829,198.88 | 110.97 | 0.0024 | ||||
(0.5, 0.5) | Lot-for-lot | (1-6-7-9) | (5-4-3-3) | 2,840,528.38 | 10,961.88 | 10 | 90.28 | 0.0007 | |
Order frequency | (1-6-7-9) | (3-3-4-8) | 2,829,566.50 | 90.08 | 0.0007 | ||||
(0, 1) | Lot-for-lot | (1-4-6-10) | (1-1-1-1) | 38,138,068.01 | 0 | 10 | 103.77 | 0.0066 | |
Order frequency | (1-4-6-10) | (1-1-1-1) | 38,138,068.01 | 114.52 | 0.0003 | ||||
Sk × 20 | (1, 0) | Lot-for-lot | (1-6-7-9) | (1-1-1-1) | 2,844,597.44 | 10,008.75 | 6 | 97.63 | 0.0001 |
Order frequency | (1-6-7-9) | (4-6-4-6) | 2,834,588.69 | 115.35 | 0.0065 | ||||
(0.5, 0.5) | Lot-for-lot | (1-6-7-9) | (5-3-3-5) | 2,849,472.77 | 14,385.89 | 10 | 60.56 | 0.0001 | |
Order frequency | (1-6-7-9) | (5-5-3-6) | 2,835,086.88 | 80.34 | 0.0065 | ||||
(0, 1) | Lot-for-lot | (1-4-6-10) | (1-1-1-1) | 49,463,941.05 | 0 | 10 | 119.72 | 0.0029 | |
Order frequency | (1-4-6-10) | (1-1-1-1) | 49,463,941.05 | 106.29 | 0.0018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ventura, J.A.; Lu, Q. Optimizing Supplier Selection and Order Lot-Sizing Decisions in a Two-Stage Supply Chain. Axioms 2023, 12, 615. https://doi.org/10.3390/axioms12070615
Ventura JA, Lu Q. Optimizing Supplier Selection and Order Lot-Sizing Decisions in a Two-Stage Supply Chain. Axioms. 2023; 12(7):615. https://doi.org/10.3390/axioms12070615
Chicago/Turabian StyleVentura, José A., and Qingyuan Lu. 2023. "Optimizing Supplier Selection and Order Lot-Sizing Decisions in a Two-Stage Supply Chain" Axioms 12, no. 7: 615. https://doi.org/10.3390/axioms12070615
APA StyleVentura, J. A., & Lu, Q. (2023). Optimizing Supplier Selection and Order Lot-Sizing Decisions in a Two-Stage Supply Chain. Axioms, 12(7), 615. https://doi.org/10.3390/axioms12070615