Quaternionic Shape Operator and Rotation Matrix on Ruled Surfaces
Abstract
:1. Introduction
2. Preliminaries
3. Quaternion Shape Operator and Rotation Matrix on Ruled Surface
4. Quaternion Shape Operator and Rotation Matrices on Special Ruled Surfaces
4.1. The Ruled Surface Drawn by Tangent Vector
4.2. The Ruled Surface Drawn by Principal Normal Vector
4.3. The Ruled Surface Drawn by Binormal Vector
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burstall, F.E.; Ferus, D.; Leschke, K.; Pedit, F.; Pinkall, U. Conformal Geometry of Surfaces in S4 and Quaternions, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 5–9. [Google Scholar]
- Cieslinski, J.; Gragert, P.K.H.; Sym, A. Exact solution to localized-induction-approximation equation modeling smoke ring motion. Phys. Rev. Lett. 1986, 57, 1507–1510. [Google Scholar] [CrossRef] [PubMed]
- Cieslinski, J.L. Geometry of submanifolds derived from Spin-valued spectral problems. Theor. Math. Phys. 2003, 137, 1396–1405. [Google Scholar] [CrossRef]
- Sym, A. Soliton Surfaces and their Applications in Geometrical Aspects of the Einstein Equations and Integrable Systems. Lect. Notes Phys. 1985, 239, 154–231. [Google Scholar]
- Schief, W.K. On the integrability of Bertrand curves and Razzaboni surfaces. J. Geom. Phys. 2003, 45, 130–150. [Google Scholar] [CrossRef]
- Rogers, C.; Rogers, C.; Schief, W.K. Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Shoemake, K. Animating Rotation with Quaternion Curves. Siggraph Comput. Graph. 1985, 19, 245–254. [Google Scholar] [CrossRef]
- Xu, B.; Wang, L.; Li, S.; Zhang, J. A novel calibration method of SINS/DVL integration navigation system based on quaternion. IEEE Sens. J. 2020, 20, 9567–9580. [Google Scholar] [CrossRef]
- Bobenko, A.I. Surfaces in terms of 2 by 2 matrices. Old and new integrable cases. In Harmonic Maps and Integrable Systems; Fordy, A., Wood, J., Eds.; Vieweg: Wiesbaden, Germany, 1994; pp. 81–127. [Google Scholar]
- Babaarslan, M.; Yaylı, Y. A new approach to constant slope surfaces with quaternions. ISRN Geom. 2012, 2012, 126359. [Google Scholar] [CrossRef]
- Wang, X.; Goldman, R.İ. Quaternion rational surfaces: Rational surfaces generated from the quaternion product of two rational space curves. Adv. Appl. Graph. Model. 2015, 81, 18–32. [Google Scholar] [CrossRef]
- Şenyurt, S.; Çalışkan, A. The quaternionic expression of ruled surfaces. Filomat 2018, 32, 5753–5766. [Google Scholar] [CrossRef]
- Cui, L.; Dai, J.S. A Darboux-Frame-Based formulation of spin-rolling motion of rigid objects with point contact. IEEE Trans. Robot. 2010, 26, 383–388. [Google Scholar] [CrossRef]
- Li, Y.; Eren, K.; Ayvacı, K.H.; Ersoy, S. Simultaneous characterizations of partner ruled surfaces using Flc frame. AIMS Math. 2022, 7, 20213–20229. [Google Scholar] [CrossRef]
- Çalışkan, A.; Şenyurt, S. The Dual Spatial Quaternionic Expression of Ruled Surfaces. Therm. Sci. 2019, 23, 403–411. [Google Scholar] [CrossRef]
- Aslan, S.; Yaylı, Y. Quaternionic shape operator. Adv. Appl. Clifford Algebr. 2017, 27, 2921–2931. [Google Scholar] [CrossRef]
- Ryuh, B.S. Robot Trajectory Planning Using the Curvature Theory of Ruled Surfaces. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 1989. [Google Scholar]
- Li, Y.; Şenyurt, S.; Özduran, A.; Canlı, D. The Characterizations of Parallel q-Equidistant Ruled Surfaces. Symmetry 2022, 14, 1879. [Google Scholar] [CrossRef]
- López, R. Ruled surfaces of generalized self-similar solutions of the mean curvature flow. Mediterr. J. Math. 2021, 18, 197. [Google Scholar] [CrossRef]
- Saad, M.K.; Abdel-Baky, R.A. On ruled surfaces according to quasi-frame in Euclidean 3-space. Aust. J. Math. Anal. Appl. 2020, 17, 11–16. [Google Scholar]
- Gök, İ. Quaternionic approach of canal surfaces constructed by some new ideas. Adv. Appl. Clifford Algebr. 2017, 27, 1175–1190. [Google Scholar] [CrossRef]
- Çalışkan, A. The Quaternionic Ruled Surfaces in Terms of Alternative Frame. Palest. J. Math. 2022, 11, 406–412. [Google Scholar]
- Ali, A.T. Non-lightlike constant angle ruled surfaces in Minkowski 3-space. J. Geom. Phys. 2020, 157, 103833. [Google Scholar] [CrossRef]
- Ali, A.T. A constant angle ruled surfaces. Int. J. Geom. 2018, 7, 69–80. [Google Scholar]
- Ali, A.T. Non-lightlike ruled surfaces with constant curvatures in Minkowski 3-space. Int. J. Geom. Methods Mod. Phys. 2018, 15, 1850068. [Google Scholar] [CrossRef]
- Ali, A.T.; Hamdoon, F.M. Surfaces foliated by ellipses with constant Gaussian curvature in Euclidean 3-space. Korean J. Math. 2017, 25, 537–554. [Google Scholar]
- Ali, A.T.; Abdel Aziz, H.S.; Sorour, A.H. On some geometric properties of quadric surfaces in Euclidean space. Honam Math. J. 2016, 38, 593–611. [Google Scholar] [CrossRef]
- Ali, A.T.; Abdel Aziz, H.S.; Sorour, A.H. On curvatures and points of the translation surfaces in Euclidean 3-space. J. Egypt. Math. Soc. 2015, 23, 167–172. [Google Scholar] [CrossRef]
- Gür, S.; Şenyurt, S.; Grilli, L. The Invariants of Dual Parallel Equidistant Ruled Surfaces. Symmetry 2023, 15, 206. [Google Scholar]
- Gür, S. Geometric properties of timelike surfaces in Lorentz-Minkowski 3-space. Filomat 2023, 37, 5735–5749. [Google Scholar]
- Gür, S.; Şenyurt, S.; Grilli, L. The Dual Expression of Parallel Equidistant Ruled Surfaces in Euclidean 3-Space. Symmetry 2022, 14, 1062. [Google Scholar]
- Çalışkan, A.; Şenyurt, S. Curves and ruled surfaces according to alternative frame in dual space. Commun. Fac. Sci. Univ. 2020, 69, 684–698. [Google Scholar] [CrossRef]
- Şenyurt, S.; Gür, S. Spacelike surface geometry. Int. J. Geom. Methods Mod. Phys. 2017, 14, 1750118. [Google Scholar] [CrossRef]
- As, E.; Şenyurt, S. Some Characteristic Properties of Parallel-Equidistant Ruled Surfaces. Math. Probl. Eng. 2013, 2013, 587289. [Google Scholar] [CrossRef]
- Özcan, B.; Şenyurt, S. On Some Characterizations of Ruled Surface of a Closed Timelike Curve in Dual Lorentzian Space. Adv. Appl. Clifford Al. 2012, 22, 939–953. [Google Scholar]
- Izumiya, S.; Saji, K.; Takeuchi, N. Circular surfaces. Adv. Geom. 2007, 7, 295–313. [Google Scholar] [CrossRef]
- Izumiya, S.; Saji, K.; Takeuchi, N. Great circular surfaces in the three-sphere. Differ. Geom. Its Appl. 2011, 29, 409–425. [Google Scholar] [CrossRef]
- Izumiya, S. Special curves and ruled surfaces. Cotributions Algebra Geom. 2003, 44, 203–212. [Google Scholar]
- Gorjanc, S.; Jurkin, E. Circular surfaces CS(α, p). Filomat 2015, 29, 725–737. [Google Scholar] [CrossRef]
- Abdel-Baky, R.A.; Unluturk, Y. On the curvatures of spacelike circular surfaces. Kuwait J. Sci. 2016, 43, 50–58. [Google Scholar]
- Abdel-Baky, R.; Alluhaibi, N.; Ali, A.; Mofarreh, F. A study on timelike circular surfaces in Minkowski 3-space. Int. J. Geom. Methods Mod. Phys. 2020, 17, 2050074. [Google Scholar] [CrossRef]
- Tuncer, O.; Canakcı, Z.; Gok, I.; Yaylı, Y. Circular surfaces with split quaternionic representations in Minkowski 3-space. Adv. Appl. Clifford Algebr. 2018, 28, 63. [Google Scholar] [CrossRef]
- İlarslan, K.; Nešović, E. Some characterizations of osculating curves in the Euclidean spaces. Demonstr. Math. 2008, 41, 931–940. [Google Scholar]
- Ravani, B.; Ku, T.S. Bertrand offsets of ruled and developable surfaces. Comput. Aided Des. 1991, 23, 145–152. [Google Scholar] [CrossRef]
- Küçük, A.; Gürsoy, O. On the invariants of Bertrand trajectory surface offsets. Appl. Math. Comput. 2004, 151, 763–773. [Google Scholar] [CrossRef]
- Aldossary, M.T.; Abdel-Baky, R.A. On the Bertrand offsets for ruled and developable surfaces. Boll. Unione Mat. Ital. 2015, 8, 53–64. [Google Scholar] [CrossRef]
- Kasap, E.; Kuruoglu, N. Integral invariants of the pairs of the Bertrand ruled surface. Bull. Pure Appl. Sci. Sect. E Math. 2002, 21, 37–44. [Google Scholar]
- Kasap, E.; Kuruoglu, N. The Bertrand offsets of ruled surfaces in . Acta Math. Vietnam 2006, 31, 39–48. [Google Scholar]
- Kasap, E.; Yuce, S.; Kuruoglu, N. The involute-evolute offsets of ruled surfaces. Iran. J. Sci. Tech. Trans. A 2009, 33, 195–201. [Google Scholar]
- Orbay, K.; Kasap, E.; Aydemir, I. Mannheim offsets of ruled surfaces. Math. Probl. Eng. 2009, 2009, 160917. [Google Scholar] [CrossRef]
- O’Neill, B. Elementary Differential Geometry; Elsevier: Los Angles, CA, USA, 2006. [Google Scholar]
- Hanson, J.A. Visualing Quaternions; Elsevier: North York, ON, Canada, 2006. [Google Scholar]
- Kuipers, J.B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality; Princeton University Press: Princeton, NJ, USA, 1999. [Google Scholar]
- Do Carmo, M.P. Differential Geometry of Curves and Surfaces; Prentice-Hall: Hoboken, NJ, USA, 1976; ISBN 0-13-212589-7. [Google Scholar]
- Hacısalihoğlu, H.H. Differential Geometry; İnönü University: Malatya, Turkey, 1983. [Google Scholar]
- Li, Y.; Tuncer, O.O. On (contra)pedals and (anti)orthotomics of frontals in de Sitter 2-space. Math. Meth. Appl. Sci. 2023, 46, 11157–11171. [Google Scholar] [CrossRef]
- Li, Y.; Abolarinwa, A.; Alkhaldi, A.; Ali, A. Some Inequalities of Hardy Type Related to Witten-Laplace Operator on Smooth Metric Measure Spaces. Mathematics 2022, 10, 4580. [Google Scholar] [CrossRef]
- Li, Y.; Aldossary, M.T.; Abdel-Baky, R.A. Spacelike Circular Surfaces in Minkowski 3-Space. Symmetry 2023, 15, 173. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Nazra, S.H.; Abdel-Baky, R.A. Singularities for Timelike Developable Surfaces in Minkowski 3-Space. Symmetry 2023, 15, 277. [Google Scholar] [CrossRef]
- Li, Y.; Alkhaldi, A.; Ali, A.; Abdel-Baky, R.A.; Saad, M.K. Investigation of ruled surfaces and their singularities according to Blaschke frame in Euclidean 3-space. AIMS Math. 2023, 8, 13875–13888. [Google Scholar] [CrossRef]
- Li, Y.; Eren, K.; Ayvacı, K.H.; Ersoy, S. The developable surfaces with pointwise 1-type Gauss map of Frenet type framed base curves in Euclidean 3-space. AIMS Math. 2023, 8, 2226–2239. [Google Scholar] [CrossRef]
- Li, Y.; Ganguly, D. Kenmotsu Metric as Conformal η-Ricci Soliton. Mediterr. J. Math. 2023, 20, 193. [Google Scholar] [CrossRef]
- Li, Y.; Srivastava, S.K.; Mofarreh, F.; Kumar, A.; Ali, A. Ricci Soliton of CR-Warped Product Manifolds and Their Classifications. Symmetry 2023, 15, 976. [Google Scholar] [CrossRef]
- Li, Y.; Laurian-Ioan, P.; Alqahtani, L.; Alkhaldi, A.; Ali, A. Zermelo’s navigation problem for some special surfaces of rotation. AIMS Math. 2023, 8, 16278–16290. [Google Scholar] [CrossRef]
- Li, Y.; Abdel-Salam, A.A.; Saad, M.K. Primitivoids of curves in Minkowski plane. AIMS Math. 2023, 8, 2386–2406. [Google Scholar] [CrossRef]
- Li, Y.; Erdoğdu, M.; Yavuz, A. Differential Geometric Approach of Betchow-Da Rios Soliton Equation. Hacet. J. Math. Stat. 2023, 52, 114–125. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Çalışkan, A. Quaternionic Shape Operator and Rotation Matrix on Ruled Surfaces. Axioms 2023, 12, 486. https://doi.org/10.3390/axioms12050486
Li Y, Çalışkan A. Quaternionic Shape Operator and Rotation Matrix on Ruled Surfaces. Axioms. 2023; 12(5):486. https://doi.org/10.3390/axioms12050486
Chicago/Turabian StyleLi, Yanlin, and Abdussamet Çalışkan. 2023. "Quaternionic Shape Operator and Rotation Matrix on Ruled Surfaces" Axioms 12, no. 5: 486. https://doi.org/10.3390/axioms12050486
APA StyleLi, Y., & Çalışkan, A. (2023). Quaternionic Shape Operator and Rotation Matrix on Ruled Surfaces. Axioms, 12(5), 486. https://doi.org/10.3390/axioms12050486